Package xz supports the compression and decompression of xz files. It supports version 1.0.4 of the specification without the non-LZMA2 filters. See http://tukaani.org/xz/xz-file-format-1.0.4.txt
Package archive contains traversal utilities for ZIP and tar archives with gzip, bzip2, xz, and LZ4 compression.
Package metrics contains the serializer compression component for metrics
Package httpgzip provides net/http-like primitives that use gzip compression when serving HTTP requests.
Package logs contains the serializer compression component for metrics
Package cae implements PHP-like Compression and Archive Extensions.
Package govcr records and replays HTTP interactions for offline unit / behavioural / integration tests thereby acting as an HTTP mock. This project was inspired by php-vcr which is a PHP port of VCR for ruby. For usage and more information, please refer to the project's README at: https://github.com/seborama/govcr Example_simpleVCR is an example use of govcr. It shows how to use govcr in the simplest case when the default http.Client suffices. Example2 is an example use of govcr. It shows the use of a VCR with a custom Client. Here, the app executes a GET request. Example_simpleVCR is an example use of govcr. It shows how to use govcr in the simplest case when the default http.Client suffices. Example_simpleVCR is an example use of govcr. It shows a simple use of a Long Play cassette (i.e. compressed). Example_simpleVCR is an example use of govcr. It shows how to use govcr in the simplest case when the default http.Client suffices. Example_number7BodyInjection will show how bodies can be rewritten. We will take a varying ID from the request URL, neutralize it and also change the ID in the body of the response.
Package kprom provides prometheus plug-in metrics for a kgo client. This package tracks the following metrics under the following names, all metrics being counter vecs: The above metrics can be expanded considerably with options in this package, allowing timings, uncompressed and compressed bytes, and different labels. This can be used in a client like so: More examples are linked in the main project readme: https://github.com/twmb/franz-go/#metrics--logging By default, metrics are installed under the a new prometheus registry, but this can be overridden with the Registry option. Note that seed brokers use broker IDs prefixed with "seed_", with the number corresponding to which seed it is.
bindata converts any file into managable Go source code. Useful for embedding binary data into a go program. The file data is optionally gzip compressed before being converted to a raw byte slice. The following paragraphs cover some of the customization options which can be specified in the Config struct, which must be passed into the Translate() call. When used with the `Debug` option, the generated code does not actually include the asset data. Instead, it generates function stubs which load the data from the original file on disk. The asset API remains identical between debug and release builds, so your code will not have to change. This is useful during development when you expect the assets to change often. The host application using these assets uses the same API in both cases and will not have to care where the actual data comes from. An example is a Go webserver with some embedded, static web content like HTML, JS and CSS files. While developing it, you do not want to rebuild the whole server and restart it every time you make a change to a bit of javascript. You just want to build and launch the server once. Then just press refresh in the browser to see those changes. Embedding the assets with the `debug` flag allows you to do just that. When you are finished developing and ready for deployment, just re-invoke `go-bindata` without the `-debug` flag. It will now embed the latest version of the assets. The `NoMemCopy` option will alter the way the output file is generated. It will employ a hack that allows us to read the file data directly from the compiled program's `.rodata` section. This ensures that when we call call our generated function, we omit unnecessary memcopies. The downside of this, is that it requires dependencies on the `reflect` and `unsafe` packages. These may be restricted on platforms like AppEngine and thus prevent you from using this mode. Another disadvantage is that the byte slice we create, is strictly read-only. For most use-cases this is not a problem, but if you ever try to alter the returned byte slice, a runtime panic is thrown. Use this mode only on target platforms where memory constraints are an issue. The default behavior is to use the old code generation method. This prevents the two previously mentioned issues, but will employ at least one extra memcopy and thus increase memory requirements. For instance, consider the following two examples: This would be the default mode, using an extra memcopy but gives a safe implementation without dependencies on `reflect` and `unsafe`: Here is the same functionality, but uses the `.rodata` hack. The byte slice returned from this example can not be written to without generating a runtime error. The NoCompress option indicates that the supplied assets are *not* GZIP compressed before being turned into Go code. The data should still be accessed through a function call, so nothing changes in the API. This feature is useful if you do not care for compression, or the supplied resource is already compressed. Doing it again would not add any value and may even increase the size of the data. The default behavior of the program is to use compression. The keys used in the `_bindata` map are the same as the input file name passed to `go-bindata`. This includes the path. In most cases, this is not desireable, as it puts potentially sensitive information in your code base. For this purpose, the tool supplies another command line flag `-prefix`. This accepts a portion of a path name, which should be stripped off from the map keys and function names. For example, running without the `-prefix` flag, we get: Running with the `-prefix` flag, we get: With the optional Tags field, you can specify any go build tags that must be fulfilled for the output file to be included in a build. This is useful when including binary data in multiple formats, where the desired format is specified at build time with the appropriate tags. The tags are appended to a `// +build` line in the beginning of the output file and must follow the build tags syntax specified by the go tool.
