Package maduse is an implementation of the functional concepts filter, map and reduce found in other languages like python, javascript, etc. This package purposely diverge from core principals of how go code should be written, you should therefore think twice before you consider using this package, in most cases for loops is the way to go. The reason for the existence of this package is that it allows for better composability and allows datasets to be more easily explored and evaluated in Go. It's specifically designed as a tool to be used for experimenting with datasets and not as a library intented for production use where performance is critical. The API of the maduse package is completely dynamic which has the down side of no compile time garuantees about the function signatures given to filter, map or reduce. Each method on a maduse.Collection have a description of the handlers they support. Because go doesn't support generics yet, i have create my own notation where <Type> can be replaced with what ever type you want. The <Type> in the function argument has to be the same as in the collection. The output type could be something else or the same as the input, it depends on what you want to achieve. This package is heavily based on reflection and type assertions which can result in runtime panics if used wrongly. TODO(@kvartborg): would like to experiment with a streaming implementation based on the io.Reader interface at some point.
Package codec provides a High Performance, Feature-Rich Idiomatic Go 1.4+ codec/encoding library for binc, msgpack, cbor, json. Supported Serialization formats are: To install: This package will carefully use 'unsafe' for performance reasons in specific places. You can build without unsafe use by passing the safe or appengine tag i.e. 'go install -tags=safe ...'. Note that unsafe is only supported for the last 3 go sdk versions e.g. current go release is go 1.9, so we support unsafe use only from go 1.7+ . This is because supporting unsafe requires knowledge of implementation details. For detailed usage information, read the primer at http://ugorji.net/blog/go-codec-primer . The idiomatic Go support is as seen in other encoding packages in the standard library (ie json, xml, gob, etc). Rich Feature Set includes: Users can register a function to handle the encoding or decoding of their custom types. There are no restrictions on what the custom type can be. Some examples: As an illustration, MyStructWithUnexportedFields would normally be encoded as an empty map because it has no exported fields, while UUID would be encoded as a string. However, with extension support, you can encode any of these however you like. This package maintains symmetry in the encoding and decoding halfs. We determine how to encode or decode by walking this decision tree This symmetry is important to reduce chances of issues happening because the encoding and decoding sides are out of sync e.g. decoded via very specific encoding.TextUnmarshaler but encoded via kind-specific generalized mode. Consequently, if a type only defines one-half of the symmetry (e.g. it implements UnmarshalJSON() but not MarshalJSON() ), then that type doesn't satisfy the check and we will continue walking down the decision tree. RPC Client and Server Codecs are implemented, so the codecs can be used with the standard net/rpc package. The Handle is SAFE for concurrent READ, but NOT SAFE for concurrent modification. The Encoder and Decoder are NOT safe for concurrent use. Consequently, the usage model is basically: Sample usage model: To run tests, use the following: To run the full suite of tests, use the following: You can run the tag 'safe' to run tests or build in safe mode. e.g. Please see http://github.com/ugorji/go-codec-bench . Struct fields matching the following are ignored during encoding and decoding Every other field in a struct will be encoded/decoded. Embedded fields are encoded as if they exist in the top-level struct, with some caveats. See Encode documentation.
Package codec provides a High Performance, Feature-Rich Idiomatic Go 1.4+ codec/encoding library for binc, msgpack, cbor, json. Supported Serialization formats are: To install: This package will carefully use 'unsafe' for performance reasons in specific places. You can build without unsafe use by passing the safe or appengine tag i.e. 'go install -tags=safe ...'. Note that unsafe is only supported for the last 3 go sdk versions e.g. current go release is go 1.9, so we support unsafe use only from go 1.7+ . This is because supporting unsafe requires knowledge of implementation details. For detailed usage information, read the primer at http://ugorji.net/blog/go-codec-primer . The idiomatic Go support is as seen in other encoding packages in the standard library (ie json, xml, gob, etc). Rich Feature Set includes: Users can register a function to handle the encoding or decoding of their custom types. There are no restrictions on what the custom type can be. Some examples: As an illustration, MyStructWithUnexportedFields would normally be encoded as an empty map because it has no exported fields, while UUID would be encoded as a string. However, with extension support, you can encode any of these however you like. This package maintains symmetry in the encoding and decoding halfs. We determine how to encode or decode by walking this decision tree This symmetry is important to reduce chances of issues happening because the encoding and decoding sides are out of sync e.g. decoded via very specific encoding.TextUnmarshaler but encoded via kind-specific generalized mode. Consequently, if a type only defines one-half of the symmetry (e.g. it implements UnmarshalJSON() but not MarshalJSON() ), then that type doesn't satisfy the check and we will continue walking down the decision tree. RPC Client and Server Codecs are implemented, so the codecs can be used with the standard net/rpc package. The Handle is SAFE for concurrent READ, but NOT SAFE for concurrent modification. The Encoder and Decoder are NOT safe for concurrent use. Consequently, the usage model is basically: Sample usage model: To run tests, use the following: To run the full suite of tests, use the following: You can run the tag 'safe' to run tests or build in safe mode. e.g. Please see http://github.com/ugorji/go-codec-bench . Struct fields matching the following are ignored during encoding and decoding Every other field in a struct will be encoded/decoded. Embedded fields are encoded as if they exist in the top-level struct, with some caveats. See Encode documentation.
