Package geomaps provides the API client, operations, and parameter types for Amazon Location Service Maps V2. Capabilities include: Access to comprehensive base map data, allowing you to tailor the map display to your specific needs. Multiple pre-designed map styles suited for various application types, such as navigation, logistics, or data visualization. Generation of static map images for scenarios where interactive maps aren't suitable, such as: Embedding in emails or documents Displaying in low-bandwidth environments Creating printable maps Enhancing application performance by reducing client-side rendering
Package gohog is a client library to interact with and consume mailhog's api https://github.com/mailhog/MailHog mailhog is very useful when testing email integration
Package gomail provides a simple interface to compose emails and to mail them efficiently. More info on Github: https://github.com/go-mail/mail A daemon that listens to a channel and sends all incoming messages. Efficiently send a customized newsletter to a list of recipients. Send an email using a local SMTP server. Send an email using an API or postfix.
Package enmime implements a MIME encoding and decoding library. It's built on top of Go's included mime/multipart support where possible, but is geared towards parsing MIME encoded emails. The enmime API has two conceptual layers. The lower layer is a tree of Part structs, representing each component of a decoded MIME message. The upper layer, called an Envelope provides an intuitive way to interact with a MIME message. Calling ReadParts causes enmime to parse the body of a MIME message into a tree of Part objects, each of which is aware of its content type, filename and headers. The content of a Part is available as a slice of bytes via the Content field. If the part was encoded in quoted-printable or base64, it is decoded prior to being placed in Content. If the Part contains text in a character set other than utf-8, enmime will attempt to convert it to utf-8. To locate a particular Part, pass a custom PartMatcher function into the BreadthMatchFirst() or DepthMatchFirst() methods to search the Part tree. BreadthMatchAll() and DepthMatchAll() will collect all Parts matching your criteria. ReadEnvelope returns an Envelope struct. Behind the scenes a Part tree is constructed, and then sorted into the correct fields of the Envelope. The Envelope contains both the plain text and HTML portions of the email. If there was no plain text Part available, the HTML Part will be down-converted using the html2text library1. The root of the Part tree, as well as slices of the inline and attachment Parts are also available. Every MIME Part has its own headers, accessible via the Part.Header field. The raw headers for an Envelope are available in Root.Header. Envelope also provides helper methods to fetch headers: GetHeader(key) will return the RFC 2047 decoded value of the specified header. AddressList(key) will convert the specified address header into a slice of net/mail.Address values. enmime attempts to be tolerant of poorly encoded MIME messages. In situations where parsing is not possible, the ReadEnvelope and ReadParts functions will return a hard error. If enmime is able to continue parsing the message, it will add an entry to the Errors slice on the relevant Part. After parsing is complete, all Part errors will be appended to the Envelope Errors slice. The Error* constants can be used to identify a specific class of error. Please note that enmime parses messages into memory, so it is not likely to perform well with multi-gigabyte attachments. enmime is open source software released under the MIT License. The latest version can be found at https://github.com/jhillyerd/enmime/v2
Package goa provides the runtime support for goa microservices. goa service development begins with writing the *design* of a service. The design is described using the goa language implemented by the github.com/shogo82148/goa-v1/design/apidsl package. The `goagen` tool consumes the metadata produced from executing the design language to generate service specific code that glues the underlying HTTP server with action specific code and data structures. The goa package contains supporting functionality for the generated code including basic request and response state management through the RequestData and ResponseData structs, error handling via error classes, middleware support via the Middleware data structure as well as decoding and encoding algorithms. The RequestData and ResponseData structs provides access to the request and response state. goa request handlers also accept a context.Context interface as first parameter so that deadlines and cancelation signals may easily be implemented. The request state exposes the underlying http.Request object as well as the deserialized payload (request body) and parameters (both path and querystring parameters). Generated action specific contexts wrap the context.Context, ResponseData and RequestData data structures. They expose properly typed fields that correspond to the request parameters and body data structure descriptions appearing in the design. The response state exposes the response status and body length as well as the underlying ResponseWriter. Action contexts provide action specific helper methods that write the responses as described in the design optionally taking an instance of the media type for responses that contain a body. Here is an example showing an "update" action corresponding to following design (extract): The action signature generated by goagen is: where