Package anaconda provides structs and functions for accessing version 1.1 of the Twitter API. Successful API queries return native Go structs that can be used immediately, with no need for type assertions. If you already have the access token (and secret) for your user (Twitter provides this for your own account on the developer portal), creating the client is simple: Executing queries on an authenticated TwitterApi struct is simple. Certain endpoints allow separate optional parameter; if desired, these can be passed as the final parameter. Anaconda implements most of the endpoints defined in the Twitter API documentation: https://dev.twitter.com/docs/api/1.1. For clarity, in most cases, the function name is simply the name of the HTTP method and the endpoint (e.g., the endpoint `GET /friendships/incoming` is provided by the function `GetFriendshipsIncoming`). In a few cases, a shortened form has been chosen to make life easier (for example, retweeting is simply the function `Retweet`) More detailed information about the behavior of each particular endpoint can be found at the official Twitter API documentation.
Package oauth1 is a Go implementation of the OAuth1 spec RFC 5849. It allows end-users to authorize a client (consumer) to access protected resources on their behalf (e.g. login) and allows clients to make signed and authorized requests on behalf of a user (e.g. API calls). It takes design cues from golang.org/x/oauth2, providing an http.Client which handles request signing and authorization. Package oauth1 implements the OAuth1 authorization flow and provides an http.Client which can sign and authorize OAuth1 requests. To implement "Login with X", use the https://github.com/dghubble/gologin packages which provide login handlers for OAuth1 and OAuth2 providers. To call the Twitter, Digits, or Tumblr OAuth1 APIs, use the higher level Go API clients. * https://github.com/dghubble/go-twitter * https://github.com/dghubble/go-digits * https://github.com/benfb/go-tumblr Perform the OAuth 1 authorization flow to ask a user to grant an application access to his/her resources via an access token. 1. When a user performs an action (e.g. "Login with X" button calls "/login" route) get an OAuth1 request token (temporary credentials). 2. Obtain authorization from the user by redirecting them to the OAuth1 provider's authorization URL to grant the application access. Receive the callback from the OAuth1 provider in a handler. 3. Acquire the access token (token credentials) which can later be used to make requests on behalf of the user. Check the examples to see this authorization flow in action from the command line, with Twitter PIN-based login and Tumblr login. Use an access Token to make authorized requests on behalf of a user. Check the examples to see Twitter and Tumblr requests in action.
Package monkit is a flexible code instrumenting and data collection library. I'm going to try and sell you as fast as I can on this library. Example usage We've got tools that capture distribution information (including quantiles) about int64, float64, and bool types. We have tools that capture data about events (we've got meters for deltas, rates, etc). We have rich tools for capturing information about tasks and functions, and literally anything that can generate a name and a number. Almost just as importantly, the amount of boilerplate and code you have to write to get these features is very minimal. Data that's hard to measure probably won't get measured. This data can be collected and sent to Graphite (http://graphite.wikidot.com/) or any other time-series database. Here's a selection of live stats from one of our storage nodes: This library generates call graphs of your live process for you. These call graphs aren't created through sampling. They're full pictures of all of the interesting functions you've annotated, along with quantile information about their successes, failures, how often they panic, return an error (if so instrumented), how many are currently running, etc. The data can be returned in dot format, in json, in text, and can be about just the functions that are currently executing, or all the functions the monitoring system has ever seen. Here's another example of one of our production nodes: https://raw.githubusercontent.com/spacemonkeygo/monkit/master/images/callgraph2.png This library generates trace graphs of your live process for you directly, without requiring standing up some tracing system such as Zipkin (though you can do that too). Inspired by Google's Dapper (http://research.google.com/pubs/pub36356.html) and Twitter's Zipkin (http://zipkin.io), we have process-internal trace graphs, triggerable by a number of different methods. You get this trace information for free whenever you use Go contexts (https://blog.golang.org/context) and function monitoring. The output formats are svg and json. Additionally, the library supports trace observation plugins, and we've written a plugin that sends this data to Zipkin (http://github.com/spacemonkeygo/monkit-zipkin). https://raw.githubusercontent.com/spacemonkeygo/monkit/master/images/trace.png Before our crazy Go rewrite of everything (https://www.spacemonkey.com/blog/posts/go-space-monkey) (and before we had even seen Google's Dapper paper), we were a Python shop, and all of our "interesting" functions were decorated with a helper that collected timing information and sent it to Graphite. When we transliterated to Go, we wanted to preserve that functionality, so the first version of our monitoring package was born. Over time it started to get janky, especially as we found Zipkin and started adding tracing functionality to it. We rewrote all of our Go code to use Google contexts, and then realized we could get call graph information. We decided a refactor and then an all-out rethinking of our monitoring package was best, and so now we have this library. Sometimes you really want callstack contextual information without having to pass arguments through everything on the call stack. In other languages, many people implement this with thread-local storage. Example: let's say you have written a big system that responds to user requests. All of your libraries log using your log library. During initial development everything is easy to debug, since there's low user load, but now you've scaled and there's OVER TEN USERS and it's kind of hard to tell what log lines were caused by what. Wouldn't it be nice to add request ids to all of the log lines kicked off by that request? Then you could grep for all log lines caused by a specific request id. Geez, it would suck to have to pass all contextual debugging information through all of your callsites. Google solved this problem by always passing a context.Context interface through from call to call. A Context is basically just a