Package httpgzip is a simple wrapper around http.FileServer that looks for a compressed version of a file and serves that if the client requested compressed content
Package websocket implements the WebSocket protocol defined in RFC 6455. The Conn type represents a WebSocket connection. A server application uses the Upgrade function from an Upgrader object with a HTTP request handler to get a pointer to a Conn: Call the connection's WriteMessage and ReadMessage methods to send and receive messages as a slice of bytes. This snippet of code shows how to echo messages using these methods: In above snippet of code, p is a []byte and messageType is an int with value websocket.BinaryMessage or websocket.TextMessage. An application can also send and receive messages using the io.WriteCloser and io.Reader interfaces. To send a message, call the connection NextWriter method to get an io.WriteCloser, write the message to the writer and close the writer when done. To receive a message, call the connection NextReader method to get an io.Reader and read until io.EOF is returned. This snippet shows how to echo messages using the NextWriter and NextReader methods: The WebSocket protocol distinguishes between text and binary data messages. Text messages are interpreted as UTF-8 encoded text. The interpretation of binary messages is left to the application. This package uses the TextMessage and BinaryMessage integer constants to identify the two data message types. The ReadMessage and NextReader methods return the type of the received message. The messageType argument to the WriteMessage and NextWriter methods specifies the type of a sent message. It is the application's responsibility to ensure that text messages are valid UTF-8 encoded text. The WebSocket protocol defines three types of control messages: close, ping and pong. Call the connection WriteControl, WriteMessage or NextWriter methods to send a control message to the peer. Connections handle received close messages by sending a close message to the peer and returning a *CloseError from the the NextReader, ReadMessage or the message Read method. Connections handle received ping and pong messages by invoking callback functions set with SetPingHandler and SetPongHandler methods. The callback functions are called from the NextReader, ReadMessage and the message Read methods. The default ping handler sends a pong to the peer. The application's reading goroutine can block for a short time while the handler writes the pong data to the connection. The application must read the connection to process ping, pong and close messages sent from the peer. If the application is not otherwise interested in messages from the peer, then the application should start a goroutine to read and discard messages from the peer. A simple example is: Connections support one concurrent reader and one concurrent writer. Applications are responsible for ensuring that no more than one goroutine calls the write methods (NextWriter, SetWriteDeadline, WriteMessage, WriteJSON) concurrently and that no more than one goroutine calls the read methods (NextReader, SetReadDeadline, ReadMessage, ReadJSON, SetPongHandler, SetPingHandler) concurrently. The Close and WriteControl methods can be called concurrently with all other methods. Web browsers allow Javascript applications to open a WebSocket connection to any host. It's up to the server to enforce an origin policy using the Origin request header sent by the browser. The Upgrader calls the function specified in the CheckOrigin field to check the origin. If the CheckOrigin function returns false, then the Upgrade method fails the WebSocket handshake with HTTP status 403. If the CheckOrigin field is nil, then the Upgrader uses a safe default: fail the handshake if the Origin request header is present and not equal to the Host request header. An application can allow connections from any origin by specifying a function that always returns true: The deprecated Upgrade function does not enforce an origin policy. It's the application's responsibility to check the Origin header before calling Upgrade. Per message compression extensions (RFC 7692) are experimentally supported by this package in a limited capacity. Setting the EnableCompression option to true in Dialer or Upgrader will attempt to negotiate per message deflate support. If compression was successfully negotiated with the connection's peer, any message received in compressed form will be automatically decompressed. All Read methods will return uncompressed bytes. Per message compression of messages written to a connection can be enabled or disabled by calling the corresponding Conn method: Currently this package does not support compression with "context takeover". This means that messages must be compressed and decompressed in isolation, without retaining sliding window or dictionary state across messages. For more details refer to RFC 7692. Use of compression is experimental and may result in decreased performance.
