Package hercules contains the functions which are needed to gather various statistics from a Git repository. The analysis is expressed in a form of the tree: there are nodes - "pipeline items" - which require some other nodes to be executed prior to selves and in turn provide the data for dependent nodes. There are several service items which do not produce any useful statistics but rather provide the requirements for other items. The top-level items include: - BurndownAnalysis - line burndown statistics for project, files and developers. - CouplesAnalysis - coupling statistics for files and developers. - ShotnessAnalysis - structural hotness and couples, by any Babelfish UAST XPath (functions by default). The typical API usage is to initialize the Pipeline class: Then add the required analysis: This call will add all the needed intermediate pipeline items. Then link and execute the analysis tree: Finally extract the result: The actual usage example is cmd/hercules/root.go - the command line tool's code. You can provide additional options via `facts` on initialization. For example, to provide your own logger, enable people-tracking, and set a custom tick size: Hercules depends heavily on https://github.com/src-d/go-git and leverages the diff algorithm through https://github.com/sergi/go-diff. Besides, BurndownAnalysis involves File and RBTree. These are low level data structures which enable incremental blaming. File carries an instance of RBTree and the current line burndown state. RBTree implements the red-black balanced binary tree and is based on https://github.com/yasushi-saito/rbtree. Coupling stats are supposed to be further processed rather than observed directly. labours.py uses Swivel embeddings and visualises them in Tensorflow Projector. Shotness analysis as well as other UAST-featured items relies on [Babelfish](https://doc.bblf.sh) and requires the server to be running.
Package iris is a fully-featured HTTP/2 backend web framework written entirely in Google’s Go Language. Source code and other details for the project are available at GitHub: The only requirement is the Go Programming Language, at least version 1.8 Example code: All HTTP methods are supported, developers can also register handlers for same paths for different methods. The first parameter is the HTTP Method, second parameter is the request path of the route, third variadic parameter should contains one or more context.Handler executed by the registered order when a user requests for that specific resouce path from the server. Example code: In order to make things easier for the user, Iris provides functions for all HTTP Methods. The first parameter is the request path of the route, second variadic parameter should contains one or more context.Handler executed by the registered order when a user requests for that specific resouce path from the server. Example code: A set of routes that are being groupped by path prefix can (optionally) share the same middleware handlers and template layout. A group can have a nested group too. `.Party` is being used to group routes, developers can declare an unlimited number of (nested) groups. Example code: Iris developers are able to register their own handlers for http statuses like 404 not found, 500 internal server error and so on. Example code: With the help of Iris's expressionist router you can build any form of API you desire, with safety. Example code: At the previous example, we've seen static routes, group of routes, subdomains, wildcard subdomains, a small example of parameterized path with a single known paramete and custom http errors, now it's time to see wildcard parameters and macros. Iris, like net/http std package registers route's handlers by a Handler, the Iris' type of handler is just a func(ctx context.Context) where context comes from github.com/brucejrc/iris/context. Until go 1.9 you will have to import that package too, after go 1.9 this will be not be necessary. Iris has the easiest and the most powerful routing process you have ever meet. At the same time, Iris has its own interpeter(yes like a programming language) for route's path syntax and their dynamic path parameters parsing and evaluation, I am calling them "macros" for shortcut. How? It calculates its needs and if not any special regexp needed then it just registers the route with the low-level path syntax, otherwise it pre-compiles the regexp and adds the necessary middleware(s). Standard macro types for parameters: if type is missing then parameter's type is defaulted to string, so {param} == {param:string}. If a function not found on that type then the "string"'s types functions are being used. i.e: Besides the fact that Iris provides the basic types and some default "macro funcs" you are able to register your own too!. Register a named path parameter function: at the func(argument ...) you can have any standard type, it will be validated before the server starts so don't care about performance here, the only thing it runs at serve time is the returning func(paramValue string) bool. Example code: A path parameter name should contain only alphabetical letters, symbols, containing '_' and numbers are NOT allowed. If route failed to be registered, the app will panic without any warnings if you didn't catch the second return value(error) on .Handle/.Get.... Last, do not confuse ctx.Values() with ctx.Params(). Path parameter's values goes to ctx.Params() and context's local storage that can be used to communicate between handlers and middleware(s) goes to ctx.Values(), path parameters and the rest of any custom values are separated for your own good. Run Example code: More examples can be found here: https://github.com/brucejrc/iris/tree/master/_examples/beginner/file-server Middleware is just a concept of ordered chain of handlers. Middleware can be registered globally, per-party, per-subdomain and per-route. Example code: Iris is able to wrap and convert any external, third-party Handler you used to use to your web application. Let's convert the https://github.com/rs/cors net/http external middleware which returns a `next form` handler. Example code: Iris supports 5 template engines out-of-the-box, developers can still use any external golang template engine, as `context.ResponseWriter()` is an `io.Writer`. All