mapping of arbitrary keys to arbitrary values that users can add new values for. This way if you decide to add a request context, you can add it to your Context and then all callsites that decend from that place will have the new data in their contexts. It is admittedly very verbose to add contexts to every function call. Painfully so. I hope to write more about it in the future, but Google also wrote up their thoughts about it (https://blog.golang.org/context), which you can go read. For now, just swallow your disgust and let's keep moving. Let's make a super simple Varnish (https://www.varnish-cache.org/) clone. Open up gedit! (Okay just kidding, open whatever text editor you want.) For this motivating program, we won't even add the caching, though there's comments for where to add it if you'd like. For now, let's just make a barebones system that will proxy HTTP requests. We'll call it VLite, but maybe we should call it VReallyLite. Run and build this and open localhost:8080 in your browser. If you use the default proxy target, it should inform you that the world hasn't been destroyed yet. The first thing you'll want to do is add the small amount of boilerplate to make the instrumentation we're going to add to your process observable later. Import the basic monkit packages: and then register environmental statistics and kick off a goroutine in your main method to serve debug requests: Rebuild, and then check out localhost:9000/stats (or localhost:9000/stats/json, if you prefer) in your browser! Remember what I said about Google's contexts (https://blog.golang.org/context)? It might seem a bit overkill for such a small project, but it's time to add them. To help out here, I've created a library that constructs contexts for you for incoming HTTP requests. Nothing that's about to happen requires my webhelp library (https://godoc.org/github.com/jtolds/webhelp), but here is the code now refactored to receive and pass contexts through our two per-request calls. You can create a new context for a request however you want. One reason to use something like webhelp is that the cancelation feature of Contexts is hooked up to the HTTP request getting canceled. Let's start to get statistics about how many requests we receive! First, this package (main) will need to get a monitoring Scope. Add this global definition right after all your imports, much like you'd create a logger with many logging libraries: Now, make the error return value of HandleHTTP named (so, (err error)), and add this defer line as the very first instruction of HandleHTTP: Let's also add the same line (albeit modified for the lack of error) to Proxy, replacing &err with nil: You should now have something like: We'll unpack what's going on here, but for now: For this new funcs dataset, if you want a graph, you can download a dot graph at localhost:9000/funcs/dot and json information from localhost:9000/funcs/json. You should see something like: with a similar report for the Proxy method, or a graph like: https://raw.githubusercontent.com/spacemonkeygo/monkit/master/images/handlehttp.png This data reports the overall callgraph of execution for known traces, along with how many of each function are currently running, the most running concurrently (the highwater), how many were successful along with quantile timing information, how many errors there were (with quantile timing information if applicable), and how many panics there were. Since the Proxy method isn't capturing a returned err value, and since HandleHTTP always returns nil, this example won't ever have failures. If you're wondering about the success count being higher than you expected, keep in mind your browser probably requested a favicon.ico. Cool, eh? How it works is an interesting line of code - there's three function calls. If you look at the Go spec, all of the function calls will run at the time the function starts except for the very last one. The first function call, mon.Task(), creates or looks up a wrapper around a Func. You could get this yourself by requesting mon.Func() inside of the appropriate function or mon.FuncNamed(). Both mon.Task() and mon.Func() are inspecting runtime.Caller to determine the name of the function. Because this is a heavy operation, you can actually store the result of mon.Task() and reuse it somehow else if you prefer, so instead of you could instead use which is more performant every time after the first time. runtime.Caller only gets called once. Careful! Don't use the same myFuncMon in different functions unless you want to screw up your statistics! The second function call starts all the various stop watches and bookkeeping to keep track of the function. It also mutates the context pointer it's given to extend the context with information about what current span (in Zipkin parlance) is active. Notably, you *can* pass nil for the context if you really don't want a context. You just lose callgraph information. The last function call stops all the stop watches ad makes a note of any observed errors or panics (it repanics after observing them). Turns out, we don't even need to change our program anymore to get rich tracing information! Open your browser and go to localhost:9000/trace/svg?regex=HandleHTTP. It won't load, and in fact, it's waiting for you to open another tab and refresh localhost:8080 again. Once you retrigger the actual application behavior, the trace regex will capture a trace starting on the first function that matches the supplied regex, and return an svg. Go back to your first tab, and you should see a relatively uninteresting but super promising svg. Let's make the trace more interesting. Add a to your HandleHTTP method, rebuild, and restart. Load localhost:8080, then start a new request to your trace URL, then reload localhost:8080 again. Flip back to your trace, and you should see that the Proxy method only takes a portion of the time of HandleHTTP! https://cdn.rawgit.com/spacemonkeygo/monkit/master/images/trace.svg There's multiple ways to select a trace. You can select by regex using the preselect method (default), which first evaluates the regex on all known functions for sanity checking. Sometimes, however, the function you want to trace may not yet be known to monkit, in which case you'll want to turn preselection off. You may have a bad regex, or you may be in this case if you get the error "Bad Request: regex preselect matches 0 functions." Another way to select a trace is by providing a trace id, which we'll get to next! Make sure to check out what the addition of the time.Sleep call did to the other reports. It's easy to write plugins for monkit! Check out our first one that exports data to Zipkin (http://zipkin.io/)'s Scribe API: https://github.com/spacemonkeygo/monkit-zipkin We plan to have more (for HTrace, OpenTracing, etc, etc), soon!