Package couchdb provides components to work with CouchDB 2.x with Go. Resource is the low-level wrapper functions of HTTP methods used for communicating with CouchDB Server. Server contains all the functions to work with CouchDB server, including some basic functions to facilitate the basic user management provided by it. Database contains all the functions to work with CouchDB database, such as documents manipulating and querying. ViewResults represents the results produced by design document views. When calling any of its functions like Offset(), TotalRows(), UpdateSeq() or Rows(), it will perform a query on views on server side, and returns results as slice of Row ViewDefinition is a definition of view stored in a specific design document, you can define your own map-reduce functions and Sync with the database. Document represents a document object in database. All struct that can be mapped into CouchDB document must have it embedded. For example: Then you can call Store(db, &user) to store it into CouchDB or Load(db, user.GetID(), &anotherUser) to get the data from database. ViewField represents a view definition value bound to Document. tools/replicate is a command-line tool for replicating databases from one CouchDB server to another. This is mainly for backup purposes, but you can also use -continuous option to set up automatic replication.
Package esquery provides a non-obtrusive, idiomatic and easy-to-use query and aggregation builder for the official Go client (https://github.com/elastic/go-elasticsearch) for the ElasticSearch database (https://www.elastic.co/products/elasticsearch). esquery alleviates the need to use extremely nested maps (map[string]interface{}) and serializing queries to JSON manually. It also helps eliminating common mistakes such as misspelling query types, as everything is statically typed. Using `esquery` can make your code much easier to write, read and maintain, and significantly reduce the amount of code you write. esquery provides a method chaining-style API for building and executing queries and aggregations. It does not wrap the official Go client nor does it require you to change your existing code in order to integrate the library. Queries can be directly built with `esquery`, and executed by passing an `*elasticsearch.Client` instance (with optional search parameters). Results are returned as-is from the official client (e.g. `*esapi.Response` objects). Getting started is extremely simple: esquery currently supports version 7 of the ElasticSearch Go client. The library cannot currently generate "short queries". For example, whereas ElasticSearch can accept this: { "query": { "term": { "user": "Kimchy" } } } The library will always generate this: This is also true for queries such as "bool", where fields like "must" can either receive one query object, or an array of query objects. `esquery` will generate an array even if there's only one query object.
Package mutex provides a collection of thread-safe data structures using generics in Go. It offers a Value type for lock-protected values, a Numeric type for thread-safe numeric operations, and a Map type for a concurrent map with type safety. These structures are designed to be easy to use, providing a simple and familiar interface similar to well known atomic.Value and sync.Map, but with added type safety and the flexibility of generics. The package aims to simplify concurrent programming by ensuring safe access to shared data and reducing the boilerplate code associated with mutexes.
Package codec provides a High Performance, Feature-Rich Idiomatic Go 1.4+ codec/encoding library for binc, msgpack, cbor, json. Supported Serialization formats are: To install: This package will carefully use 'unsafe' for performance reasons in specific places. You can build without unsafe use by passing the safe or appengine tag i.e. 'go install -tags=safe ...'. Note that unsafe is only supported for the last 3 go sdk versions e.g. current go release is go 1.9, so we support unsafe use only from go 1.7+ . This is because supporting unsafe requires knowledge of implementation details. For detailed usage information, read the primer at http://ugorji.net/blog/go-codec-primer . The idiomatic Go support is as seen in other encoding packages in the standard library (ie json, xml, gob, etc). Rich Feature Set includes: Users can register a function to handle the encoding or decoding of their custom types. There are no restrictions on what the custom type can be. Some examples: As an illustration, MyStructWithUnexportedFields would normally be encoded as an empty map because it has no exported fields, while UUID would be encoded as a string. However, with extension support, you can encode any of these however you like. This package maintains symmetry in the encoding and decoding halfs. We determine how to encode or decode by walking this decision tree This symmetry is important to reduce chances of issues happening because the encoding and decoding sides are out of sync e.g. decoded via very specific encoding.TextUnmarshaler but encoded via kind-specific generalized mode. Consequently, if a type only defines one-half of the symmetry (e.g. it implements UnmarshalJSON() but not MarshalJSON() ), then that type doesn't satisfy the check and we will continue walking down the decision tree. RPC Client and Server Codecs are implemented, so the codecs can be used with the standard net/rpc package. The Handle is SAFE for concurrent READ, but NOT SAFE for concurrent modification. The Encoder and Decoder are NOT safe for concurrent use. Consequently, the usage model is basically: Sample usage model: To run tests, use the following: To run the full suite of tests, use the following: You can run the tag 'safe' to run tests or build in safe mode. e.g. Please see http://github.com/ugorji/go-codec-bench . Struct fields matching the following are ignored during encoding and decoding Every other field in a struct will be encoded/decoded. Embedded fields are encoded as if they exist in the top-level struct, with some caveats. See Encode documentation.