of these five template engines have common features with common API, like Layout, Template Funcs, Party-specific layout, partial rendering and more. Example code: View engine supports bundled(https://github.com/jteeuwen/go-bindata) template files too. go-bindata gives you two functions, asset and assetNames, these can be setted to each of the template engines using the `.Binary` func. Example code: A real example can be found here: https://github.com/brucejrc/iris/tree/master/_examples/intermediate/view/embedding-templates-into-app. Enable auto-reloading of templates on each request. Useful while developers are in dev mode as they no neeed to restart their app on every template edit. Example code: Each one of these template engines has different options located here: https://github.com/brucejrc/iris/tree/master/view . This example will show how to store and access data from a session. You don’t need any third-party library, but If you want you can use any session manager compatible or not. In this example we will only allow authenticated users to view our secret message on the /secret page. To get access to it, the will first have to visit /login to get a valid session cookie, which logs him in. Additionally he can visit /logout to revoke his access to our secret message. Example code: Running the example: But you should have a basic idea of the framework by now, we just scratched the surface. If you enjoy what you just saw and want to learn more, please follow the below links: Examples: Built'n Middleware: Community Middleware: Home Page:
Package goji provides an out-of-box web server with reasonable defaults. Example: This package exists purely as a convenience to programmers who want to get started as quickly as possible. It draws almost all of its code from goji's subpackages, the most interesting of which is goji/web, and where most of the documentation for the web framework lives. A side effect of this package's ease-of-use is the fact that it is opinionated. If you don't like (or have outgrown) its opinions, it should be straightforward to use the APIs of goji's subpackages to reimplement things to your liking. Both methods of using this library are equally well supported. Goji requires Go 1.2 or newer.
Package redisc implements a redis cluster client on top of the redigo client package. It supports all commands that can be executed on a redis cluster, including pub-sub, scripts and read-only connections to read data from replicas. See http://redis.io/topics/cluster-spec for details. The package defines two main types: Cluster and Conn. Both are described in more details below, but the Cluster manages the mapping of keys (or more exactly, hash slots computed from keys) to a group of nodes that form a redis cluster, and a Conn manages a connection to this cluster. The package is designed such that for simple uses, or when keys have been carefully named to play well with a redis cluster, a Cluster value can be used as a drop-in replacement for a redis.Pool from the redigo package. Similarly, the Conn type implements redigo's redis.Conn interface (and the augmented redis.ConnWithTimeout one too), so the API to execute commands is the same - in fact the redisc package uses the redigo package as its only third-party dependency. When more control is needed, the package offers some extra behaviour specific to working with a redis cluster: Slot and SplitBySlot functions to compute the slot for a given key and to split a list of keys into groups of keys from the same slot, so that each group can safely be handled using the same connection. *Conn.Bind (or the BindConn package-level helper function) to explicitly specify the keys that will be used with the connection so that the right node is selected, instead of relying on the automatic detection based on the first parameter of the command. *Conn.ReadOnly (or the ReadOnlyConn package-level helper function) to mark a connection as read-only, allowing commands to be served by a replica instead of the master. RetryConn to wrap a connection into one that automatically follows redirections when the cluster moves slots around. Helper functions to deal with cluster-specific errors. The Cluster type manages a redis cluster and offers an interface compatible with redigo's redis.Pool: Along with some additional methods specific to a cluster: If the CreatePool function field is set, then a redis.Pool is created to manage connections to each of the cluster's nodes. A call to Get returns a connection from that pool. The Dial method, on the other hand, guarantees that the returned connection will not be managed by a pool, even if CreatePool is set. It calls redigo's redis.Dial function to create the unpooled connection, passing along any DialOptions set on the cluster. If the cluster's CreatePool field is nil, Get behaves the same as Dial. The Refresh method refreshes the cluster's internal mapping of hash slots to nodes. It should typically be called only once, after the cluster is created and before it is used, so that the first connections already benefit from smart routing. It is automatically kept up-to-date based on the redis MOVED responses afterwards. The EachNode method visits each node in the cluster and calls the provided function with a connection to that node, which may be useful to run diagnostics commands on each node or to collect keys across the whole cluster. The Stats method returns the pool statistics for each node, with the node's address as key of the map. A cluster must be closed once it is no longer used to release its resources. The connection returned from Get or Dial is a redigo redis.Conn interface (that also implements redis.ConnWithTimeout), with a concrete type of *Conn. In addition to the interface's required methods, *Conn adds the following methods: The returned connection is not yet connected to any node; it is "bound" to a specific node only when a call to Do, Send, Receive or Bind is made. For Do, Send and Receive, the node selection is implicit, it uses the first parameter of the command, and computes the hash slot assuming that first parameter is a key. It then binds the connection to the node corresponding to that slot. If there are no parameters for the command, or if there is no command (e.g. in a call to Receive), a random node