Package lingua accurately detects the natural language of written text, be it long or short. Its task is simple: It tells you which language some text is written in. This is very useful as a preprocessing step for linguistic data in natural language processing applications such as text classification and spell checking. Other use cases, for instance, might include routing e-mails to the right geographically located customer service department, based on the e-mails' languages. Language detection is often done as part of large machine learning frameworks or natural language processing applications. In cases where you don't need the full-fledged functionality of those systems or don't want to learn the ropes of those, a small flexible library comes in handy. So far, the only other comprehensive open source library in the Go ecosystem for this task is Whatlanggo (https://github.com/abadojack/whatlanggo). Unfortunately, it has two major drawbacks: 1. Detection only works with quite lengthy text fragments. For very short text snippets such as Twitter messages, it does not provide adequate results. 2. The more languages take part in the decision process, the less accurate are the detection results. Lingua aims at eliminating these problems. It nearly does not need any configuration and yields pretty accurate results on both long and short text, even on single words and phrases. It draws on both rule-based and statistical methods but does not use any dictionaries of words. It does not need a connection to any external API or service either. Once the library has been downloaded, it can be used completely offline. Compared to other language detection libraries, Lingua's focus is on quality over quantity, that is, getting detection right for a small set of languages first before adding new ones. Currently, 75 languages are supported. They are listed as variants of type Language. Lingua is able to report accuracy statistics for some bundled test data available for each supported language. The test data for each language is split into three parts: 1. a list of single words with a minimum length of 5 characters 2. a list of word pairs with a minimum length of 10 characters 3. a list of complete grammatical sentences of various lengths Both the language models and the test data have been created from separate documents of the Wortschatz corpora (https://wortschatz.uni-leipzig.de) offered by Leipzig University, Germany. Data crawled from various news websites have been used for training, each corpus comprising one million sentences. For testing, corpora made of arbitrarily chosen websites have been used, each comprising ten thousand sentences. From each test corpus, a random unsorted subset of 1000 single words, 1000 word pairs and 1000 sentences has been extracted, respectively. Given the generated test data, I have compared the detection results of Lingua, and Whatlanggo running over the data of Lingua's supported 75 languages. Additionally, I have added Google's CLD3 (https://github.com/google/cld3/) to the comparison with the help of the gocld3 bindings (https://github.com/jmhodges/gocld3). Languages that are not supported by CLD3 or Whatlanggo are simply ignored during the detection process. Lingua clearly outperforms its contenders. Every language detector uses a probabilistic n-gram (https://en.wikipedia.org/wiki/N-gram) model trained on the character distribution in some training corpus. Most libraries only use n-grams of size 3 (trigrams) which is satisfactory for detecting the language of longer text fragments consisting of multiple sentences. For short phrases or single words, however, trigrams are not enough. The shorter the input text is, the less n-grams are available. The probabilities estimated from such few n-grams are not reliable. This is why Lingua makes use of n-grams of sizes 1 up to 5 which results in much more accurate prediction of the correct language. A second important difference is that Lingua does not only use such a statistical model, but also a rule-based engine. This engine first determines the alphabet of the input text and searches for characters which are unique in one or more languages. If exactly one language can be reliably chosen this way, the statistical model is not necessary anymore. In any case, the rule-based engine filters out languages that do not satisfy the conditions of the input text. Only then, in a second step, the probabilistic n-gram model is taken into consideration. This makes sense because loading less language models means less memory consumption and better runtime performance. In general, it is always a good idea to restrict the set of languages to be considered in the classification process using the respective api methods. If you know beforehand that certain languages are never to occur in an input text, do not let those take part in the classifcation process. The filtering mechanism of the rule-based engine is quite good, however, filtering based on your own knowledge of the input text is always preferable. There might be classification tasks where you know beforehand that your language data is definitely not written in Latin, for instance. The detection accuracy can become better in such cases if you exclude certain languages from the decision process or just explicitly include relevant languages. Knowing about the most likely language is nice but how reliable is the computed likelihood? And how less likely are the other examined languages in comparison to the most likely one? In the example below, a slice of ConfidenceValue is returned containing those languages which the calling instance of LanguageDetector has been built from. The entries are sorted by their confidence value in descending order. Each value is a probability between 0.0 and 1.0. The probabilities of all languages will sum to 1.0. If the language is unambiguously identified by the rule engine, the value 1.0 will always be returned for this language. The other languages will receive a value of 0.0. By default, Lingua uses lazy-loading to load only those language models on demand which are considered relevant by the rule-based filter engine. For web services, for instance, it is rather beneficial to preload all language models into memory to avoid unexpected latency while waiting for the service response. If you want to enable the eager-loading mode, you can do it as seen below. Multiple instances of LanguageDetector share the same language models in memory which are accessed asynchronously by the instances. By default, Lingua returns the most likely language for a given input text. However, there are certain words that are spelled the same in more than one language. The word `prologue`, for instance, is both a valid English and French word. Lingua would output either English or French which might be wrong in the given context. For cases like that, it is possible to specify a minimum relative distance that the logarithmized and summed up probabilities for each possible language have to satisfy. It can be stated as seen below. Be aware that the distance between the language probabilities is dependent on the length of the input text. The longer the input text, the larger the distance between the languages. So if you want to classify very short text phrases, do not set the minimum relative distance too high. Otherwise Unknown will be returned most of the time as in the example below. This is the return value for cases where language detection is not reliably possible.