Package goterator provides map and reduce functionality of iterators
Package codec provides a High Performance, Feature-Rich Idiomatic Go 1.4+ codec/encoding library for binc, msgpack, cbor, json. Supported Serialization formats are: This package will carefully use 'package unsafe' for performance reasons in specific places. You can build without unsafe use by passing the safe or appengine tag i.e. 'go install -tags=safe ...'. For detailed usage information, read the primer at http://ugorji.net/blog/go-codec-primer . The idiomatic Go support is as seen in other encoding packages in the standard library (ie json, xml, gob, etc). Rich Feature Set includes: Users can register a function to handle the encoding or decoding of their custom types. There are no restrictions on what the custom type can be. Some examples: As an illustration, MyStructWithUnexportedFields would normally be encoded as an empty map because it has no exported fields, while UUID would be encoded as a string. However, with extension support, you can encode any of these however you like. There is also seamless support provided for registering an extension (with a tag) but letting the encoding mechanism default to the standard way. This package maintains symmetry in the encoding and decoding halfs. We determine how to encode or decode by walking this decision tree This symmetry is important to reduce chances of issues happening because the encoding and decoding sides are out of sync e.g. decoded via very specific encoding.TextUnmarshaler but encoded via kind-specific generalized mode. Consequently, if a type only defines one-half of the symmetry (e.g. it implements UnmarshalJSON() but not MarshalJSON() ), then that type doesn't satisfy the check and we will continue walking down the decision tree. RPC Client and Server Codecs are implemented, so the codecs can be used with the standard net/rpc package. The Handle is SAFE for concurrent READ, but NOT SAFE for concurrent modification. The Encoder and Decoder are NOT safe for concurrent use. Consequently, the usage model is basically: Sample usage model: To run tests, use the following: To run the full suite of tests, use the following: You can run the tag 'safe' to run tests or build in safe mode. e.g. Running Benchmarks Please see http://github.com/ugorji/go-codec-bench . Struct fields matching the following are ignored during encoding and decoding Every other field in a struct will be encoded/decoded. Embedded fields are encoded as if they exist in the top-level struct, with some caveats. See Encode documentation.
Package n provides a set of types with convenience methods for Go akin to rapid development languages. n was created to reduce the friction I had adopting Go as my primary language of choice. It does this by reducing the coding verbosity Go normally requires. n types wrap various Go types to provide generic convenience methods reminiscent of C#'s Queryable interface, removing the need to implement the 'Contains' function, on basic list primitives for the millionth time. The intent is at a minimum to have support for YAML primitive scalars (Null, String, Integer, Boolean, Float, Timestamp), lists of the scalar types and maps of the scalar types with reflection based fallbacks for un-optimized types. I'll be using the terms 'n types' or 'queryable' interchangeably in the documentation and examples. • In order to deal with Golang's decision to not support function overloading or special characters in their function names n makes use of a variety of prefix/suffix capital letters to indicate different function variations. The function/method that contains no suffix is referred to as the base function/method. • Function names suffixed with 'A' indicates the function is a variation to the function without the 'A' but either accepts a string as input or returns a string. • Function names suffixed with 'E' indicates the function is a variation to the function without the 'E' but returns an Error while the base function does not. • Function names suffixed with 'M' indicates the function is a variation to the function without the 'M' but modifies the n type directly rather than a copy. • Function names suffixed with 'R' indicates the function is a variation to the function without the 'R' but reverses the order of operations. • Function names suffixed with 'S' indicates the function is a variation to the function without the 'S' but either accepts a ISlice as input or returns a ISlice. • Function names suffixed with 'V' indicates the function is a variation to the function • Function names suffixed with 'V' indicates the function is a variation to the function without the 'V' but accepts variadic input. • Function names suffixed with 'W' indicates the function is a variation to the function without the 'W' but accepts a lambda expression as input. • Documentation should be thorough and relied upon for guidance as, for a love of brevity, some functions are named with a single capital letter only. 'G' is being used to export the underlying Go type. 'O' is being used to indicate the interface{} type or to export the underlying Go type as an interface{}. 'S' is used to refer to slice types, 'M' refers to map types, 'A' refers to string types, 'I' ints types, 'R' rune types and combinations may be used to indicate complex types. The documentation will always call out what exactly they mean, but the function name may be cryptic until understood. • Char • FloatSlice • IntSlice • InterSlice • Object • RefSlice • Str • StringSlice • StringMap
Package esquery provides a non-obtrusive, idiomatic and easy-to-use query and aggregation builder for the official Go client (https://github.com/elastic/go-elasticsearch) for the ElasticSearch database (https://www.elastic.co/products/elasticsearch). esquery alleviates the need to use extremely nested maps (map[string]interface{}) and serializing queries to JSON manually. It also helps eliminating common mistakes such as misspelling query types, as everything is statically typed. Using `esquery` can make your code much easier to write, read and maintain, and significantly reduce the amount of code you write. esquery provides a method chaining-style API for building and executing queries and aggregations. It does not wrap the official Go client nor does it require you to change your existing code in order to integrate the library. Queries can be directly built with `esquery`, and executed by passing an `*elasticsearch.Client` instance (with optional search parameters). Results are returned as-is from the official client (e.g. `*esapi.Response` objects). Getting started is extremely simple: esquery currently supports version 7 of the ElasticSearch Go client. The library cannot currently generate "short queries". For example, whereas ElasticSearch can accept this: { "query": { "term": { "user": "Kimchy" } } } The library will always generate this: This is also true for queries such as "bool", where fields like "must" can either receive one query object, or an array of query objects. `esquery` will generate an array even if there's only one query object.