UpdateBottleContext is: and implements: The definitions of the Bottle and UpdateBottlePayload data structures are omitted for brevity. There is one controller interface generated per resource defined via the design language. The interface exposes the controller actions. User code must provide data structures that implement these interfaces when mounting a controller onto a service. The controller data structure should include an anonymous field of type *goa.Controller which takes care of implementing the middleware handling. A goa middleware is a function that takes and returns a Handler. A Handler is a the low level function which handles incoming HTTP requests. goagen generates the handlers code so each handler creates the action specific context and calls the controller action with it. Middleware can be added to a goa service or a specific controller using the corresponding Use methods. goa comes with a few stock middleware that handle common needs such as logging, panic recovery or using the RequestID header to trace requests across multiple services. The controller action methods generated by goagen such as the Update method of the BottleController interface shown above all return an error value. goa defines an Error struct that action implementations can use to describe the content of the corresponding HTTP response. Errors can be created using error classes which are functions created via NewErrorClass. The ErrorHandler middleware maps errors to HTTP responses. Errors that are instances of the Error struct are mapped using the struct fields while other types of errors return responses with status code 500 and the error message in the body. The goa design language documented in the dsl package makes it possible to attach validations to data structure definitions. One specific type of validation consists of defining the format that a data structure string field must follow. Example of formats include email, data time, hostnames etc. The ValidateFormat function provides the implementation for the format validation invoked from the code generated by goagen. The goa design language makes it possible to specify the encodings supported by the API both as input (Consumes) and output (Produces). goagen uses that information to registered the corresponding packages with the service encoders and decoders via their Register methods. The service exposes the DecodeRequest and EncodeResponse that implement a simple content type negotiation algorithm for picking the right encoder for the "Content-Type" (decoder) or "Accept" (encoder) request header. Package goa standardizes on structured error responses: a request that fails because of an invalid input or an unexpected condition produces a response that contains a structured error. The error data structures returned to clients contains five fields: an ID, a code, a status, a detail and metadata. The ID is unique for the occurrence of the error, it helps correlate the content of the response with the content of the service logs. The code defines the class of error (e.g. "invalid_parameter_type") and the status the corresponding HTTP status (e.g. 400). The detail contains a message specific to the error occurrence. The metadata contains key/value pairs that provide contextual information (name of parameters, value of invalid parameter etc.). Instances of Error can be created via Error Class functions. See http://goa.design/implement/error_handling.html All instance of errors created via a error class implement the ServiceError interface. This interface is leveraged by the error handler middleware to produce the error responses. The code generated by goagen calls the helper functions exposed in this file when it encounters invalid data (wrong type, validation errors etc.) such as InvalidParamTypeError, InvalidAttributeTypeError etc. These methods return errors that get merged with any previously encountered error via the Error Merge method. The helper functions are error classes stored in global variable. This means your code can override their values to produce arbitrary error responses. goa includes an error handler middleware that takes care of mapping back any error returned by previously called middleware or action handler into HTTP responses. If the error was created via an error class then the corresponding content including the HTTP status is used otherwise an internal error is returned. Errors that bubble up all the way to the top (i.e. not handled by the error middleware) also generate an internal error response.
Package gomail provides a simple interface to compose emails and to mail them efficiently. More info on Github: https://github.com/go-gomail/gomail A daemon that listens to a channel and sends all incoming messages. Efficiently send a customized newsletter to a list of recipients. Send an email using a local SMTP server. Send an email using an API or postfix.
Package gomail provides a simple interface to compose emails and to mail them efficiently. More info on Github: https://github.com/go-gomail/gomail A daemon that listens to a channel and sends all incoming messages. Efficiently send a customized newsletter to a list of recipients. Send an email using a local SMTP server. Send an email using an API or postfix.
Package gomail provides a simple interface to compose emails and to mail them efficiently. More info on Github: https://github.com/go-gomail/gomail A daemon that listens to a channel and sends all incoming messages. Efficiently send a customized newsletter to a list of recipients. Send an email using a local SMTP server. Send an email using an API or postfix.