Package smaz is an implementation of the smaz library (https://github.com/antirez/smaz) for compressing small strings.
Package mafsa implements Minimal Acyclic Finite State Automata (MA-FSA) in a space-optimized way as described by Dacuik, Mihov, Watson, and Watson in their paper, "Incremental Construction of Minimal Acyclic Finite-State Automata" (2000). It also implements Minimal Perfect Hashing (MPH) as described by Lucceshi and Kowaltowski in their paper, "Applications of Finite Automata Representing Large Vocabularies" (1992). Unscientifically speaking, this package lets you store large amounts of strings (with Unicode) in memory so that membership queries, prefix lookups, and fuzzy searches are fast. And because minimal perfect hashing is included, you can associate each entry in the tree with more data used by your application. See the README or the end of this documentation for a brief tutorial. MA-FSA structures are a specific type of Deterministic Acyclic Finite State Automaton (DAFSA) which fold equivalent state transitions into each other starting from the suffix of each entry. Typical construction algorithms involve building out the entire tree first, then minimizing the completed tree. However, the method described in the paper above allows the tree to be minimized after every word insertion, provided the insertions are performed in lexicographical order, which drastically reduces memory usage compared to regular prefix trees ("tries"). The goal of this package is to provide a simple, useful, and correct implementation of MA-FSA. Though more complex algorithms exist for removal of items and unordered insertion, these features may be outside the scope of this package. Membership queries are on the order of O(n), where n is the length of the input string, so basically O(1). It is advisable to keep n small since long entries without much in common, especially in the beginning or end of the string, will quickly overrun the optimizations that are available. In those cases, n-gram implementations might be preferable, though these will use more CPU. This package provides two kinds of MA-FSA implementations. One, the BuildTree, facilitates the construction of an optimized tree and allows ordered insertions. The other, MinTree, is effectively read-only but uses significantly less memory and is ideal for production environments where only reads will be occurring. Usually your build process will be separate from your production application, which will make heavy use of reading the structure. To use this package, create a BuildTree and insert your items in lexicographical order: The tree is now compressed to a minimum number of nodes and is ready to be saved. In your production application, then, you can read the file into a MinTree directly: The mt variable is a *MinTree which has the same data as the original BuildTree, but without all the extra "scaffolding" that was required for adding new elements. The package provides some basic read mechanisms.