Package schemax provides methods, types and bidirectional marshaling functionality intended for use in the area of X.501/LDAP directory schema abstraction. Types provided by this package are created based on the precepts of RFC2252 and RFC4512, as are the associated parsing techniques (e.g.: 'qdescrs', etc.). A variety of methods and functions exist to make handling this data simpler. LDAP directories contain and serve data in a hierarchical manner. The syntax and evaluation of this data is governed by a schema, which itself is hierarchical in nature. The nature of this package's operation is highly referential. Objects are referenced via pointers, and these objects can inhabit multiple other multi-valued types. For example, *AttributeType instances are stored within a type-specific map type called a manifest. Each *AttributeType that exists can be referenced by other *AttributeType instances (in a scenario where "super typing" is in effect), or by other *ObjectClass instances via their own PermittedAttributeTypes (May) and RequiredAttributeTypes (Must) list types. Literal "copies" of single objects are never made. References are always through pointers. This package is primarily intended for any architect, developer or analyst looking to do one or more of the following: This package aims to provide a fast, reliable, standards-compliant parsing routine for LDAP schema definitions into discrete, useful objects. Parsing of raw values during the Marshal operation is conducted without the use of the regexp package, nor any facility based on regular expressions. Instead, precise byte-for-byte parsing/truncation of raw definitions is conducted, during which time known flags (or labels) are identified for specialized handling (e.g.: NAME). For successful parsing, each definition must be limited to a single line when an entire schema file is streamed line-by-line. Future releases of this package will relax this requirement. However, when marshaling single definitions, multi-line definitions are supported. Line feeds are removed outright, and recurring WHSP characters (spaces/tabs) are reduced to single spaces between fields. When POPULATING various Manifest types (e.g.: maps containing an identifier-to-instance key/value pair), the following "order of operations" MUST be honored: Individually, Manifests containing the above elements should also be populated in order of referential superiority. For example, all independent instances should be populated before those that depend upon them, such as in the cases of sub-types, sub-classes and sub-rules. An obvious real-world example of this is for the 'name' attribute (per RFC4519), which is a super-type of several other key attribute types. In such a case, those definitions that depend (or are based) upon the 'name' attribute WILL NOT MARSHAL until 'name' has been marshaled itself. This logic applies no matter how the definitions are being received (or "read"), and applies whether or not the all-encompassing Subschema type is used. In short: MIND YOUR ORDERING. Within subdirectories of this package are popular Go implementations of standard Attribute Types, Object Classes, Matching Rules and LDAP Syntaxes from RFCs that are recognized (almost) universally. This includes (but is not limited to) content from RFC4512, RFC4519 and RFC2307. Included in each subdirectory is an unmodified text copy of the Internet-Draft from which the relevant definitions originate. The user is advised that some LDAP implementations have certain attribute types and object classes "built-in" and are not sourced from a schema file like others (rather they likely are compiled-in to the product). This varies between implementations and, as such, inconsistencies may arise for someone using this product across various directory products. One size absolutely does not fit all. In such a case, an attempt to marshal a schema file may fail due to unsatisfied super-type or super-class(es) dependencies. To mitigate this, the user must somehow provide the lacking definitions, either by themselves or using one of the subdirectory packages. Also known as OID "macros", aliases allow a succinct expression of an OID prefix by way of a text identifier. As a real-world example, RFC2307 uses the alias "nisSchema" to describe the OID prefix of "1.3.6.1.1.1". This package supports the registration and use of such aliases within the AliasesManifest map type. Note that this is an all-or-nothing mechanism. Understand that if a non-nil AliasesManifest instance is detected, and unregistered aliases are encountered during a parsing run, normal operations will be impacted. As such, users are advised to anticipate any aliases needed in advance or to abolish their use altogether. OID aliasing supports both dot (.) and colon (:) runes for delimitation, thus 'nisSchema.1.1' and 'nisSchema:1.1; are acceptable.