Package monkit is a flexible code instrumenting and data collection library. I'm going to try and sell you as fast as I can on this library. Example usage We've got tools that capture distribution information (including quantiles) about int64, float64, and bool types. We have tools that capture data about events (we've got meters for deltas, rates, etc). We have rich tools for capturing information about tasks and functions, and literally anything that can generate a name and a number. Almost just as importantly, the amount of boilerplate and code you have to write to get these features is very minimal. Data that's hard to measure probably won't get measured. This data can be collected and sent to Graphite (http://graphite.wikidot.com/) or any other time-series database. Here's a selection of live stats from one of our storage nodes: This library generates call graphs of your live process for you. These call graphs aren't created through sampling. They're full pictures of all of the interesting functions you've annotated, along with quantile information about their successes, failures, how often they panic, return an error (if so instrumented), how many are currently running, etc. The data can be returned in dot format, in json, in text, and can be about just the functions that are currently executing, or all the functions the monitoring system has ever seen. Here's another example of one of our production nodes: https://raw.githubusercontent.com/spacemonkeygo/monkit/master/images/callgraph2.png This library generates trace graphs of your live process for you directly, without requiring standing up some tracing system such as Zipkin (though you can do that too). Inspired by Google's Dapper (http://research.google.com/pubs/pub36356.html) and Twitter's Zipkin (http://zipkin.io), we have process-internal trace graphs, triggerable by a number of different methods. You get this trace information for free whenever you use Go contexts (https://blog.golang.org/context) and function monitoring. The output formats are svg and json. Additionally, the library supports trace observation plugins, and we've written a plugin that sends this data to Zipkin (http://github.com/spacemonkeygo/monkit-zipkin). https://raw.githubusercontent.com/spacemonkeygo/monkit/master/images/trace.png Before our crazy Go rewrite of everything (https://www.spacemonkey.com/blog/posts/go-space-monkey) (and before we had even seen Google's Dapper paper), we were a Python shop, and all of our "interesting" functions were decorated with a helper that collected timing information and sent it to Graphite. When we transliterated to Go, we wanted to preserve that functionality, so the first version of our monitoring package was born. Over time it started to get janky, especially as we found Zipkin and started adding tracing functionality to it. We rewrote all of our Go code to use Google contexts, and then realized we could get call graph information. We decided a refactor and then an all-out rethinking of our monitoring package was best, and so now we have this library. Sometimes you really want callstack contextual information without having to pass arguments through everything on the call stack. In other languages, many people implement this with thread-local storage. Example: let's say you have written a big system that responds to user requests. All of your libraries log using your log library. During initial development everything is easy to debug, since there's low user load, but now you've scaled and there's OVER TEN USERS and it's kind of hard to tell what log lines were caused by what. Wouldn't it be nice to add request ids to all of the log lines kicked off by that request? Then you could grep for all log lines caused by a specific request id. Geez, it would suck to have to pass all contextual debugging information through all of your callsites. Google solved this problem by always passing a context.Context interface through from call to call. A Context is basically just a mapping of arbitrary keys to arbitrary values that users can add new values for. This way if you decide to add a request context, you can add it to your Context and then all callsites that decend from that place will have the new data in their contexts. It is admittedly very verbose to add contexts to every function call. Painfully so. I hope to write more about it in the future, but Google also wrote up their thoughts about it (https://blog.golang.org/context), which you can go read. For now, just swallow your disgust and let's keep moving. Let's make a super simple Varnish (https://www.varnish-cache.org/) clone. Open up gedit! (Okay just kidding, open whatever text editor you want.) For this motivating program, we won't even add the caching, though there's comments for where to add it if you'd like. For now, let's just make a barebones system that will proxy HTTP requests. We'll call it VLite, but maybe we should call it VReallyLite. Run and build this and open localhost:8080 in your browser. If you use the default proxy target, it should inform you that the world hasn't been destroyed yet. The first thing you'll want to do is add the small amount of boilerplate to make the instrumentation we're going to add to your process observable later. Import the basic monkit packages: and then register environmental statistics and kick off a goroutine in your main method to serve debug requests: Rebuild, and then check out localhost:9000/stats (or localhost:9000/stats/json, if you prefer) in your browser! Remember what I said about Google's contexts (https://blog.golang.org/context)? It might seem a bit overkill for such a small project, but it's time to add them. To help out here, I've created a library that constructs contexts for you for incoming HTTP requests. Nothing that's about to happen requires my webhelp library (https://godoc.org/github.com/jtolds/webhelp), but here is the code now refactored to receive and pass contexts through our two per-request calls. You can create a new context for a request however you want. One reason to use something like webhelp is that the cancelation feature of Contexts is hooked up to the HTTP request getting canceled. Let's start to get statistics about how many requests we receive! First, this package (main) will need to get a monitoring Scope. Add this global definition right after all your imports, much like you'd create a logger with many logging libraries: Now, make the error return value of HandleHTTP named (so, (err error)), and add this defer line as the very first instruction of HandleHTTP: Let's also add the same line (albeit modified for the lack of error) to Proxy, replacing &err with nil: You should now have something like: We'll unpack what's going on here, but for now: For this new funcs dataset, if you want a graph, you can download a dot graph at localhost:9000/funcs/dot and json information from localhost:9000/funcs/json. You should see something like: with a similar report for the Proxy method, or a graph like: https://raw.githubusercontent.com/spacemonkeygo/monkit/master/images/handlehttp.png This data reports the overall callgraph of execution for known