Package gzipimpl implements the compression component interface
Package zstdimpl implements the compression component interface
Package compression provides compression for trace payloads
Package amt provides a reference implementation of the IPLD AMT (Array Mapped Trie) used in the Filecoin blockchain. The AMT algorithm is similar to a HAMT https://en.wikipedia.org/wiki/Hash_array_mapped_trie but instead presents an array-like interface where the indexes themselves form the mapping to nodes in the trie structure. An AMT is suitable for storing sparse array data as a minimum amount of intermediate nodes are required to address a small number of entries even when their indexes span a large distance. AMT is also a suitable means of storing non-sparse array data as required, with a small amount of storage and algorithmic overhead required to handle mapping that assumes that some elements within any range of data may not be present. The AMT algorithm produces a tree-like graph, with a single root node addressing a collection of child nodes which connect downward toward leaf nodes which store the actual entries. No terminal entries are stored in intermediate elements of the tree, unlike in a HAMT. We can divide up the AMT tree structure into "levels" or "heights", where a height of zero contains the terminal elements, and the maximum height of the tree contains the single root node. Intermediate nodes are used to span across the range of indexes. Any AMT instance uses a fixed "width" that is consistent across the tree's nodes. An AMT's "bitWidth" dictates the width, or maximum-brancing factor (arity) of the AMT's nodes by determining how many bits of the original index are used to determine the index at any given level. A bitWidth of 3 (the default for this implementation) can generate indexes in the range of 0 to (3^2)-1=7, i.e. a "width" of 8. In practice, this means that an AMT with a bitWidth of 3 has a branching factor of _between 1 and 8_ for any node in the structure. Considering the minimal case: a minimal AMT contains a single node which serves as both the root and the leaf node and can hold zero or more elements (an empty AMT is possible, although a special-case, and consists of a zero-length root). This minimal AMT can store array indexes from 0 to width-1 (8 for the default bitWidth of 3) without requiring the addition of additional nodes. Attempts to add additional indexes beyond width-1 will result in additional nodes being added and a tree structure in order to address the new elements. The minimal AMT node is said to have a height of 0. Every node in an AMT has a height that indicates its distance from the leaf nodes. All leaf nodes have a height of 0. The height of the root node dictates the overall height of the entire AMT. In the case of the minimal AMT, this is 0. Elements are stored in a compacted form within nodes, they are "position-mapped" by a bitmap field that is stored with the node. The bitmap is a simple byte array, where each bit represents an element of the data that can be stored in the node. With a width of 8, the bitmap is a single byte and up to 8 elements can be stored in the node. The data array of a node _only stores elements that are present in that node_, so the array is commonly shorter than the maximum width. An empty AMT is a special-case where the single node can have zero elements, therefore a zero-length data array and a bitmap of `0x00`. In all other cases, the data array must have between 1 and width elements. Determining the position of an index within the data array requires counting the number of set bits within the bitmap up to the element we are concerned with. If the bitmap has bits 2, 4 and 6 set, we can see that only 3 of the bits are set so our data array should hold 3 elements. To address index 4, we know that the first element will be index 2 and therefore the second will hold index 4. This format allows us to store only the elements that are set in the node. Overflow beyond the single node AMT by adding an index beyond width-1 requires an increase in height in order to address all elements. If an element in the range of width to (width*2)-1 is added, a single additional height is required which will result in a new root node which is used to address two consecutive leaf nodes. Because we have an arity of up to width at any node, the addition of indexes in the range of 0 to (width^2)-1 will still require only the addition of a single additional height above the leaf nodes, i.e. height 1. From the width of an AMT we can derive the maximum range of indexes that can be contained by an AMT at any given `height` with the formula width^(height+1)-1. e.g. an AMT with a width of 8 and a height of 2 can address indexes 0 to 8^(2+1)-1=511. Incrementing the height doubles the range of indexes that can be contained within that structure. Nodes above height 0 (non-leaf nodes) do not contain terminal elements, but instead, their data array contains links to child nodes. The index compaction using the bitmap is the same as for leaf nodes, so each non-leaf node only stores as many links as it has child nodes. Because additional height is required to address larger indexes, even a single-element AMT will require more than one node where the index is greater than the width of the AMT. For a width of 8, indexes 8 to 63 require a height of 1, indexes 64 to 511 require a height of 2, indexes 512 to 4095 require a height of 3, etc. Retrieving elements from the AMT requires extracting only