Package gosnowflake is a pure Go Snowflake driver for the database/sql package. Clients can use the database/sql package directly. For example: Use the Open() function to create a database handle with connection parameters: The Go Snowflake Driver supports the following connection syntaxes (or data source name (DSN) formats): where all parameters must be escaped or use Config and DSN to construct a DSN string. For information about account identifiers, see the Snowflake documentation (https://docs.snowflake.com/en/user-guide/admin-account-identifier.html). The following example opens a database handle with the Snowflake account named "my_account" under the organization named "my_organization", where the username is "jsmith", password is "mypassword", database is "mydb", schema is "testschema", and warehouse is "mywh": The connection string (DSN) can contain both connection parameters (described below) and session parameters (https://docs.snowflake.com/en/sql-reference/parameters.html). The following connection parameters are supported: account <string>: Specifies your Snowflake account, where "<string>" is the account identifier assigned to your account by Snowflake. For information about account identifiers, see the Snowflake documentation (https://docs.snowflake.com/en/user-guide/admin-account-identifier.html). If you are using a global URL, then append the connection group and ".global" (e.g. "<account_identifier>-<connection_group>.global"). The account identifier and the connection group are separated by a dash ("-"), as shown above. This parameter is optional if your account identifier is specified after the "@" character in the connection string. region <string>: DEPRECATED. You may specify a region, such as "eu-central-1", with this parameter. However, since this parameter is deprecated, it is best to specify the region as part of the account parameter. For details, see the description of the account parameter. database: Specifies the database to use by default in the client session (can be changed after login). schema: Specifies the database schema to use by default in the client session (can be changed after login). warehouse: Specifies the virtual warehouse to use by default for queries, loading, etc. in the client session (can be changed after login). role: Specifies the role to use by default for accessing Snowflake objects in the client session (can be changed after login). passcode: Specifies the passcode provided by Duo when using multi-factor authentication (MFA) for login. passcodeInPassword: false by default. Set to true if the MFA passcode is embedded in the login password. Appends the MFA passcode to the end of the password. loginTimeout: Specifies the timeout, in seconds, for login. The default is 60 seconds. The login request gives up after the timeout length if the HTTP response is success. requestTimeout: Specifies the timeout, in seconds, for a query to complete. 0 (zero) specifies that the driver should wait indefinitely. The default is 0 seconds. The query request gives up after the timeout length if the HTTP response is success. authenticator: Specifies the authenticator to use for authenticating user credentials: To use the internal Snowflake authenticator, specify snowflake (Default). If you want to cache your MFA logins, use AuthTypeUsernamePasswordMFA authenticator. To authenticate through Okta, specify https://<okta_account_name>.okta.com (URL prefix for Okta). To authenticate using your IDP via a browser, specify externalbrowser. To authenticate via OAuth, specify oauth and provide an OAuth Access Token (see the token parameter below). application: Identifies your application to Snowflake Support. insecureMode: false by default. Set to true to bypass the Online Certificate Status Protocol (OCSP) certificate revocation check. IMPORTANT: Change the default value for testing or emergency situations only. token: a token that can be used to authenticate. Should be used in conjunction with the "oauth" authenticator. client_session_keep_alive: Set to true have a heartbeat in the background every hour to keep the connection alive such that the connection session will never expire. Care should be taken in using this option as it opens up the access forever as long as the process is alive. ocspFailOpen: true by default. Set to false to make OCSP check fail closed mode. validateDefaultParameters: true by default. Set to false to disable checks on existence and privileges check for Database, Schema, Warehouse and Role when setting up the connection tracing: Specifies the logging level to be used. Set to error by default. Valid values are trace, debug, info, print, warning, error, fatal, panic. disableQueryContextCache: disables parsing of query context returned from server and resending it to server as well. Default value is false. clientConfigFile: specifies the location of the client configuration json file. In this file you can configure Easy Logging feature. disableSamlURLCheck: disables the SAML URL check. Default value is false. All other parameters are interpreted as session parameters (https://docs.snowflake.com/en/sql-reference/parameters.html). For example, the TIMESTAMP_OUTPUT_FORMAT session parameter can be set by adding: A complete connection string looks similar to the following: Session-level parameters can also be set by using the SQL command "ALTER SESSION" (https://docs.snowflake.com/en/sql-reference/sql/alter-session.html). Alternatively, use OpenWithConfig() function to create a database handle with the specified Config. # Connection Config You can also connect to your warehouse using the connection config. The dbSql library states that when you want to take advantage of driver-specific connection features that aren’t available in a connection string. Each driver supports its own set of connection properties, often providing ways to customize the connection request specific to the DBMS For example: If you are using this method, you dont need to pass a driver name to specify the driver type in which you are looking to connect. Since the driver name is not needed, you can optionally bypass driver registration on startup. To do this, set `GOSNOWFLAKE_SKIP_REGISTERATION` in your environment. This is useful you wish to register multiple verions of the driver. Note: GOSNOWFLAKE_SKIP_REGISTERATION should not be used if sql.Open() is used as the method to connect to the server, as sql.Open will require registration so it can map the driver name to the driver type, which in this case is "snowflake" and SnowflakeDriver{}. The Go Snowflake Driver honors the environment variables HTTP_PROXY, HTTPS_PROXY and NO_PROXY for the forward proxy setting. NO_PROXY specifies which hostname