traces, along with how many of each function are currently running, the most running concurrently (the highwater), how many were successful along with quantile timing information, how many errors there were (with quantile timing information if applicable), and how many panics there were. Since the Proxy method isn't capturing a returned err value, and since HandleHTTP always returns nil, this example won't ever have failures. If you're wondering about the success count being higher than you expected, keep in mind your browser probably requested a favicon.ico. Cool, eh? How it works is an interesting line of code - there's three function calls. If you look at the Go spec, all of the function calls will run at the time the function starts except for the very last one. The first function call, mon.Task(), creates or looks up a wrapper around a Func. You could get this yourself by requesting mon.Func() inside of the appropriate function or mon.FuncNamed(). Both mon.Task() and mon.Func() are inspecting runtime.Caller to determine the name of the function. Because this is a heavy operation, you can actually store the result of mon.Task() and reuse it somehow else if you prefer, so instead of you could instead use which is more performant every time after the first time. runtime.Caller only gets called once. Careful! Don't use the same myFuncMon in different functions unless you want to screw up your statistics! The second function call starts all the various stop watches and bookkeeping to keep track of the function. It also mutates the context pointer it's given to extend the context with information about what current span (in Zipkin parlance) is active. Notably, you *can* pass nil for the context if you really don't want a context. You just lose callgraph information. The last function call stops all the stop watches ad makes a note of any observed errors or panics (it repanics after observing them). Turns out, we don't even need to change our program anymore to get rich tracing information! Open your browser and go to localhost:9000/trace/svg?regex=HandleHTTP. It won't load, and in fact, it's waiting for you to open another tab and refresh localhost:8080 again. Once you retrigger the actual application behavior, the trace regex will capture a trace starting on the first function that matches the supplied regex, and return an svg. Go back to your first tab, and you should see a relatively uninteresting but super promising svg. Let's make the trace more interesting. Add a to your HandleHTTP method, rebuild, and restart. Load localhost:8080, then start a new request to your trace URL, then reload localhost:8080 again. Flip back to your trace, and you should see that the Proxy method only takes a portion of the time of HandleHTTP! https://cdn.rawgit.com/spacemonkeygo/monkit/master/images/trace.svg There's multiple ways to select a trace. You can select by regex using the preselect method (default), which first evaluates the regex on all known functions for sanity checking. Sometimes, however, the function you want to trace may not yet be known to monkit, in which case you'll want to turn preselection off. You may have a bad regex, or you may be in this case if you get the error "Bad Request: regex preselect matches 0 functions." Another way to select a trace is by providing a trace id, which we'll get to next! Make sure to check out what the addition of the time.Sleep call did to the other reports. It's easy to write plugins for monkit! Check out our first one that exports data to Zipkin (http://zipkin.io/)'s Scribe API: https://github.com/spacemonkeygo/monkit-zipkin We plan to have more (for HTrace, OpenTracing, etc, etc), soon!
Package anaconda provides structs and functions for accessing version 1.1 of the Twitter API. Successful API queries return native Go structs that can be used immediately, with no need for type assertions. If you already have the access token (and secret) for your user (Twitter provides this for your own account on the developer portal), creating the client is simple: Executing queries on an authenticated TwitterApi struct is simple. Certain endpoints allow separate optional parameter; if desired, these can be passed as the final parameter. Anaconda implements most of the endpoints defined in the Twitter API documentation: https://dev.twitter.com/docs/api/1.1. For clarity, in most cases, the function name is simply the name of the HTTP method and the endpoint (e.g., the endpoint `GET /friendships/incoming` is provided by the function `GetFriendshipsIncoming`). In a few cases, a shortened form has been chosen to make life easier (for example, retweeting is simply the function `Retweet`) More detailed information about the behavior of each particular endpoint can be found at the official Twitter API documentation.
Package twitterstream provides an easy way to stream tweets using Twitter's v2 Streaming API.
Package anaconda provides structs and functions for accessing version 1.1 of the Twitter API. Successful API queries return native Go structs that can be used immediately, with no need for type assertions. If you already have the access token (and secret) for your user (Twitter provides this for your own account on the developer portal), creating the client is simple: Executing queries on an authenticated TwitterApi struct is simple. Certain endpoints allow separate optional parameter; if desired, these can be passed as the final parameter. Anaconda implements most of the endpoints defined in the Twitter API documentation: https://dev.twitter.com/docs/api/1.1. For clarity, in most cases, the function name is simply the name of the HTTP method and the endpoint (e.g., the endpoint `GET /friendships/incoming` is provided by the function `GetFriendshipsIncoming`). In a few cases, a shortened form has been chosen to make life easier (for example, retweeting is simply the function `Retweet`) More detailed information about the behavior of each particular endpoint can be found at the official Twitter API documentation.
Package anaconda provides structs and functions for accessing version 1.1 of the Twitter API. Successful API queries return native Go structs that can be used immediately, with no need for type assertions. If you already have the access token (and secret) for your user (Twitter provides this for your own account on the developer portal), creating the client is simple: Executing queries on an authenticated TwitterApi struct is simple. Certain endpoints allow separate optional parameter; if desired, these can be passed as the final parameter. Anaconda implements most of the endpoints defined in the Twitter API documentation: https://dev.twitter.com/docs/api/1.1. For clarity, in most cases, the function name is simply the name of the HTTP method and the endpoint (e.g., the endpoint `GET /friendships/incoming` is provided by the function `GetFriendshipsIncoming`). In a few cases, a shortened form has been chosen to make life easier (for example, retweeting is simply the function `Retweet`) More detailed information about the behavior of each particular endpoint can be found at the official Twitter API documentation.