the portion of the requested index that is required at each height to determine the position in the data array to navigate into. When traversing through the tree, we only need to select from indexes 0 to width-1. To do this, we take log2(width) bits from the index to form a number that is between 0 and width-1. e.g. for a width of 8, we only need 3 bits to form a number between 0 and 7, so we only consume 3 bits per level of the AMT as we traverse. A simple method to calculate this at any height in the AMT (assuming bitWidth of 3, i.e. a width of 8) is: 1. Calculate the maximum number of nodes (not entries) that may be present in an sub-tree rooted at the current height. width^height provides this number. e.g. at height 0, only 1 node can be present, but at height 3, we may have a tree of up to 512 nodes (storing up to 8^(3+1)=4096 entries). 2. Divide the index by this number to find the index for this height. e.g. an index of 3 at height 0 will be 3/1=3, or an index of 20 at height 1 will be 20/8=2. 3. If we are at height 0, the element we want is at the data index, position-mapped via the bitmap. 4. If we are above height 0, we need to navigate to the child element at the index we calculated, position-mapped via the bitmap. When traversing to the child, we discard the upper portion of the index that we no longer need. This can be achieved by a mod operation against the number-of-nodes value. e.g. an index of 20 at height 1 requires navigation to the element at position 2, when moving to that element (which is height 0), we truncate the index with 20%8=4, at height 0 this index will be the index in our data array (position-mapped via the bitmap). In this way, each sub-tree root consumes a small slice, log2(width) bits long, of the original index. Adding new elements to an AMT may require up to 3 steps: 1. Increasing the height to accommodate a new index if the current height is not sufficient to address the new index. Increasing the height requires turning the current root node into an intermediate and adding a new root which links to the old (repeated until the required height is reached). 2. Adding any missing intermediate and leaf nodes that are required to address the new index. Depending on the density of existing indexes, this may require the addition of up to height-1 new nodes to connect the root to the required leaf. Sparse indexes will mean large gaps in the tree that will need filling to address new, equally sparse, indexes. 3. Setting the element at the leaf node in the appropriate position in the data array and setting the appropriate bit in the bitmap. Removing elements requires a reversal of this process. Any empty node (other than the case of a completely empty AMT) must be removed and its parent should have its child link removed. This removal may recurse up the tree to remove many unnecessary intermediate nodes. The root node may also be removed if the current height is no longer necessary to contain the range of indexes still in the AMT. This can be easily determined if _only_ the first bit of the root's bitmap is set, meaning only the left-most is present, which will become the new root node (repeated until the new root has more than the first bit set or height of 0, the single-node case). See https://github.com/ipld/specs/blob/master/data-structures/hashmap.md for a description of a HAMT algorithm. And https://github.com/ipld/specs/blob/master/data-structures/vector.md for a description of a similar algorithm to an AMT that doesn't support internal node compression and therefore doesn't support sparse arrays. Unlike a HAMT, the AMT algorithm doesn't benefit from randomness introduced by a hash algorithm. Therefore an AMT used in cases where user-input can influence indexes, larger-than-necessary tree structures may present risks as well as the challenge imposed by having a strict upper-limit on the indexes addressable by the AMT. A width of 8, using 64-bit integers for indexing, allows for a tree height of up to 64/log2(8)=21 (i.e. a width of 8 has a bitWidth of 3, dividing the 64 bits of the uint into 21 separate per-height indexes). Careful placement of indexes could create extremely sub-optimal forms with large heights connecting leaf nodes that are sparsely packed. The overhead of the large number of intermediate nodes required to connect leaf nodes in AMTs that contain high indexes can be abused to create perverse forms that contain large numbers of nodes to store a minimal number of elements. Minimal nodes will be created where indexes are all in the lower-range. The optimal case for an AMT is contiguous index values starting from zero. As larger indexes are introduced that span beyond the current maximum, more nodes are required to address the new nodes _and_ the existing lower index nodes. Consider a case where a width=8 AMT is only addressing indexes less than 8 and requiring a single height. The introduction of a single index within 8 of the maximum 64-bit unsigned integer range will require the new root to have a height of 21 and have enough connecting nodes between it and both the existing elements and the new upper index. This pattern of behavior may be acceptable if there is significant density of entries under a particular maximum index. There is a direct relationship between the sparseness of index values and the number of nodes required to address the entries. This should be the key consideration when determining whether an AMT is a suitable data-structure for a given application.