is selected. Bind is explicit, it gives control to the caller over which node to select by specifying a list of keys that the caller wishes to handle with the connection. All keys must belong to the same slot, and the connection must not already be bound to a node, otherwise an error is returned. On success, the connection is bound to the node holding the slot of the specified key(s). Because the connection is returned as a redis.Conn interface, a type assertion must be used to access the underlying *Conn and to be able to call Bind: The BindConn package-level function is provided as a helper for this common use-case. The ReadOnly method marks the connection as read-only, meaning that it will attempt to connect to a replica instead of the master node for its slot. Once bound to a node, the READONLY redis command is sent automatically, so it doesn't have to be sent explicitly before use. ReadOnly must be called before the connection is bound to a node, otherwise an error is returned. For the same reason as for Bind, a type assertion must be used to call ReadOnly on a *Conn, so a package-level helper function is also provided, ReadOnlyConn. There is no ReadWrite method, because it can be sent as a normal redis command and will essentially end that connection (all commands will now return MOVED errors). If the connection was wrapped in a RetryConn call, then it will automatically follow the redirection to the master node (see the Redirections section). The connection must be closed after use, to release the underlying resources. The redis cluster may return MOVED and ASK errors when the node that received the command doesn't currently hold the slot corresponding to the key. The package cannot reliably handle those redirections automatically because the redirection error may be returned for a pipeline of commands, some of which may have succeeded. However, a connection can be wrapped by a call to RetryConn, which returns a redis.Conn interface where only calls to Do, Close and Err can succeed. That means pipelining is not supported, and only a single command can be executed at a time, but it will automatically handle MOVED and ASK replies, as well as TRYAGAIN errors. Note that even if RetryConn is not used, the cluster always updates its mapping of slots to nodes automatically by keeping track of MOVED replies. The concurrency model is similar to that of the redigo package: Cluster methods are safe to call concurrently (like redis.Pool). Connections do not support concurrent calls to write methods (Send, Flush) or concurrent calls to the read method (Receive). Connections do allow a concurrent reader and writer. Because the Do method combines the functionality of Send, Flush and Receive, it cannot be called concurrently with other methods. The Bind and ReadOnly methods are safe to call concurrently, but there is not much point in doing so for as both will fail if the connection is already bound. Create and use a cluster.
Package redisc implements a redis cluster client on top of the redigo client package. It supports all commands that can be executed on a redis cluster, including pub-sub, scripts and read-only connections to read data from replicas. See http://redis.io/topics/cluster-spec for details. The package defines two main types: Cluster and Conn. Both are described in more details below, but the Cluster manages the mapping of keys (or more exactly, hash slots computed from keys) to a group of nodes that form a redis cluster, and a Conn manages a connection to this cluster. The package is designed such that for simple uses, or when keys have been carefully named to play well with a redis cluster, a Cluster value can be used as a drop-in replacement for a redis.Pool from the redigo package. Similarly, the Conn type implements redigo's redis.Conn interface (and the augmented redis.ConnWithTimeout one too), so the API to execute commands is the same - in fact the redisc package uses the redigo package as its only third-party dependency. When more control is needed, the package offers some extra behaviour specific to working with a redis cluster: Slot and SplitBySlot functions to compute the slot for a given key and to split a list of keys into groups of keys from the same slot, so that each group can safely be handled using the same connection. *Conn.Bind (or the BindConn package-level helper function) to explicitly specify the keys that will be used with the connection so that the right node is selected, instead of relying on the automatic detection based on the first parameter of the command. *Conn.ReadOnly (or the ReadOnlyConn package-level helper function) to mark a connection as read-only, allowing commands to be served by a replica instead of the master. RetryConn to wrap a connection into one that automatically follows redirections when the cluster moves slots around. Helper functions to deal with cluster-specific errors. The Cluster type manages a redis cluster and offers an interface compatible with redigo's redis.Pool: Along with some additional methods specific to a cluster: If the CreatePool function field is set, then a redis.Pool is created to manage connections to each of the cluster's nodes. A call to Get returns a connection from that pool. The Dial method, on the other hand, guarantees that the returned connection will not be managed by a pool, even if CreatePool is set. It calls redigo's redis.Dial function to create the unpooled connection, passing along any DialOptions set on the cluster. If the cluster's CreatePool field is nil, Get behaves the same as Dial. The Refresh method refreshes the cluster's internal mapping of hash slots to nodes. It should typically be called only once, after the cluster is created and before it is used, so that the first connections already benefit from smart routing. It is automatically kept up-to-date based on the redis MOVED responses afterwards. The EachNode method visits each node in the cluster and calls the provided function with a connection to that node, which may be useful to run diagnostics commands on each node or to collect keys across the whole cluster. The Stats method returns the pool statistics for each node, with the node's address as key of the map. A cluster must be closed once it is no longer used to release its resources. The connection