Package anaconda provides structs and functions for accessing version 1.1 of the Twitter API. Successful API queries return native Go structs that can be used immediately, with no need for type assertions. If you already have the access token (and secret) for your user (Twitter provides this for your own account on the developer portal), creating the client is simple: Executing queries on an authenticated TwitterApi struct is simple. Certain endpoints allow separate optional parameter; if desired, these can be passed as the final parameter. Anaconda implements most of the endpoints defined in the Twitter API documentation: https://dev.twitter.com/docs/api/1.1. For clarity, in most cases, the function name is simply the name of the HTTP method and the endpoint (e.g., the endpoint `GET /friendships/incoming` is provided by the function `GetFriendshipsIncoming`). In a few cases, a shortened form has been chosen to make life easier (for example, retweeting is simply the function `Retweet`) More detailed information about the behavior of each particular endpoint can be found at the official Twitter API documentation.
Package anaconda provides structs and functions for accessing version 1.1 of the Twitter API. Successful API queries return native Go structs that can be used immediately, with no need for type assertions. If you already have the access token (and secret) for your user (Twitter provides this for your own account on the developer portal), creating the client is simple: Executing queries on an authenticated TwitterApi struct is simple. Certain endpoints allow separate optional parameter; if desired, these can be passed as the final parameter. Anaconda implements most of the endpoints defined in the Twitter API documentation: https://dev.twitter.com/docs/api/1.1. For clarity, in most cases, the function name is simply the name of the HTTP method and the endpoint (e.g., the endpoint `GET /friendships/incoming` is provided by the function `GetFriendshipsIncoming`). In a few cases, a shortened form has been chosen to make life easier (for example, retweeting is simply the function `Retweet`) More detailed information about the behavior of each particular endpoint can be found at the official Twitter API documentation.
Package anaconda provides structs and functions for accessing version 1.1 of the Twitter API. Successful API queries return native Go structs that can be used immediately, with no need for type assertions. If you already have the access token (and secret) for your user (Twitter provides this for your own account on the developer portal), creating the client is simple: Executing queries on an authenticated TwitterApi struct is simple. Certain endpoints allow separate optional parameter; if desired, these can be passed as the final parameter. Anaconda implements most of the endpoints defined in the Twitter API documentation: https://dev.twitter.com/docs/api/1.1. For clarity, in most cases, the function name is simply the name of the HTTP method and the endpoint (e.g., the endpoint `GET /friendships/incoming` is provided by the function `GetFriendshipsIncoming`). In a few cases, a shortened form has been chosen to make life easier (for example, retweeting is simply the function `Retweet`) More detailed information about the behavior of each particular endpoint can be found at the official Twitter API documentation.
Package gotwtr provides a Client for the Twitter v2 API. This library will cover all Twitter v2 API in the future, but please note that not all Twitter API are currently compatible with v2. Because, Twitter announced Twitter v2 API is ready for prime time. FYI https://twittercommunity.com/t/ushering-in-a-new-era-for-the-twitter-developer-platform-with-the-twitter-api-v2/162087 So, we covers only Twitter v2 API supported by OAuth 2.0 Bearer Token. We will had worked on it, when new one is be handled OAuth 2.0.
Package oauth1 is a Go implementation of the OAuth1 spec RFC 5849. It allows end-users to authorize a client (consumer) to access protected resources on their behalf (e.g. login) and allows clients to make signed and authorized requests on behalf of a user (e.g. API calls). It takes design cues from golang.org/x/oauth2, providing an http.Client which handles request signing and authorization. Package oauth1 implements the OAuth1 authorization flow and provides an http.Client which can sign and authorize OAuth1 requests. To implement "Login with X", use the https://github.com/dghubble/gologin packages which provide login handlers for OAuth1 and OAuth2 providers. To call the Twitter, Digits, or Tumblr OAuth1 APIs, use the higher level Go API clients. * https://github.com/dghubble/go-twitter * https://github.com/dghubble/go-digits * https://github.com/benfb/go-tumblr Perform the OAuth 1 authorization flow to ask a user to grant an application access to his/her resources via an access token. 1. When a user performs an action (e.g. "Login with X" button calls "/login" route) get an OAuth1 request token (temporary credentials). 2. Obtain authorization from the user by redirecting them to the OAuth1 provider's authorization URL to grant the application access. Receive the callback from the OAuth1 provider in a handler. 3. Acquire the access token (token credentials) which can later be used to make requests on behalf of the user. Check the examples to see this authorization flow in action from the command line, with Twitter PIN-based login and Tumblr login. Use an access Token to make authorized requests on behalf of a user. Check the examples to see Twitter and Tumblr requests in action.