Package amt provides a reference implementation of the IPLD AMT (Array Mapped Trie) used in the Filecoin blockchain. The AMT algorithm is similar to a HAMT https://en.wikipedia.org/wiki/Hash_array_mapped_trie but instead presents an array-like interface where the indexes themselves form the mapping to nodes in the trie structure. An AMT is suitable for storing sparse array data as a minimum amount of intermediate nodes are required to address a small number of entries even when their indexes span a large distance. AMT is also a suitable means of storing non-sparse array data as required, with a small amount of storage and algorithmic overhead required to handle mapping that assumes that some elements within any range of data may not be present. The AMT algorithm produces a tree-like graph, with a single root node addressing a collection of child nodes which connect downward toward leaf nodes which store the actual entries. No terminal entries are stored in intermediate elements of the tree, unlike in a HAMT. We can divide up the AMT tree structure into "levels" or "heights", where a height of zero contains the terminal elements, and the maximum height of the tree contains the single root node. Intermediate nodes are used to span across the range of indexes. Any AMT instance uses a fixed "width" that is consistent across the tree's nodes. An AMT's "bitWidth" dictates the width, or maximum-brancing factor (arity) of the AMT's nodes by determining how many bits of the original index are used to determine the index at any given level. A bitWidth of 3 (the default for this implementation) can generate indexes in the range of 0 to (2^3)-1=7, i.e. a "width" of 8. In practice, this means that an AMT with a bitWidth of 3 has a branching factor of _between 1 and 8_ for any node in the structure. Considering the minimal case: a minimal AMT contains a single node which serves as both the root and the leaf node and can hold zero or more elements (an empty AMT is possible, although a special-case, and consists of a zero-length root). This minimal AMT can store array indexes from 0 to width-1 (8 for the default bitWidth of 3) without requiring the addition of additional nodes. Attempts to add additional indexes beyond width-1 will result in additional nodes being added and a tree structure in order to address the new elements. The minimal AMT node is said to have a height of 0. Every node in an AMT has a height that indicates its distance from the leaf nodes. All leaf nodes have a height of 0. The height of the root node dictates the overall height of the entire AMT. In the case of the minimal AMT, this is 0. Elements are stored in a compacted form within nodes, they are "position-mapped" by a bitmap field that is stored with the node. The bitmap is a simple byte array, where each bit represents an element of the data that can be stored in the node. With a width of 8, the bitmap is a single byte and up to 8 elements can be stored in the node. The data array of a node _only stores elements that are present in that node_, so the array is commonly shorter than the maximum width. An empty AMT is a special-case where the single node can have zero elements, therefore a zero-length data array and a bitmap of `0x00`. In all other cases, the data array must have between 1 and width elements. Determining the position of an index within the data array requires counting the number of set bits within the bitmap up to the element we are concerned with. If the bitmap has bits 2, 4 and 6 set, we can see that only 3 of the bits are set so our data array should hold 3 elements. To address index 4, we know that the first element will be index 2 and therefore the second will hold index 4. This format allows us to store only the elements that are set in the node. Overflow beyond the single node AMT by adding an index beyond width-1 requires an increase in height in order to address all elements. If an element in the range of width to (width*2)-1 is added, a single additional height is required which will result in a new root node which is used to address two consecutive leaf nodes. Because we have an arity of up to width at any node, the addition of indexes in the range of 0 to (width^2)-1 will still require only the addition of a single additional height above the leaf nodes, i.e. height 1. From the width of an AMT we can derive the maximum range of indexes that can be contained by an AMT at any given `height` with the formula width^(height+1)-1. e.g. an AMT with a width of 8 and a height of 2 can address indexes 0 to 8^(2+1)-1=511. Incrementing the height doubles the range of indexes that can be contained within that structure. Nodes above height 0 (non-leaf nodes) do not contain terminal elements, but instead, their data array contains links to child nodes. The index compaction using the bitmap is the same as for leaf nodes, so each non-leaf node only stores as many links as it has child nodes. Because additional height is required to address larger indexes, even a single-element AMT will require more than one node where the index is greater than the width of the AMT. For a width of 8, indexes 8 to 63 require a height of 1, indexes 64 to 511 require a height of 2, indexes 512 to 4095 require a height of 3, etc. Retrieving elements from the AMT requires extracting only the portion of the requested index that is required at each height to determine the position in the data array to navigate into. When traversing through the tree, we only need to select from indexes 0 to width-1. To do this, we take log2(width) bits from the index to form a number that is between 0 and width-1. e.g. for a width of 8, we only need 3 bits to form a number between 0 and 7, so we only consume 3 bits per level of the AMT as we traverse. A simple method to calculate this at any height in the AMT (assuming bitWidth of 3, i.e. a width of 8) is: 1. Calculate the maximum number of nodes (not entries) that may be present in an sub-tree rooted at the current height. width^height provides this number. e.g. at height 0, only 1 node can be present, but at height 3, we may have a tree of up to 512 nodes (storing up to 8^(3+1)=4096 entries). 