Package qapps provides the API client, operations, and parameter types for QApps. The Amazon Q Apps feature capability within Amazon Q Business allows web experience users to create lightweight, purpose-built AI apps to fulfill specific tasks from within their web experience. For example, users can create a Q App that exclusively generates marketing-related content to improve your marketing team's productivity or a Q App for writing customer emails and creating promotional content using a certain style of voice, tone, and branding. For more information on the capabilities, see Amazon Q Apps capabilitiesin the Amazon Q Business User Guide. For an overview of the Amazon Q App APIs, see Overview of Amazon Q Apps API operations. For information about the IAM access control permissions you need to use the Amazon Q Apps API, see IAM role for the Amazon Q Business web experience including Amazon Q Appsin the Amazon Q Business User Guide.
Package gorest - Go RESTful API starter kit with Gin, JWT, GORM (MySQL, PostgreSQL, SQLite), Redis, Mongo, 2FA, email verification, password recovery
Package Authaus is an authentication and authorization system. Authaus brings together the following pluggable components: Any of these five components can be swapped out, and in fact the fourth, and fifth ones (Role Groups and User Store) are entirely optional. A typical setup is to use LDAP as an Authenticator, and Postgres as a Session, Permit, and Role Groups database. Your session database does not need to be particularly performant, since Authaus maintains an in-process cache of session keys and their associated tokens. Authaus was NOT designed to be a "Facebook Scale" system. The target audience is a system of perhaps 100,000 users. There is nothing fundamentally limiting about the API of Authaus, but the internals certainly have not been built with millions of users in mind. The intended usage model is this: Authaus is intended to be embedded inside your security system, and run as a standalone HTTP service (aka a REST service). This HTTP service CAN be open to the wide world, but it's also completely OK to let it listen only to servers inside your DMZ. Authaus only gives you the skeleton and some examples of HTTP responders. It's up to you to flesh out the details of your authentication HTTP interface, and whether you'd like that to face the world, or whether it should only be accessible via other services that you control. At startup, your services open an HTTP connection to the Authaus service. This connection will typically live for the duration of the service. For every incoming request, you peel off whatever authentication information is associated with that request. This is either a session key, or a username/password combination. Let's call it the authorization information. You then ask Authaus to tell you WHO this authorization information belongs to, as well as WHAT this authorization information allows the requester to do (ie Authentication and Authorization). Authaus responds either with a 401 (Unauthorized), 403 (Forbidden), or a 200 (OK) and a JSON object that tells you the identity of the agent submitting this request, as well the permissions that this agent posesses. It's up to your individual services to decide what to do with that information. It should be very easy to expose Authaus over a protocol other than HTTP, since Authaus is intended to be easy to embed. The HTTP API is merely an illustrative example. A `Session Key` is the long random number that is typically stored as a cookie. A `Permit` is a set of roles that has been granted to a user. Authaus knows nothing about the contents of a permit. It simply treats it as a binary blob, and when writing it to an SQL database, encodes it as base64. The interpretation of the permit is application dependent. Typically, a Permit will hold information such as "Allowed to view billing information", or "Allowed to paint your bathroom yellow". Authaus does have a built-in module called RoleGroupDB, which has its own interpretation of what a Permit is, but you do not need to use this. A `Token` is the result of a successful authentication. It stores the identity of a user, an expiry date, and a Permit. A token will usually be retrieved by a session key. However, you can also perform a once-off authentication, which also yields you a token, which you will typically throw away when you are finished with it. All public methods of the `Central` object are callable from multiple threads. Reader-Writer locks are used in all of the caching systems. The number of concurrent connections is limited only by the limits of the Go runtime, and the performance limits that are inherent to the simple reader-writer locks used to protect shared state. Authaus must be deployed as a single process (which implies running on a single logical machine). The sole reason why it must run on only one process and not more, is because of the state that lives inside the various Authaus caches. Were it not for these caches, then there would be nothing preventing you from running Authaus on as many machines as necessary. The cached state stored inside the Authaus server is: If you wanted to make Authaus runnable across multiple processes, then you would need to implement a cache invalidation system for these caches. Authaus makes no attempt to mitigate DOS attacks. The most sane approach in this domain seems to be this (http://security.stackexchange.com/questions/12101/prevent-denial-of-service-attacks-against-slow-hashing-functions). The password database (created via