bindata converts any file into managable Go source code. Useful for embedding binary data into a go program. The file data is optionally gzip compressed before being converted to a raw byte slice. The following paragraphs cover some of the customization options which can be specified in the Config struct, which must be passed into the Translate() call. When used with the `Debug` option, the generated code does not actually include the asset data. Instead, it generates function stubs which load the data from the original file on disk. The asset API remains identical between debug and release builds, so your code will not have to change. This is useful during development when you expect the assets to change often. The host application using these assets uses the same API in both cases and will not have to care where the actual data comes from. An example is a Go webserver with some embedded, static web content like HTML, JS and CSS files. While developing it, you do not want to rebuild the whole server and restart it every time you make a change to a bit of javascript. You just want to build and launch the server once. Then just press refresh in the browser to see those changes. Embedding the assets with the `debug` flag allows you to do just that. When you are finished developing and ready for deployment, just re-invoke `go-bindata` without the `-debug` flag. It will now embed the latest version of the assets. The `NoMemCopy` option will alter the way the output file is generated. It will employ a hack that allows us to read the file data directly from the compiled program's `.rodata` section. This ensures that when we call call our generated function, we omit unnecessary memcopies. The downside of this, is that it requires dependencies on the `reflect` and `unsafe` packages. These may be restricted on platforms like AppEngine and thus prevent you from using this mode. Another disadvantage is that the byte slice we create, is strictly read-only. For most use-cases this is not a problem, but if you ever try to alter the returned byte slice, a runtime panic is thrown. Use this mode only on target platforms where memory constraints are an issue. The default behaviour is to use the old code generation method. This prevents the two previously mentioned issues, but will employ at least one extra memcopy and thus increase memory requirements. For instance, consider the following two examples: This would be the default mode, using an extra memcopy but gives a safe implementation without dependencies on `reflect` and `unsafe`: Here is the same functionality, but uses the `.rodata` hack. The byte slice returned from this example can not be written to without generating a runtime error. The NoCompress option indicates that the supplied assets are *not* GZIP compressed before being turned into Go code. The data should still be accessed through a function call, so nothing changes in the API. This feature is useful if you do not care for compression, or the supplied resource is already compressed. Doing it again would not add any value and may even increase the size of the data. The default behaviour of the program is to use compression. The keys used in the `_bindata` map are the same as the input file name passed to `go-bindata`. This includes the path. In most cases, this is not desireable, as it puts potentially sensitive information in your code base. For this purpose, the tool supplies another command line flag `-prefix`. This accepts a portion of a path name, which should be stripped off from the map keys and function names. For example, running without the `-prefix` flag, we get: Running with the `-prefix` flag, we get: With the optional Tags field, you can specify any go build tags that must be fulfilled for the output file to be included in a build. This is useful when including binary data in multiple formats, where the desired format is specified at build time with the appropriate tags. The tags are appended to a `// +build` line in the beginning of the output file and must follow the build tags syntax specified by the go tool.
Package anaconda provides structs and functions for accessing version 1.1 of the Twitter API. Successful API queries return native Go structs that can be used immediately, with no need for type assertions. If you already have the access token (and secret) for your user (Twitter provides this for your own account on the developer portal), creating the client is simple: Executing queries on an authenticated TwitterApi struct is simple. Certain endpoints allow separate optional parameter; if desired, these can be passed as the final parameter. Anaconda implements most of the endpoints defined in the Twitter API documentation: https://dev.twitter.com/docs/api/1.1. For clarity, in most cases, the function name is simply the name of the HTTP method and the endpoint (e.g., the endpoint `GET /friendships/incoming` is provided by the function `GetFriendshipsIncoming`). In a few cases, a shortened form has been chosen to make life easier (for example, retweeting is simply the function `Retweet`) More detailed information about the behavior of each particular endpoint can be found at the official Twitter API documentation.
Package anaconda provides structs and functions for accessing version 1.1 of the Twitter API. Successful API queries return native Go structs that can be used immediately, with no need for type assertions. If you already have the access token (and secret) for your user (Twitter provides this for your own account on the developer portal), creating the client is simple: Executing queries on an authenticated TwitterApi struct is simple. Certain endpoints allow separate optional parameter; if desired, these can be passed as the final parameter. Anaconda implements most of the endpoints defined in the Twitter API documentation: https://dev.twitter.com/docs/api/1.1. For clarity, in most cases, the function name is simply the name of the HTTP method and the endpoint (e.g., the endpoint `GET /friendships/incoming` is provided by the function `GetFriendshipsIncoming`). In a few cases, a shortened form has been chosen to make life easier (for example, retweeting is simply the function `Retweet`) More detailed information about the behavior of each particular endpoint can be found at the official Twitter API documentation.
Package twitter implements a client for the Twitter API v2. This package is in development and is not yet ready for production use. The general structure of an API call is to first construct a query, then invoke that query with a context on a client: Package "types" contains the type and constant definitions for the API. Queries to look up tweets by ID or username, to search recent tweets, and to search or sample streams of tweets are defined in package "tweets". Queries to look up users by ID or user name are defined in package "users". Queries to read or update search rules are defined in package "rules". Queries to create, edit, delete, and show the contents of lists are defined in package "lists".
Package anaconda provides structs and functions for accessing version 1.1 of the Twitter API. Successful API queries return native Go structs that can be used immediately, with no need for type assertions. If you already have the access token (and secret) for your user (Twitter provides this for your own account on the developer portal), creating the client is simple: Executing queries on an authenticated TwitterApi struct is simple. Certain endpoints allow separate optional parameter; if desired, these can be passed as the final parameter. Anaconda implements most of the endpoints defined in the Twitter API documentation: https://dev.twitter.com/docs/api/1.1. For clarity, in most cases, the function name is simply the name of the HTTP method and the endpoint (e.g., the endpoint `GET /friendships/incoming` is provided by the function `GetFriendshipsIncoming`). In a few cases, a shortened form has been chosen to make life easier (for example, retweeting is simply the function `Retweet`) More detailed information about the behavior of each particular endpoint can be found at the official Twitter API documentation.