returned from Get or Dial is a redigo redis.Conn interface (that also implements redis.ConnWithTimeout), with a concrete type of *Conn. In addition to the interface's required methods, *Conn adds the following methods: The returned connection is not yet connected to any node; it is "bound" to a specific node only when a call to Do, Send, Receive or Bind is made. For Do, Send and Receive, the node selection is implicit, it uses the first parameter of the command, and computes the hash slot assuming that first parameter is a key. It then binds the connection to the node corresponding to that slot. If there are no parameters for the command, or if there is no command (e.g. in a call to Receive), a random node is selected. Bind is explicit, it gives control to the caller over which node to select by specifying a list of keys that the caller wishes to handle with the connection. All keys must belong to the same slot, and the connection must not already be bound to a node, otherwise an error is returned. On success, the connection is bound to the node holding the slot of the specified key(s). Because the connection is returned as a redis.Conn interface, a type assertion must be used to access the underlying *Conn and to be able to call Bind: The BindConn package-level function is provided as a helper for this common use-case. The ReadOnly method marks the connection as read-only, meaning that it will attempt to connect to a replica instead of the master node for its slot. Once bound to a node, the READONLY redis command is sent automatically, so it doesn't have to be sent explicitly before use. ReadOnly must be called before the connection is bound to a node, otherwise an error is returned. For the same reason as for Bind, a type assertion must be used to call ReadOnly on a *Conn, so a package-level helper function is also provided, ReadOnlyConn. There is no ReadWrite method, because it can be sent as a normal redis command and will essentially end that connection (all commands will now return MOVED errors). If the connection was wrapped in a RetryConn call, then it will automatically follow the redirection to the master node (see the Redirections section). The connection must be closed after use, to release the underlying resources. The redis cluster may return MOVED and ASK errors when the node that received the command doesn't currently hold the slot corresponding to the key. The package cannot reliably handle those redirections automatically because the redirection error may be returned for a pipeline of commands, some of which may have succeeded. However, a connection can be wrapped by a call to RetryConn, which returns a redis.Conn interface where only calls to Do, Close and Err can succeed. That means pipelining is not supported, and only a single command can be executed at a time, but it will automatically handle MOVED and ASK replies, as well as TRYAGAIN errors. Note that even if RetryConn is not used, the cluster always updates its mapping of slots to nodes automatically by keeping track of MOVED replies. The concurrency model is similar to that of the redigo package: Cluster methods are safe to call concurrently (like redis.Pool). Connections do not support concurrent calls to write methods (Send, Flush) or concurrent calls to the read method (Receive). Connections do allow a concurrent reader and writer. Because the Do method combines the functionality of Send, Flush and Receive, it cannot be called concurrently with other methods. The Bind and ReadOnly methods are safe to call concurrently, but there is not much point in doing so for as both will fail if the connection is already bound. Create and use a cluster.
Package sqlz (pronounced "sequelize") is an un-opinionated, un-obtrusive SQL query builder for Go projects, based on github.com/jmoiron/sqlx. As opposed to other query builders, sqlz does not mean to bridge the gap between different SQL servers and implementations by providing a unified interface. Instead, it aims to support an extended SQL syntax that may be implementation-specific. For example, if you wish to use PostgreSQL-specific features such as JSON operators and upsert statements, sqlz means to support these without caring if the underlying database backend really is PostgreSQL. In other words, sqlz builds whatever queries you want it to build. sqlz is easy to integrate into existing code, as it does not require you to create your database connections through the sqlz API; in fact, it doesn't supply one. You can either use your existing `*sql.DB` connection or an `*sqlx.DB` connection, so you can start writing new queries with sqlz without having to modify any existing code. sqlz leverages sqlx for easy loading of query results. Please make sure you are familiar with how sqlx works in order to understand how row scanning is performed. You may need to add `db` struct tags to your Go structures. sqlz provides a comfortable API for running queries in a transaction, and will automatically commit or rollback the transaction as necessary.
Package configure is an easy to use multi-layer configuration system. Examples can be found in the example folder (http://github.com/paked/configure/blob/master/examples/) as well as a getting started guide in the main README file (http://github.com/paked/configure). configure makes use of Checkers, which are used to retrieve values from their respective data sources. There are three built in Checkers, Environment, Flag and JSON. Environment retrieves environment variables. Flag retrieves variables within the flags of a command. JSON retrieves values from a JSON file/blob. Checkers can be essentially thought of as "middlewear for configuration", in fact parts of the package API was inspired by negroni (https://github.com/codegangsta/negroni, the awesome net/http middlewear manager) and the standard library's flag package. It is very easy to create your own Checkers, all they have to do is satisfy the Checker interface. That is an, Int method, String method and a Bool method. These functions are used to retrieve their respective data types. A setup method is also required, where the Checker should initialize itself and throw any errors. If you do create your own Checkers I would be more than happy to add a link to the README in the github repository.