NewAuthenticationDB_SQL) stores password hashes using the scrypt key derivation system (http://www.tarsnap.com/scrypt.html). Internally, we store our hash in a format that can later be extended, should we wish to double-hash the passwords, etc. The hash is 65 bytes and looks like this: The first byte of the hash is a version number of the hash. The remaining 64 bytes are the salt and the hash itself. At present, only one version is supported, which is version 1. It consists of 32 bytes of salt, and 32 bytes of scrypt'ed hash, with scrypt parameters N=256 r=8 p=1. Note that the parameter N=256 is quite low, meaning that it is possible to compute this in approximately 1 millisecond (1,000,000 nanoseconds) on a 2009-era Intel Core i7. This is a deliberate tradeoff. On the same CPU, a SHA256 hash takes about 500 nanoseconds to compute, so we are still making it 2000 times harder to brute force the passwords than an equivalent system storing only a SHA256 salted hash. This discussion is only of relevance in the event that the password table is compromised. No cookie signing mechanism is implemented. Cookies are not presently transmitted with Secure:true. This must change. The LDAP Authenticator is extremely simple, and provides only one function: Authenticate a user against an LDAP system (often this means Active Directory, AKA a Windows Domain). It calls the LDAP "Bind" method, and if that succeeds for the given identity/password, then the user is considered authenticated. We take care not to allow an "anonymous bind", which many LDAP servers allow when the password is blank. The Session Database runs on Postgres. It stores a table of sessions, where each row contains the following information: When a permit is altered with Authaus, then all existing sessions have their permits altered transparently. For example, imagine User X is logged in, and his administrator grants him a new permission. User X does not need to log out and log back in again in order for his new permissions to be reflected. His new permissions will be available immediately. Similarly, if a password is changed with Authaus, then all sessions are invalidated. Do take note though, that if a password is changed through an external mechanism (such as with LDAP), then Authaus will have no way of knowing this, and will continue to serve up sessions that were authenticated with the old password. This is a problem that needs addressing. You can limit the number of concurrent sessions per user to 1, by setting MaxActiveSessions.ConfigSessionDB to 1. This setting may only be zero or one. Zero, which is the default, means an unlimited number of concurrent sessions per user. Authaus will always place your Session Database behind its own Session Cache. This session cache is a very simple single-process in-memory cache of recent sessions. The limit on the number of entries in this cache is hard-coded, and that should probably change. The Permit database runs on Postgres. It stores a table of permits, which is simply a 1:1 mapping from Identity -> Permit. The Permit is just an array of bytes, which we store base64 encoded, inside a text field. This part of the system doesn't care how you interpret that blob. The Role Group Database is an entirely optional component of Authaus. The other components of Authaus (Authenticator, PermitDB, SessionDB) do not understand your Permits. To them, a Permit is simply an arbitrary array of bytes. The Role Group Database is a component that adds a specific meaning to a permit blob. Let's see what that specific meaning looks like... The built-in Role Group Database interprets a permit blob as a string of 32-bit integer IDs: These 32-bit integer IDs refer to "role groups" inside a database table. The "role groups" table might look like this: The Role Group IDs use 32-bit indices, because we assume that you are not going to create more than 2^32 different role groups. The worst case we assume here is that of an automated system that creates 100,000 roles per day. Such a system would run for more than 100 years, given a 32-bit ID. These constraints are extraordinary, suggesting that we do not even need 32 bits, but could even get away with just a 16-bit group ID. However, we expect the number of groups to be relatively small. Our aim here, arbitrary though it may be, is to fit the permit and identity into a single ethernet packet, which one can reasonably peg at 1500 bytes. 1500 / 4 = 375. We assume that no sane human administrator will assign 375 security groups to any individual. We expect the number of groups assigned to any individual to be in the range of 1 to 20. This makes 375 a gigantic buffer. OAuth support in Authaus is limited to a very simple scenario: * You wish to allow your users to login using an OAuth service - thereby outsourcing the Authentication to that external service, and using it to populate the email address of your users. OAuth was developed in order to work with Microsoft Azure Active Directory, however it should be fairly easy to extend the code to be able to handle other OAuth providers. Inside the database are two tables related to OAuth: oauthchallenge: The challenge table holds OAuth sessions which have been started, and which are expected to either succeed or fail within the next few minutes. The default timeout for a challenge is 5 minutes. A challenge record is usually created the moment the user clicks on the "Sign in with Microsoft" button on your site, and it tracks that authentication attempt. oauthsession: The session table holds OAuth sessions which have successfully authenticated, and also the token that was retrieved by a successful authorization. If a token has expired, then it is refreshed and updated in-place, inside the oauthsession table. An OAuth login follows this sequence of events: 1. User clicks on a "Signin with X" button on your login page 2. A record is created in the oauthchallenge table, with a unique ID. This ID is a secret known only to the authaus server and the OAuth server. It is used as the `state` parameter in the OAuth login mechanism. 