endings should be allowed to bypass the proxy server, e.g. no_proxy=.amazonaws.com means that Amazon S3 access does not need to go through the proxy. NO_PROXY does not support wildcards. Each value specified should be one of the following: The end of a hostname (or a complete hostname), for example: ".amazonaws.com" or "xy12345.snowflakecomputing.com". An IP address, for example "192.196.1.15". If more than one value is specified, values should be separated by commas, for example: By default, the driver's builtin logger is exposing logrus's FieldLogger and default at INFO level. Users can use SetLogger in driver.go to set a customized logger for gosnowflake package. In order to enable debug logging for the driver, user could use SetLogLevel("debug") in SFLogger interface as shown in demo code at cmd/logger.go. To redirect the logs SFlogger.SetOutput method could do the work. A custom query tag can be set in the context. Each query run with this context will include the custom query tag as metadata that will appear in the Query Tag column in the Query History log. For example: A specific query request ID can be set in the context and will be passed through in place of the default randomized request ID. For example: If you need query ID for your query you have to use raw connection. For queries: ``` ``` For execs: ``` ``` The result of your query can be retrieved by setting the query ID in the WithFetchResultByID context. ``` ``` From 0.5.0, a signal handling responsibility has moved to the applications. If you want to cancel a query/command by Ctrl+C, add a os.Interrupt trap in context to execute methods that can take the context parameter (e.g. QueryContext, ExecContext). See cmd/selectmany.go for the full example. The Go Snowflake Driver now supports the Arrow data format for data transfers between Snowflake and the Golang client. The Arrow data format avoids extra conversions between binary and textual representations of the data. The Arrow data format can improve performance and reduce memory consumption in clients. Snowflake continues to support the JSON data format. The data format is controlled by the session-level parameter GO_QUERY_RESULT_FORMAT. To use JSON format, execute: The valid values for the parameter are: If the user attempts to set the parameter to an invalid value, an error is returned. The parameter name and the parameter value are case-insensitive. This parameter can be set only at the session level. Usage notes: The Arrow data format reduces rounding errors in floating point numbers. You might see slightly different values for floating point numbers when using Arrow format than when using JSON format. In order to take advantage of the increased precision, you must pass in the context.Context object provided by the WithHigherPrecision function when querying. Traditionally, the rows.Scan() method returned a string when a variable of types interface was passed in. Turning on the flag ENABLE_HIGHER_PRECISION via WithHigherPrecision will return the natural, expected data type as well. For some numeric data types, the driver can retrieve larger values when using the Arrow format than when using the JSON format. For example, using Arrow format allows the full range of SQL NUMERIC(38,0) values to be retrieved, while using JSON format allows only values in the range supported by the Golang int64 data type. Users should ensure that Golang variables are declared using the appropriate data type for the full range of values contained in the column. For an example, see below. When using the Arrow format, the driver supports more Golang data types and more ways to convert SQL values to those Golang data types. The table below lists the supported Snowflake SQL data types and the corresponding Golang data types. The columns are: The SQL data type. The default Golang data type that is returned when you use snowflakeRows.Scan() to read data from Arrow data format via an interface{}. The possible Golang data types that can be returned when you use snowflakeRows.Scan() to read data from Arrow data format directly. The default Golang data type that is returned when you use snowflakeRows.Scan() to read data from JSON data format via an interface{}. (All returned values are strings.) The standard Golang data type that is returned when you use snowflakeRows.Scan() to read data from JSON data format directly. Go Data Types for Scan() =================================================================================================================== | ARROW | JSON =================================================================================================================== SQL Data Type | Default Go Data Type | Supported Go Data | Default Go Data Type | Supported Go Data | for Scan() interface{} | Types for Scan() | for Scan() interface{} | Types for Scan() =================================================================================================================== BOOLEAN | bool | string | bool ------------------------------------------------------------------------------------------------------------------- VARCHAR | string | string ------------------------------------------------------------------------------------------------------------------- DOUBLE | float32, float64 [1] , [2] | string | float32, float64 ------------------------------------------------------------------------------------------------------------------- INTEGER that | int, int8, int16, int32, int64 | string | int, int8, int16, fits in int64 | [1] , [2] | | int32, int64 ------------------------------------------------------------------------------------------------------------------- INTEGER that doesn't | int, int8, int16, int32, int64, *big.Int | string | error fit in int64 | [1] , [2] , [3] , [4] | ------------------------------------------------------------------------------------------------------------------- NUMBER(P, S) | float32, float64, *big.Float | string | float32, float64 where S > 0 | [1] , [2] , [3] , [5] | ------------------------------------------------------------------------------------------------------------------- DATE | time.Time | string | time.Time ------------------------------------------------------------------------------------------------------------------- TIME | time.Time | string | time.Time ------------------------------------------------------------------------------------------------------------------- TIMESTAMP_LTZ | time.Time | string | time.Time ------------------------------------------------------------------------------------------------------------------- TIMESTAMP_NTZ | time.Time | string | time.Time ------------------------------------------------------------------------------------------------------------------- TIMESTAMP_TZ | time.Time | string | time.Time ------------------------------------------------------------------------------------------------------------------- BINARY | []byte | string | []byte ------------------------------------------------------------------------------------------------------------------- ARRAY [6] | string / array | string / array ------------------------------------------------------------------------------------------------------------------- OBJECT [6] | string / struct | string / struct ------------------------------------------------------------------------------------------------------------------- VARIANT | string | string ------------------------------------------------------------------------------------------------------------------- MAP | map | map [1] Converting from a higher precision data type to a lower precision data type via the snowflakeRows.Scan() method can lose low bits (lose precision), lose high bits (completely change the value), or result in error. [2] Attempting to convert from a higher precision data type to a lower precision data type via interface{} causes an error. [3] Higher precision data types like *big.Int and *big.Float can be accessed by querying with a context returned by WithHigherPrecision(). [4] You cannot directly Scan() into the alternative data types via snowflakeRows.Scan(), but can convert to those data types by using .Int64()/.String()/.Uint64() methods. For an example, see below. [5] You cannot directly Scan() into the alternative data types via snowflakeRows.Scan(), but can convert to those data types by using .Float32()/.String()/.Float64() methods. For an example, see below. [6] Arrays and objects can be either semistructured or structured, see more info in section below. Note: SQL NULL values are converted to Golang nil values, and vice-versa. Snowflake supports two flavours of "structured data" - semistructured and structured. Semistructured types are variants, objects and arrays without schema. When data is fetched, it's represented as strings and the client is responsible for its interpretation. Example table definition: The data not have any corresponding schema, so values in table may be slightly different. Semistuctured variants, objects and arrays are always represented as strings for scanning: When inserting, a marker indicating correct type must be used, for example: Structured types differentiate from semistructured types by having specific schema. In all rows of the table, values must conform to this schema. Example table definition: To retrieve structured objects, follow these steps: 1. Create a struct implementing sql.Scanner interface, example: a) b) Automatic scan goes through all fields in a struct and read object fields. Struct fields have to be public. Embedded structs have to be pointers. Matching name is built using struct field name with first letter lowercase. Additionally, `sf` tag can be added: - first value is always a name of a field in an SQL object - additionally `ignore` parameter can be passed to omit this field 2. Use WithStructuredTypesEnabled context while querying data. 3. Use it in regular scan: See StructuredObject for all available operations including null support, embedding nested structs, etc. Retrieving array of simple types works exactly the same like normal values - using Scan function. You can use WithMapValuesNullable and WithArrayValuesNullable contexts to handle null values in, respectively, maps and arrays of simple types in the database. In that case, sql null types will be used: If you want to scan array of structs, you have to use a helper function ScanArrayOfScanners: Retrieving structured maps is very similar to retrieving arrays: To bind structured objects use: 1. Create a type which implements a StructuredObjectWriter interface, example: a) b) 2. Use an instance as regular bind. 3. If you need to bind nil value, use special syntax: Binding structured arrays are like any other parameter. The only difference is - if you want to insert empty array (not nil but empty), you have to use: The following example shows how to retrieve very large values using the math/big package. This example retrieves a large INTEGER value to an interface and then extracts a big.Int value from that interface. If the value fits into an int64, then the code also copies the value to a variable of type int64. Note that a context that enables higher precision must be passed in with the query. If the variable named "rows" is known to contain a big.Int, then you can use the following instead of scanning into an interface and then converting to a big.Int: If the variable named "rows" contains a big.Int, then each of the following fails: Similar code and rules also apply to big.Float values. If you are not sure what data type will be returned, you can use code similar to the following to check the data type of the returned value: You can retrieve data in a columnar format similar to the format a server returns, without transposing them to rows. When working with the arrow columnar format in go driver, ArrowBatch structs are used. These are structs mostly corresponding to data chunks received from the backend. They allow for access to specific arrow.Record structs. An ArrowBatch can exist in a state where the underlying data has not yet been loaded. The data is downloaded and translated only on demand. Translation options are retrieved from a context.Context interface, which is either passed from query context or set by the user using WithContext(ctx) method. In order to access them you must use `WithArrowBatches` context, similar to the following: This returns []*ArrowBatch. ArrowBatch functions: GetRowCount(): Returns the number of rows in the ArrowBatch. Note that this returns 0 if the data has not yet been loaded, irrespective of it’s actual size. WithContext(ctx context.Context): Sets the context of the ArrowBatch to the one provided. Note that the context will not retroactively apply to data that has already been downloaded. For example: will produce the same result in records1 and records2, irrespective of the newly provided ctx. Context worth noting are: -WithArrowBatchesTimestampOption -WithHigherPrecision -WithArrowBatchesUtf8Validation described in more detail later. Fetch(): Returns the underlying records as *[]arrow.Record. When this function is called, the ArrowBatch checks whether the underlying data has already been loaded, and downloads it if not. Limitations: How to handle timestamps in Arrow batches: Snowflake returns timestamps natively (from backend to driver) in multiple formats. The Arrow timestamp is an 8-byte data type, which is insufficient to handle the larger date and