Package iris provides a beautifully expressive and easy to use foundation for your next website, API, or distributed app. Source code and other details for the project are available at GitHub: 10.6.6 The only requirement is the Go Programming Language, at least version 1.8 but 1.10.2 is highly recommended. Example code: You can start the server(s) listening to any type of `net.Listener` or even `http.Server` instance. The method for initialization of the server should be passed at the end, via `Run` function. Below you'll see some useful examples: UNIX and BSD hosts can take advantage of the reuse port feature. Example code: That's all with listening, you have the full control when you need it. Let's continue by learning how to catch CONTROL+C/COMMAND+C or unix kill command and shutdown the server gracefully. In order to manually manage what to do when app is interrupted, we have to disable the default behavior with the option `WithoutInterruptHandler` and register a new interrupt handler (globally, across all possible hosts). Example code: Access to all hosts that serve your application can be provided by the `Application#Hosts` field, after the `Run` method. But the most common scenario is that you may need access to the host before the `Run` method, there are two ways of gain access to the host supervisor, read below. First way is to use the `app.NewHost` to create a new host and use one of its `Serve` or `Listen` functions to start the application via the `iris#Raw` Runner. Note that this way needs an extra import of the `net/http` package. Example Code: Second, and probably easier way is to use the `host.Configurator`. Note that this method requires an extra import statement of "github.com/kataras/iris/core/host" when using go < 1.9, if you're targeting on go1.9 then you can use the `iris#Supervisor` and omit the extra host import. All common `Runners` we saw earlier (`iris#Addr, iris#Listener, iris#Server, iris#TLS, iris#AutoTLS`) accept a variadic argument of `host.Configurator`, there are just `func(*host.Supervisor)`. Therefore the `Application` gives you the rights to modify the auto-created host supervisor through these. Example Code: Read more about listening and gracefully shutdown by navigating to: All HTTP methods are supported, developers can also register handlers for same paths for different methods. The first parameter is the HTTP Method, second parameter is the request path of the route, third variadic parameter should contains one or more iris.Handler executed by the registered order when a user requests for that specific resouce path from the server. Example code: In order to make things easier for the user, iris provides functions for all HTTP Methods. The first parameter is the request path of the route, second variadic parameter should contains one or more iris.Handler executed by the registered order when a user requests for that specific resouce path from the server. Example code: A set of routes that are being groupped by path prefix can (optionally) share the same middleware handlers and template layout. A group can have a nested group too. `.Party` is being used to group routes, developers can declare an unlimited number of (nested) groups. Example code: iris developers are able to register their own handlers for http statuses like 404 not found, 500 internal server error and so on. Example code: With the help of iris's expressionist router you can build any form of API you desire, with safety. Example code: At the previous example, we've seen static routes, group of routes, subdomains, wildcard subdomains, a small example of parameterized path with a single known parameter and custom http errors, now it's time to see wildcard parameters and macros. iris, like net/http std package registers route's handlers by a Handler, the iris' type of handler is just a func(ctx iris.Context) where context comes from github.com/kataras/iris/context. Iris has the easiest and the most powerful routing process you have ever meet. At the same time, iris has its own interpeter(yes like a programming language) for route's path syntax and their dynamic path parameters parsing and evaluation, We call them "macros" for shortcut. How? It calculates its needs and if not any special regexp needed then it just registers the route with the low-level path syntax, otherwise it pre-compiles the regexp and adds the necessary middleware(s). Standard macro types for parameters: if type is missing then parameter's type is defaulted to string, so {param} == {param:string}. If a function not found on that type then the "string"'s types functions are being used. i.e: Besides the fact that iris provides the basic types and some default "macro funcs" you are able to register your own too!. Register a named path parameter function: at the func(argument ...) you can have any standard type, it will be validated before the server starts so don't care about performance here, the only thing it runs at serve time is the returning func(paramValue string) bool. Example Code: A path parameter name should contain only alphabetical letters, symbols, containing '_' and numbers are NOT allowed. If route failed to be registered, the app will panic without any warnings if you didn't catch the second return value(error) on .Handle/.Get.... Last, do not confuse ctx.Values() with ctx.Params(). Path parameter's values goes to ctx.Params() and context's local storage that can be used to communicate between handlers and middleware(s) goes to ctx.Values(), path parameters and the rest of any custom values are separated for your own good. Run Static Files Example code: More examples can be found here: https://github.com/kataras/iris/tree/master/_examples/beginner/file-server Middleware is just a concept of ordered chain of handlers. Middleware can be registered globally, per-party, per-subdomain and per-route. Example code: iris is able to wrap and convert any external, third-party Handler you used to use to your web application. Let's convert the https://github.com/rs/cors net/http external middleware which returns a `next form` handler. Example code: Iris supports 5 template engines out-of-the-box, developers can still use any external golang template engine, as `context/context#ResponseWriter()` is an `io.Writer`. All of these five template engines have common features with common API, like Layout, Template Funcs, Party-specific layout, partial rendering and more. Example code: View engine supports bundled(https://github.com/shuLhan/go-bindata) template files too. go-bindata gives you two functions, asset and assetNames, these can be setted to each of the template engines using the `.Binary` func. Example code: A real example can be found here: https://github.com/kataras/iris/tree/master/_examples/view/embedding-templates-into-app. Enable auto-reloading of templates on each request. Useful while developers