3. The HTTP call which prompts #2 return a redirect URL (eg via an HTTP 302 response), which redirects the user's browser to the OAuth website, so that the user can either grant or refuse access. If the user refuses, or fails to login, then the login sequence ends here. 4. Upon successful authorization with the OAuth system, the OAuth website redirects the user back to your website, to a URL such as example.com/auth/oauth/finish, and you'll typically want Authaus to handle this request directly (via HttpHandlerOAuthFinish). Authaus will extract the secrets from the URL, perform any validations necessary, and then move the record from the oauthchallenge table, into the oauthsession table. While 'moving' the record over, it will also add any additional information that was provided by the successful authentication, such as the token provided by the OAuth provider. 5. Authaus makes an API call to the OAuth system, to retrieve the email address and name of the person that just logged in, using the token just received. 6. If that email address does not exist inside authuserstore, then create a new user record for this identity. 7. Log the user into Authaus, by creating a record inside authsession, for the relevant identity. Inside the authsession table, store a link to the oauthsession record, so that there is a 1:1 link from the authsession table, to the oauthsession table (ie Authaus Session to OAuth Token). 8. Return an Authaus session cookie to the browser, thereby completing the login. Although we only use our OAuth token a single time, during login, to retrieve the user's email address and name, we retain the OAuth token, and so we maintain the ability to make other API calls on behalf of that user. This hasn't proven necessary yet, but it seems like a reasonable bit of future-proofing. See the guidelines at the top of all_test.go for testing instructions.
Package gomail provides a simple interface to compose emails and to mail them efficiently. More info on Github: https://github.com/go-gomail/gomail A daemon that listens to a channel and sends all incoming messages. Efficiently send a customized newsletter to a list of recipients. Send an email using a local SMTP server. Send an email using an API or postfix.
Package gomail provides a unified interface for sending emails using various providers. The gomail project allows you to send emails using different email providers such as Gmail, SendGrid, AWS SES, and others. It abstracts the provider-specific details and provides a simple API for sending emails. This project is organized into several packages: To use the library, you need to import the desired provider package and create an instance of the email sender for your desired provider, then call the SendEmail function. Example: This library supports various email providers and can be extended to include more. For more details, see the documentation for each provider in the providers package.
Package email provides a Starlark module that sends email using Resend API.
Package email provides a Starlark module that sends email using Resend API.
Package mailyak provides a simple interface for generating MIME compliant emails, and optionally sending them over SMTP. Both plain-text and HTML email body content is supported, and their types implement io.Writer allowing easy composition directly from templating engines, etc. Attachments are fully supported including inline attachments, with anything that implements io.Reader suitable as a source (like files on disk, in-memory buffers, etc). The raw MIME content can be retrieved using MimeBuf(), typically used with an API service such as Amazon SES that does not require using an SMTP interface. MailYak supports both plain-text SMTP (which is automatically upgraded to a secure connection with STARTTLS if supported by the SMTP server) and explicit TLS connections.
Package reply package is essentially a source code conversion of the ruby library https://github.com/discourse/email_reply_trimmer. The core logic is a almost line by line conversion. This package has a dependency on excellent regex library github.com/dlclark/regexp2. The reason for not using the standard regex library was due to the fact that the regex package from the stdlib is not compatible with the library from the Ruby stdlib. All the tests were taken from the email_reply_trimmer library. Note: This code is not idiomatic go code, as, it was mostly adapted from the ruby code, however, the public APIs were kept simple as possible and does not expose any internal.
Package mailmanager provides the API client, operations, and parameter types for MailManager. The Amazon SES Mail Manager API contains operations and data types that comprise the Mail Manager feature of Amazon Simple Email Service (SES). Mail Manager is a set of Amazon SES email gateway features designed to help you strengthen your organization's email infrastructure, simplify email workflow management, and streamline email compliance control. To learn more, see the Mail Manager chapterin the Amazon SES Developer Guide.