2. Divide the index by this number to find the index for this height. e.g. an index of 3 at height 0 will be 3/1=3, or an index of 20 at height 1 will be 20/8=2. 3. If we are at height 0, the element we want is at the data index, position-mapped via the bitmap. 4. If we are above height 0, we need to navigate to the child element at the index we calculated, position-mapped via the bitmap. When traversing to the child, we discard the upper portion of the index that we no longer need. This can be achieved by a mod operation against the number-of-nodes value. e.g. an index of 20 at height 1 requires navigation to the element at position 2, when moving to that element (which is height 0), we truncate the index with 20%8=4, at height 0 this index will be the index in our data array (position-mapped via the bitmap). In this way, each sub-tree root consumes a small slice, log2(width) bits long, of the original index. Adding new elements to an AMT may require up to 3 steps: 1. Increasing the height to accommodate a new index if the current height is not sufficient to address the new index. Increasing the height requires turning the current root node into an intermediate and adding a new root which links to the old (repeated until the required height is reached). 2. Adding any missing intermediate and leaf nodes that are required to address the new index. Depending on the density of existing indexes, this may require the addition of up to height-1 new nodes to connect the root to the required leaf. Sparse indexes will mean large gaps in the tree that will need filling to address new, equally sparse, indexes. 3. Setting the element at the leaf node in the appropriate position in the data array and setting the appropriate bit in the bitmap. Removing elements requires a reversal of this process. Any empty node (other than the case of a completely empty AMT) must be removed and its parent should have its child link removed. This removal may recurse up the tree to remove many unnecessary intermediate nodes. The root node may also be removed if the current height is no longer necessary to contain the range of indexes still in the AMT. This can be easily determined if _only_ the first bit of the root's bitmap is set, meaning only the left-most is present, which will become the new root node (repeated until the new root has more than the first bit set or height of 0, the single-node case). See https://github.com/ipld/specs/blob/master/data-structures/hashmap.md for a description of a HAMT algorithm. And https://github.com/ipld/specs/blob/master/data-structures/vector.md for a description of a similar algorithm to an AMT that doesn't support internal node compression and therefore doesn't support sparse arrays. Unlike a HAMT, the AMT algorithm doesn't benefit from randomness introduced by a hash algorithm. Therefore an AMT used in cases where user-input can influence indexes, larger-than-necessary tree structures may present risks as well as the challenge imposed by having a strict upper-limit on the indexes addressable by the AMT. A width of 8, using 64-bit integers for indexing, allows for a tree height of up to 64/log2(8)=21 (i.e. a width of 8 has a bitWidth of 3, dividing the 64 bits of the uint into 21 separate per-height indexes). Careful placement of indexes could create extremely sub-optimal forms with large heights connecting leaf nodes that are sparsely packed. The overhead of the large number of intermediate nodes required to connect leaf nodes in AMTs that contain high indexes can be abused to create perverse forms that contain large numbers of nodes to store a minimal number of elements. Minimal nodes will be created where indexes are all in the lower-range. The optimal case for an AMT is contiguous index values starting from zero. As larger indexes are introduced that span beyond the current maximum, more nodes are required to address the new nodes _and_ the existing lower index nodes. Consider a case where a width=8 AMT is only addressing indexes less than 8 and requiring a single height. The introduction of a single index within 8 of the maximum 64-bit unsigned integer range will require the new root to have a height of 21 and have enough connecting nodes between it and both the existing elements and the new upper index. This pattern of behavior may be acceptable if there is significant density of entries under a particular maximum index. There is a direct relationship between the sparseness of index values and the number of nodes required to address the entries. This should be the key consideration when determining whether an AMT is a suitable data-structure for a given application.