are in dev mode as they no neeed to restart their app on every template edit. Example code: Note: In case you're wondering, the code behind the view engines derives from the "github.com/kataras/iris/view" package, access to the engines' variables can be granded by "github.com/kataras/iris" package too. Each one of these template engines has different options located here: https://github.com/kataras/iris/tree/master/view . This example will show how to store and access data from a session. You don’t need any third-party library, but If you want you can use any session manager compatible or not. In this example we will only allow authenticated users to view our secret message on the /secret page. To get access to it, the will first have to visit /login to get a valid session cookie, which logs him in. Additionally he can visit /logout to revoke his access to our secret message. Example code: Running the example: Sessions persistence can be achieved using one (or more) `sessiondb`. Example Code: More examples: In this example we will create a small chat between web sockets via browser. Example Server Code: Example Client(javascript) Code: Running the example: Iris has first-class support for the MVC pattern, you'll not find these stuff anywhere else in the Go world. Example Code: // GetUserBy serves // Method: GET // Resource: http://localhost:8080/user/{username:string} // By is a reserved "keyword" to tell the framework that you're going to // bind path parameters in the function's input arguments, and it also // helps to have "Get" and "GetBy" in the same controller. // // func (c *ExampleController) GetUserBy(username string) mvc.Result { // return mvc.View{ // Name: "user/username.html", // Data: username, // } // } Can use more than one, the factory will make sure that the correct http methods are being registered for each route for this controller, uncomment these if you want: Iris web framework supports Request data, Models, Persistence Data and Binding with the fastest possible execution. Characteristics: All HTTP Methods are supported, for example if want to serve `GET` then the controller should have a function named `Get()`, you can define more than one method function to serve in the same Controller. Register custom controller's struct's methods as handlers with custom paths(even with regex parametermized path) via the `BeforeActivation` custom event callback, per-controller. Example: Persistence data inside your Controller struct (share data between requests) by defining services to the Dependencies or have a `Singleton` controller scope. Share the dependencies between controllers or register them on a parent MVC Application, and ability to modify dependencies per-controller on the `BeforeActivation` optional event callback inside a Controller, i.e Access to the `Context` as a controller's field(no manual binding is neede) i.e `Ctx iris.Context` or via a method's input argument, i.e Models inside your Controller struct (set-ed at the Method function and rendered by the View). You can return models from a controller's method or set a field in the request lifecycle and return that field to another method, in the same request lifecycle. Flow as you used to, mvc application has its own `Router` which is a type of `iris/router.Party`, the standard iris api. `Controllers` can be registered to any `Party`, including Subdomains, the Party's begin and done handlers work as expected. Optional `BeginRequest(ctx)` function to perform any initialization before the method execution, useful to call middlewares or when many methods use the same collection of data. Optional `EndRequest(ctx)` function to perform any finalization after any method executed. Session dynamic dependency via manager's `Start` to the MVC Application, i.e Inheritance, recursively. Access to the dynamic path parameters via the controller's methods' input arguments, no binding is needed. When you use the Iris' default syntax to parse handlers from a controller, you need to suffix the methods with the `By` word, uppercase is a new sub path. Example: Register one or more relative paths and able to get path parameters, i.e Response via output arguments, optionally, i.e Where `any` means everything, from custom structs to standard language's types-. `Result` is an interface which contains only that function: Dispatch(ctx iris.Context) and Get where HTTP Method function(Post, Put, Delete...). Iris has a very powerful and blazing fast MVC support, you can return any value of any type from a method function and it will be sent to the client as expected. * if `string` then it's the body. * if `string` is the second output argument then it's the content type. * if `int` then it's the status code. * if `bool` is false then it throws 404 not found http error by skipping everything else. * if `error` and not nil then (any type) response will be omitted and error's text with a 400 bad request will be rendered instead. * if `(int, error)` and error is not nil then the response result will be the error's text with the status code as `int`. * if `custom struct` or `interface{}` or `slice` or `map` then it will be rendered as json, unless a `string` content type is following. * if `mvc.Result` then it executes its `Dispatch` function, so good design patters can be used to split the model's logic where needed. Examples with good patterns to follow but not intend to be used in production of course can be found at: https://github.com/kataras/iris/tree/master/_examples/#mvc. By creating components that are independent of one another, developers are able to reuse components quickly and easily in other applications. The same (or similar) view for one application can be refactored for another application with different data because the view is simply handling how the data is being displayed to the user. If you're new to back-end web development read about the MVC architectural pattern first, a good start is that wikipedia article: https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller. But you should have a basic idea of the framework by now, we just scratched the surface. If you enjoy what you just saw and want to learn more, please follow the below links: Examples: Middleware: Home Page: Book (in-progress):