Package reply package is essentially a source code conversion of the ruby library https://github.com/discourse/email_reply_trimmer. The core logic is a almost line by line conversion. This package has a dependency on excellent regex library github.com/dlclark/regexp2. The reason for not using the standard regex library was due to the fact that the regex package from the stdlib is not compatible with the library from the Ruby stdlib. All the tests were taken from the email_reply_trimmer library. Note: This code is not idiomatic go code, as, it was mostly adapted from the ruby code, however, the public APIs were kept simple as possible and does not expose any internal.
Package goa provides the runtime support for goa microservices. goa service development begins with writing the *design* of a service. The design is described using the goa language implemented by the github.com/goadesign/goa/design/apidsl package. The `goagen` tool consumes the metadata produced from executing the design language to generate service specific code that glues the underlying HTTP server with action specific code and data structures. The goa package contains supporting functionality for the generated code including basic request and response state management through the RequestData and ResponseData structs, error handling via error classes, middleware support via the Middleware data structure as well as decoding and encoding algorithms. The RequestData and ResponseData structs provides access to the request and response state. goa request handlers also accept a context.Context interface as first parameter so that deadlines and cancelation signals may easily be implemented. The request state exposes the underlying http.Request object as well as the deserialized payload (request body) and parameters (both path and querystring parameters). Generated action specific contexts wrap the context.Context, ResponseData and RequestData data structures. They expose properly typed fields that correspond to the request parameters and body data structure descriptions appearing in the design. The response state exposes the response status and body length as well as the underlying ResponseWriter. Action contexts provide action specific helper methods that write the responses as described in the design optionally taking an instance of the media type for responses that contain a body. Here is an example showing an "update" action corresponding to following design (extract): The action signature generated by goagen is: where UpdateBottleContext is: and implements: The definitions of the Bottle and UpdateBottlePayload data structures are ommitted for brievity. There is one controller interface generated per resource defined via the design language. The interface exposes the controller actions. User code must provide data structures that implement these interfaces when mounting a controller onto a service. The controller data structure should include an anonymous field of type *goa.Controller which takes care of implementing the middleware handling. A goa middleware is a function that takes and returns a Handler. A Handler is a the low level function which handles incoming HTTP requests. goagen generates the handlers code so each handler creates the action specific context and calls the controller action with it. Middleware can be added to a goa service or a specific controller using the corresponding Use methods. goa comes with a few stock middleware that handle common needs such as logging, panic recovery or using the RequestID header to trace requests across multiple services. The controller action methods generated by goagen such as the Update method of the BottleController interface shown above all return an error value. goa defines an Error struct that action implementations can use to describe the content of the corresponding HTTP response. Errors can be created using error classes which are functions created via NewErrorClass. The ErrorHandler middleware maps errors to HTTP responses. Errors that are instances of the Error struct are mapped using the struct fields while other types of errors return responses with status code 500 and the error message in the body. The goa design language documented in the dsl package makes it possible to attach validations to data structure definitions. One specific type of validation consists of defining the format that a data structure string field must follow. Example of formats include email, data time, hostnames etc. The ValidateFormat function provides the implementation for the format validation invoked from the code generated by goagen. The goa design language makes it possible to specify the encodings supported by the API both as input (Consumes) and output (Produces). goagen uses that information to registed the corresponding packages with the service encoders and decoders via their Register methods. The service exposes the DecodeRequest and EncodeResponse that implement a simple content type negotiation algorithm for picking the right encoder for the "Content-Type" (decoder) or "Accept" (encoder) request header. Package goa standardizes on structured error responses: a request that fails because of an invalid input or an unexpected condition produces a response that contains a structured error. The error data structures returned to clients contains five fields: an ID, a code, a status, a detail and metadata. The ID is unique for the occurrence of the error, it helps correlate the content of the response with the content of the service logs. The code defines the class of error (e.g. "invalid_parameter_type") and the status the corresponding HTTP status (e.g. 400). The detail contains a message specific to the error occurrence. The metadata contains key/value pairs that provide contextual information (name of parameters, value of invalid parameter etc.). Instances of Error can be created via Error Class functions. See http://goa.design/implement/error_handling.html All instance of errors created via a error class implement the ServiceError interface. This interface is leveraged by the error handler middleware to produce the error responses. The code generated by goagen calls the helper functions exposed in this file when it encounters invalid data (wrong type, validation errors etc.) such as InvalidParamTypeError, InvalidAttributeTypeError etc. These methods return errors that get merged with any previously encountered error via the Error Merge method. The helper functions are error classes stored in global variable. This means your code can override their values to produce arbitrary error responses. goa includes an error handler middleware that takes care of mapping back any error returned by previously called middleware or action handler into HTTP responses. If the error was created via an error class then the corresponding content including the HTTP status is used otherwise an internal error is returned. Errors that bubble up all the way to the top (i.e. not handled by the error middleware) also generate an internal error response.
Copyright Philippe Thomassigny 2004-2023. Use of this source code is governed by a MIT licence. license that can be found in the LICENSE file. XDominion for GO v0 ============================= xdominion is a Go library for creating a database layer that abstracts the underlying database implementation and allows developers to interact with the database using objects rather than SQL statements. It supports multiple database backends, including PostgreSQL, MySQL, SQLite, and Microsoft SQL Server, among others. If you need a not yet supported database, please open a ticket on github.com. The library provides a set of high-level APIs for interacting with databases. It allows developers to map database tables to Go structs, allowing them to interact with the database using objects. The library also provides an intuitive and chainable API for querying the database, similar to the structure of SQL statements, but without requiring developers to write SQL code directly. xdominion uses a set of interfaces to abstract the database operations, making it easy to use different database backends with the same code. The library supports transactions, allowing developers to perform multiple database operations in a single transaction. The xdominion library uses reflection to map Go structs to database tables, and also allows developers to specify custom column names and relationships between tables. Overall, xdominion provides a simple and intuitive way to interact with databases using objects and abstracts the underlying database implementation. It is a well-designed library with a clear API and support for multiple database backends. 1. Overview ------------------------ XDominion is a database abstraction layer, to build and use objects of data instead of building SQL queries. The code is portable between databases with changing the implementation, since you don't use direct incompatible SQL sentences. The library is build over 3 main objects: - XBase: database connector and cursors to build queries and manipulation language - - Other included objects: XCursor - XTable: the table definition, data access function/structures and definition manipulation language - - Other included objects: XField*, XConstraints, XContraint, XOrderby, XConditions, XCondition - XRecord: the results and data to interchange with the database - - Other included objects: XRecords 2. Some example code to start working rapidly: ------------------------ Creates the connector to the database and connect: ``` ``` Executes a direct query: ``` ``` Creates a table definition: ``` t := xdominion.NewXTable("test", "t_") t.AddField(xdominion.XFieldText{Name: "f3"}) t.AddField(xdominion.XFieldDate{Name: "f4"}) t.AddField(xdominion.XFieldDateTime{Name: "f5"}) t.AddField(xdominion.XFieldFloat{Name: "f6"}) t.SetBase(base) ``` Synchronize the table with DB (create it if it does not exist) ``` ``` Some Insert: ``` ``` With an error (f2 is mandatory based on table definition): ``` ``` General query (select ALL): ``` ``` Query by Key: ``` ``` Query by Where: ``` ``` ``` ``` Transactions: ``` tx, err := base.BeginTransaction() res1, err := tb.Insert(XRecord{"f1": 5, "f2": "Data line 1"}, tx) res2, err := tb.Update(2, XRecord{"f1": 5, "f2": "Data line 1"}, tx) res3, err := tb.Delete(3, tx) // Note that the transaction is always passed as a parameter to the insert, update, delete operations tx.Commit() ``` 3. Reference ------------------------ XBase ----- The xbase package in xdominion provides a set of functions for working with relational databases in Go. Here is a reference manual for the package: Constants VERSION: A constant string that represents the version of XDominion. DB_Postgres: A constant string that represents the PostgreSQL database. DB_MySQL: A constant string that represents the MySQL database. DB_Localhost: A constant string that represents the local host. Variables DEBUG: A boolean variable used to enable/disable debug mode. Structs XBase DB: A pointer to an instance of sql.DB, representing the database connection. Logged: A boolean indicating whether the database connection has been established. DBType: A string representing the type of database being used. Username: A string representing the username for the database connection. Password: A string representing the password for the database connection. Database: A string representing the name of the database being connected to. Host: A string representing the host for the database connection. SSL: A boolean indicating whether to use SSL for the database connection. Logger: A pointer to a logger for debugging purposes. XTransaction DB: A pointer to an instance of XBase, representing the database connection. TX: A pointer to an instance of sql.Tx, representing a transaction. Functions Logon() The Logon() function establishes a connection to the database. go Copy code func (b *XBase) Logon() Logoff() The Logoff() function closes the database connection. go Copy code func (b *XBase) Logoff() Exec() The Exec() function executes a SQL query on the database and returns a cursor. go Copy code func (b *XBase) Exec(query string, args ...interface{}) (*sql.Rows, error) Cursor() The Cursor() function returns a new instance of Cursor, which provides methods for working with database records. go Copy