Package hashtag implements extraction of Twitter type hashtags, mentions and replies form text in Go. This package partially ports extraction routines from Twitter's official Java package at https://github.com/twitter/twitter-text to Go and runs most of the standard twitter-text conformance tests. It does not yet implement URL extraction (and hence URL/Hashtag overlaps), cashtags and lists Since the package attempts to closely follow the Twitter-Text Java API, function names may be longer than typical Go package function names
Package lingua accurately detects the natural language of written text, be it long or short. Its task is simple: It tells you which language some text is written in. This is very useful as a preprocessing step for linguistic data in natural language processing applications such as text classification and spell checking. Other use cases, for instance, might include routing e-mails to the right geographically located customer service department, based on the e-mails' languages. Language detection is often done as part of large machine learning frameworks or natural language processing applications. In cases where you don't need the full-fledged functionality of those systems or don't want to learn the ropes of those, a small flexible library comes in handy. So far, the only other comprehensive open source library in the Go ecosystem for this task is Whatlanggo (https://github.com/abadojack/whatlanggo). Unfortunately, it has two major drawbacks: 1. Detection only works with quite lengthy text fragments. For very short text snippets such as Twitter messages, it does not provide adequate results. 2. The more languages take part in the decision process, the less accurate are the detection results. Lingua aims at eliminating these problems. It nearly does not need any configuration and yields pretty accurate results on both long and short text, even on single words and phrases. It draws on both rule-based and statistical methods but does not use any dictionaries of words. It does not need a connection to any external API or service either. Once the library has been downloaded, it can be used completely offline. Compared to other language detection libraries, Lingua's focus is on quality over quantity, that is, getting detection right for a small set of languages first before adding new ones. Currently, 75 languages are supported. They are listed as variants of type Language. Lingua is able to report accuracy statistics for some bundled test data available for each supported language. The test data for each language is split into three parts: 1. a list of single words with a minimum length of 5 characters 2. a list of word pairs with a minimum length of 10 characters 3. a list of complete grammatical sentences of various lengths Both the language models and the test data have been created from separate documents of the Wortschatz corpora (https://wortschatz.uni-leipzig.de) offered by Leipzig University, Germany. Data crawled from various news websites have been used for training, each corpus comprising one million sentences. For testing, corpora made of arbitrarily chosen websites have been used, each comprising ten thousand sentences. From each test corpus, a random unsorted subset of 1000 single words, 1000 word pairs and 1000 sentences has been extracted, respectively. Given the generated test data, I have compared the detection results of Lingua, and Whatlanggo running over the data of Lingua's supported 75 languages. Additionally, I have added Google's CLD3 (https://github.com/google/cld3/) to the comparison with the help of the gocld3 bindings (https://github.com/jmhodges/gocld3). Languages that are not supported by CLD3 or Whatlanggo are simply ignored during the detection process. Lingua clearly outperforms its contenders. Every language detector uses a probabilistic n-gram (https://en.wikipedia.org/wiki/N-gram) model trained on the character distribution in some training corpus. Most libraries only use n-grams of size 3 (trigrams) which is satisfactory for detecting the language of longer text fragments consisting of multiple sentences. For short phrases or single words, however, trigrams are not enough. The shorter the input text is, the less n-grams are available. The probabilities estimated from such few n-grams are not reliable. This is why Lingua makes use of n-grams of sizes 1 up to 5 which results in much more accurate prediction of the correct language. A second important difference is that Lingua does not only use such a statistical model, but also a rule-based engine. This engine first determines the alphabet of the input text and searches for characters which are unique in one or more languages. If exactly one language can be reliably chosen this way, the statistical model is not necessary anymore. In any case, the rule-based engine filters out languages that do not satisfy the conditions of the input text. Only then, in a second step, the probabilistic n-gram model is taken into consideration. This makes sense because loading less language models means less memory consumption and better runtime performance. In general, it is always a good idea to restrict the set of languages to be considered in the classification process using the respective api methods. If you know beforehand that certain languages are never to occur in an input text, do not let those take part in the classifcation process. The filtering mechanism of the rule-based engine is quite good, however, filtering based on your own knowledge of the input text is always preferable. There might be classification tasks where you know beforehand that your language data is definitely not written in Latin, for instance. The detection accuracy can become better in such cases if you exclude certain languages from the decision process or just explicitly include relevant languages. Knowing about the most likely language is nice but how reliable is the computed likelihood? And how less likely are the other examined languages in comparison to the most likely one? In the example below, a slice of ConfidenceValue is returned containing those languages which the calling instance of LanguageDetector has been built from. The entries are sorted by their confidence value in descending order. Each value is a probability between 0.0 and 1.0. The probabilities of all languages will sum to 1.0. If the language is unambiguously identified by the rule engine, the value 1.0 will always be returned for this language. The other languages will receive a value of 0.0. By default, Lingua uses lazy-loading to load only those language models on demand which are considered relevant by the rule-based filter engine. For web services, for instance, it is rather beneficial to preload all language models into memory to avoid unexpected latency while waiting for the service response. If you want to enable the eager-loading mode, you can do it as seen below. Multiple instances of LanguageDetector share the same language models in memory which are accessed asynchronously by the instances. By default, Lingua returns the most likely language for a given input text. However, there are certain words that are spelled the same in more than one language. The word `prologue`, for instance, is both a valid English and French word. Lingua would output either English or French which might be wrong in the given context. For cases like that, it is possible to specify a minimum relative distance that the logarithmized and summed up probabilities for each possible language have to satisfy. It can be stated as seen below. Be aware that the distance between the language probabilities is dependent on the length of the input text. The longer the input text, the larger the distance between the languages. So if you want to classify very short text phrases, do not set the minimum relative distance too high. Otherwise Unknown will be returned most of the time as in the example below. This is the return value for cases where language detection is not reliably possible.