Command pigeon generates parsers in Go from a PEG grammar. From Wikipedia [0]: Its features and syntax are inspired by the PEG.js project [1], while the implementation is loosely based on [2]. Formal presentation of the PEG theory by Bryan Ford is also an important reference [3]. An introductory blog post can be found at [4]. The pigeon tool must be called with PEG input as defined by the accepted PEG syntax below. The grammar may be provided by a file or read from stdin. The generated parser is written to stdout by default. The following options can be specified: The tool makes no attempt to format the code, nor to detect the required imports. It is recommended to use goimports to properly generate the output code: The goimports tool can be installed with: If the code blocks in the grammar (see below, section "Code block") are golint- and go vet-compliant, then the resulting generated code will also be golint- and go vet-compliant. The generated code doesn't use any third-party dependency unless code blocks in the grammar require such a dependency. The accepted syntax for the grammar is formally defined in the grammar/pigeon.peg file, using the PEG syntax. What follows is an informal description of this syntax. Identifiers, whitespace, comments and literals follow the same notation as the Go language, as defined in the language specification (http://golang.org/ref/spec#Source_code_representation): The grammar must be Unicode text encoded in UTF-8. New lines are identified by the \n character (U+000A). Space (U+0020), horizontal tabs (U+0009) and carriage returns (U+000D) are considered whitespace and are ignored except to separate tokens. A PEG grammar consists of a set of rules. A rule is an identifier followed by a rule definition operator and an expression. An optional display name - a string literal used in error messages instead of the rule identifier - can be specified after the rule identifier. E.g.: The rule definition operator can be any one of those: A rule is defined by an expression. The following sections describe the various expression types. Expressions can be grouped by using parentheses, and a rule can be referenced by its identifier in place of an expression. The choice expression is a list of expressions that will be tested in the order they are defined. The first one that matches will be used. Expressions are separated by the forward slash character "/". E.g.: Because the first match is used, it is important to think about the order of expressions. For example, in this rule, "<=" would never be used because the "<" expression comes first: The sequence expression is a list of expressions that must all match in that same order for the sequence expression to be considered a match. Expressions are separated by whitespace. E.g.: A labeled expression consists of an identifier followed by a colon ":" and an expression. A labeled expression introduces a variable named with the label that can be referenced in the code blocks in the same scope. The variable will have the value of the expression that follows the colon. E.g.: The variable is typed as an empty interface, and the underlying type depends on the following: For terminals (character and string literals, character classes and the any matcher), the value is []byte. E.g.: For predicates (& and !), the value is always nil. E.g.: For a sequence, the value is a slice of empty interfaces, one for each expression value in the sequence. The underlying types of each value in the slice follow the same rules described here, recursively. E.g.: For a repetition (+ and *), the value is a slice of empty interfaces, one for each repetition. The underlying types of each value in the slice follow the same rules described here, recursively. E.g.: For a choice expression, the value is that of the matching choice. E.g.: For the optional expression (?), the value is nil or the value of the expression. E.g.: Of course, the type of the value can be anything once an action code block is used. E.g.: An expression prefixed with the ampersand "&" is the "and" predicate expression: it is considered a match if the following expression is a match, but it does not consume any input. An expression prefixed with the exclamation point "!" is the "not" predicate expression: it is considered a match if the following expression is not a match, but it does not consume any input. E.g.: The expression following the & and ! operators can be a code block. In that case, the code block must return a bool and an error. The operator's semantic is the same, & is a match if the code block returns true, ! is a match if the code block returns false. The code block has access to any labeled value defined in its scope. E.g.: An expression followed by "*", "?" or "+" is a match if the expression occurs zero or more times ("*"), zero or one time "?" or one or more times ("+") respectively. The match is greedy, it will match as many times as possible. E.g. A literal matcher tries to match the input against a single character or a string literal. The literal may be a single-quoted single character, a double-quoted string or a backtick-quoted raw string. The same rules as in Go apply regarding the allowed characters and escapes. The literal may be followed by a lowercase "i" (outside the ending quote) to indicate that the match is case-insensitive. E.g.: A character class matcher tries to match the input against a class of characters inside square brackets "[...]". Inside the brackets, characters represent themselves and the same escapes as in string literals are available, except that the single- and double-quote escape is not valid, instead the closing square bracket "]" must be escaped to be used. Character ranges can be specified using the "[a-z]" notation. Unicode classes can be specified using the "[\pL]" notation, where L is a single-letter Unicode class of characters, or using the "[\p{Class}]" notation where Class is a valid Unicode class (e.g. "Latin"). As for string literals, a lowercase "i" may follow the matcher (outside the ending square bracket) to indicate that the match is case-insensitive. A "^" as first character inside the square brackets indicates that the match is inverted (it is a match if the input does not match the character class matcher). E.g.: The any matcher is represented by the dot ".". It matches any character except the end of file, thus the "!." expression is used to indicate "match the end of file". E.g.: Code blocks can be added to generate custom Go code. There are three kinds of code blocks: the initializer, the action and the predicate. All code blocks appear inside curly braces "{...