code package main import ( ) In this example, we first create a new instance of the xdominion.XBase struct with the connection details to the database we want to connect to. We then call the Logon() method of the XBase struct to establish a connection to the database. Next, we define an SQL query to insert a new user into the users table, and then call the Exec() method of the XBase struct with the query and the values we want to insert. The Exec() function returns a cursor, which we don't need in this example, so we ignore it using the blank identifier (_). If there's an error executing the query, we print an error message to the console. Finally, we close the database connection by calling the Logoff() method of the XBase struct. Note that this is just a simple example, and you should always make sure to properly handle errors and sanitize user input when working with databases. package main import ( ) In this example, we first create a new instance of the xdominion.XBase struct with the connection details to the database we want to connect to. We then call the Logon() method of the XBase struct to establish a connection to the database. Next, we define an SQL query to select a user from the users table with the id equal to 1. We then call the Exec() method of the XBase struct with the query and the value we want to use for the id parameter. The Exec() function returns a cursor that we can iterate over to get the results of the query. We use a for loop to iterate over the rows returned by the Exec() function. Inside the loop, we use the Scan() method of the rows object to read the values of the name and email columns into variables. We then print the values of these variables to the console. If there's an error executing the query or reading a row, we print an error message to the console. Finally, we close the rows object and the database connection by calling the Close() and Logoff() methods of the XBase struct, respectively. Note that this is just a simple example, and you should always make sure to properly handle errors and sanitize user input when working with databases. go Copy code func (b *XBase) Cursor() *Cursor BeginTransaction() The BeginTransaction() function starts a new transaction on the database. go Copy code func (b *XBase) BeginTransaction() (*XTransaction, error) Commit() The Commit() function commits a transaction to the database. go Copy code func (t *XTransaction) Commit() error Rollback() The Rollback() function rolls back a transaction on the database. go Copy code func (t *XTransaction) Rollback() error Notes The Logon() function must be called before using any other functions in the xbase package. The Logoff() function should be called when finished using the database connection. The Exec() function should be used for executing arbitrary SQL queries. The Cursor() function should be used for performing CRUD operations on database records. The BeginTransaction(), Commit(), and Rollback() functions should be used for transactions. Note that this is just a brief overview of the xbase package. For more information and examples, please refer to the documentation in the xdominion GitHub repository: https://github.com/webability-go/xdominion. Create a new instance of the xdominion.XBase struct, which represents a database connection. The XBase struct provides methods for interacting with the database, such as querying, inserting, updating, and deleting records. In this example, &xdominion.XBase{} is the instance of the XBase struct, and the properties of the struct are set to the database connection details. The DBType property specifies the type of database being used, Username and Password specify the username and password for the database connection, Database specifies the name of the database being connected to, Host specifies the host for the database connection, and SSL specifies whether to use SSL for the database connection. Use the Logon() method of the XBase struct to connect to the database. base.Logon() The Logon() method establishes a connection to the database using the details provided in the XBase struct. Note that this is just a simple example, and the XBase library provides many more features for working with databases using objects. You can find more information and examples in the xdominion GitHub repository: https://github.com/webability-go/xdominion. XTable definition ----------------- XTable operations ----------------- XRecord ------- XRecords -------- Conditions ---------- Orderby ------- Fields ------ Limits ------ Groupby ------- Having ------ */
Package gomail provides a simple interface to compose emails and to mail them efficiently. More info on Github: https://github.com/go-gomail/gomail A daemon that listens to a channel and sends all incoming messages. Efficiently send a customized newsletter to a list of recipients. Send an email using a local SMTP server. Send an email using an API or postfix.
Package mta provides a simple interface to compose emails and to mail them efficiently. More info on Github: https://github.com/rovergulf/mta A daemon that listens to a channel and sends all incoming messages. Efficiently send a customized newsletter to a list of recipients. Send an email using a local SMTP server. Send an email using an API or postfix.