}". The initializer must appear first in the grammar, before any rule. It is copied as-is (minus the wrapping curly braces) at the top of the generated parser. It may contain function declarations, types, variables, etc. just like any Go file. Every symbol declared here will be available to all other code blocks. Although the initializer is optional in a valid grammar, it is usually required to generate a valid Go source code file (for the package clause). E.g.: Action code blocks are code blocks declared after an expression in a rule. Those code blocks are turned into a method on the "*current" type in the generated source code. The method receives any labeled expression's value as argument (as interface{}) and must return two values, the first being the value of the expression (an interface{}), and the second an error. If a non-nil error is returned, it is added to the list of errors that the parser will return. E.g.: Predicate code blocks are code blocks declared immediately after the and "&" or the not "!" operators. Like action code blocks, predicate code blocks are turned into a method on the "*current" type in the generated source code. The method receives any labeled expression's value as argument (as interface{}) and must return two values, the first being a bool and the second an error. If a non-nil error is returned, it is added to the list of errors that the parser will return. E.g.: The current type is a struct that provides two useful fields that can be accessed in action and predicate code blocks: "pos" and "text". The "pos" field indicates the current position of the parser in the source input. It is itself a struct with three fields: "line", "col" and "offset". Line is a 1-based line number, col is a 1-based column number that counts runes from the start of the line, and offset is a 0-based byte offset. The "text" field is the slice of bytes of the current match. It is empty in a predicate code block. The parser generated by pigeon exports a few symbols so that it can be used as a package with public functions to parse input text. The exported API is: See the godoc page of the generated parser for the test/predicates grammar for an example documentation page of the exported API: http://godoc.org/github.com/mna/pigeon/test/predicates. Like the grammar used to generate the parser, the input text must be UTF-8-encoded Unicode. The start rule of the parser is the first rule in the PEG grammar used to generate the parser. A call to any of the Parse* functions returns the value generated by executing the grammar on the provided input text, and an optional error. Typically, the grammar should generate some kind of abstract syntax tree (AST), but for simple grammars it may evaluate the result immediately, such as in the examples/calculator example. There are no constraints imposed on the author of the grammar, it can return whatever is needed. When the parser returns a non-nil error, the error is always of type errList, which is defined as a slice of errors ([]error). Each error in the list is of type *parserError. This is a struct that has an "Inner" field that can be used to access the original error. So if a code block returns some well-known error like: The original error can be accessed this way: By defaut the parser will continue after an error is returned and will cumulate all errors found during parsing. If the grammar reaches a point where it shouldn't continue, a panic statement can be used to terminate parsing. The panic will be caught at the top-level of the Parse* call and will be converted into a *parserError like any error, and an errList will still be returned to the caller. The divide by zero error in the examples/calculator grammar leverages this feature (no special code is needed to handle division by zero, if it happens, the runtime panics and it is recovered and returned as a parsing error). Providing good error reporting in a parser is not a trivial task. Part of it is provided by the pigeon tool, by offering features such as filename, position and rule name in the error message, but an important part of good error reporting needs to be done by the grammar author. For example, many programming languages use double-quotes for string literals. Usually, if the opening quote is found, the closing quote is expected, and if none is found, there won't be any other rule that will match, there's no need to backtrack and try other choices, an error should be added to the list and the match should be consumed. In order to do this, the grammar can look something like this: This is just one example, but it illustrates the idea that error reporting needs to be thought out when designing the grammar. Generated parsers have user-provided code mixed with pigeon code in the same package, so there is no package boundary in the resulting code to prevent access to unexported symbols. What is meant to be implementation details in pigeon is also available to user code - which doesn't mean it should be used. For this reason, it is important to precisely define what is intended to be the supported API of pigeon, the parts that will be stable in future versions. The "stability" of the API attempts to make a similar guarantee as the Go 1 compatibility [5]. The following lists what part of the current pigeon code falls under that guarantee (features may be added in the future): The pigeon command-line flags and arguments: those will not be removed and will maintain the same semantics. The explicitly exported API generated by pigeon. See [6] for the documentation of this API on a generated parser. The PEG syntax, as documented above. The code blocks (except the initializer) will always be generated as methods on the *current type, and this type is guaranteed to have the fields pos (type position) and text (type []byte). There are no guarantees on other fields and methods of this type. The position type will always have the fields line, col and offset, all defined as int. There are no guarantees on other fields and methods of this type. The type of the error value returned by the Parse* functions, when not nil, will always be errList defined as a []error. There are no guarantees on methods of this type, other than the fact it implements the error interface. Individual errors in the errList will always be of type *parserError, and this type is guaranteed to have an Inner field that contains the original error value. There are no guarantees on other fields and methods of this type. References:
Package configure is an easy to use multi-layer configuration system. Examples can be found in the example folder (http://github.com/paked/configure/blob/master/examples/) as well as a getting started guide in the main README file (http://github.com/paked/configure). configure makes use of Checkers, which are used to retrieve values from their respective data sources. There are three built in Checkers, Environment, Flag and JSON. Environment retrieves environment variables. Flag retrieves variables within the flags of a command. JSON retrieves values from a JSON file/blob. Checkers can be essentially thought of as "middlewear for configuration", in fact parts of the package API was inspired by negroni (https://github.com/codegangsta/negroni, the awesome net/http middlewear manager) and the standard library's flag package. It is very easy to create your own Checkers, all they have to do is satisfy the Checker interface. That is an, Int method, String method and a Bool method. These functions are used to retrieve their respective data types. A setup method is also required, where the Checker should initialize itself and throw any errors. If you do create your own Checkers I would be more than happy to add a link to the README in the github repository.