time ranges used by Snowflake. Also, Snowflake supports 0-9 (nanosecond) digit precision for seconds, while Arrow supports only 3 (millisecond), 6 (microsecond), an 9 (nanosecond) precision. Consequently, Snowflake uses a custom timestamp format in Arrow, which differs on timestamp type and precision. If you want to use timestamps in Arrow batches, you have two options: How to handle invalid UTF-8 characters in Arrow batches: Snowflake previously allowed users to upload data with invalid UTF-8 characters. Consequently, Arrow records containing string columns in Snowflake could include these invalid UTF-8 characters. However, according to the Arrow specifications (https://arrow.apache.org/docs/cpp/api/datatype.html and https://github.com/apache/arrow/blob/a03d957b5b8d0425f9d5b6c98b6ee1efa56a1248/go/arrow/datatype.go#L73-L74), Arrow string columns should only contain UTF-8 characters. To address this issue and prevent potential downstream disruptions, the context WithArrowBatchesUtf8Validation, is introduced. When enabled, this feature iterates through all values in string columns, identifying and replacing any invalid characters with `�`. This ensures that Arrow records conform to the UTF-8 standards, preventing validation failures in downstream services like the Rust Arrow library that impose strict validation checks. How to handle higher precision in Arrow batches: To preserve BigDecimal values within Arrow batches, use WithHigherPrecision. This offers two main benefits: it helps avoid precision loss and defers the conversion to upstream services. Alternatively, without this setting, all non-zero scale numbers will be converted to float64, potentially resulting in loss of precision. Zero-scale numbers (DECIMAL256, DECIMAL128) will be converted to int64, which could lead to overflow. Binding allows a SQL statement to use a value that is stored in a Golang variable. Without binding, a SQL statement specifies values by specifying literals inside the statement. For example, the following statement uses the literal value “42“ in an UPDATE statement: With binding, you can execute a SQL statement that uses a value that is inside a variable. For example: The “?“ inside the “VALUES“ clause specifies that the SQL statement uses the value from a variable. Binding data that involves time zones can require special handling. For details, see the section titled "Timestamps with Time Zones". Version 1.6.23 (and later) of the driver takes advantage of sql.Null types which enables the proper handling of null parameters inside function calls, i.e.: The timestamp nullability had to be achieved by wrapping the sql.NullTime type as the Snowflake provides several date and time types which are mapped to single Go time.Time type: Version 1.3.9 (and later) of the Go Snowflake Driver supports the ability to bind an array variable to a parameter in a SQL INSERT statement. You can use this technique to insert multiple rows in a single batch. As an example, the following code inserts rows into a table that contains integer, float, boolean, and string columns. The example binds arrays to the parameters in the INSERT statement. If the array contains SQL NULL values, use slice []interface{}, which allows Golang nil values. This feature is available in version 1.6.12 (and later) of the driver. For example, For slices []interface{} containing time.Time values, a binding parameter flag is required for the preceding array variable in the Array() function. This feature is available in version 1.6.13 (and later) of the driver. For example, Note: For alternative ways to load data into the Snowflake database (including bulk loading using the COPY command), see Loading Data into Snowflake (https://docs.snowflake.com/en/user-guide-data-load.html). When you use array binding to insert a large number of values, the driver can improve performance by streaming the data (without creating files on the local machine) to a temporary stage for ingestion. The driver automatically does this when the number of values exceeds a threshold (no changes are needed to user code). In order for the driver to send the data to a temporary stage, the user must have the following privilege on the schema: If the user does not have this privilege, the driver falls back to sending the data with the query to the Snowflake database. In addition, the current database and schema for the session must be set. If these are not set, the CREATE TEMPORARY STAGE command executed by the driver can fail with the following error: For alternative ways to load data into the Snowflake database (including bulk loading using the COPY command), see Loading Data into Snowflake (https://docs.snowflake.com/en/user-guide-data-load.html). Go's database/sql package supports the ability to bind a parameter in a SQL statement to a time.Time variable. However, when the client binds data to send to the server, the driver cannot determine the correct Snowflake date/timestamp data type to associate with the binding parameter. For example: To resolve this issue, a binding parameter flag is introduced that associates any subsequent time.Time type to the DATE, TIME, TIMESTAMP_LTZ, TIMESTAMP_NTZ or BINARY data type. The above example could be rewritten as follows: The driver fetches TIMESTAMP_TZ (timestamp with time zone) data using the offset-based Location types, which represent a collection of time offsets in use in a geographical area, such as CET (Central European Time) or UTC (Coordinated Universal Time). The offset-based Location data is generated and cached when a Go Snowflake Driver application starts, and if the given offset is not in the cache, it is generated dynamically. Currently, Snowflake does not support the name-based Location types (e.g. "America/Los_Angeles"). For more information about Location types, see the Go documentation for https://golang.org/pkg/time/#Location. Internally, this feature leverages the []byte data type. As a result, BINARY data cannot be bound without the binding parameter flag. In the following example, sf is an alias for the gosnowflake package: The driver directly downloads a result set from the cloud storage if the size is large. It is required to shift workloads from the Snowflake database to the clients for scale. The download takes place by goroutine named "Chunk Downloader" asynchronously so that the driver can fetch the next result set while the application can consume the current result set. The application may change the number of result set chunk downloader if required. Note this does not help reduce memory footprint by itself. Consider Custom JSON Decoder. Custom JSON Decoder for Parsing Result Set (Experimental) The application may have the driver use a custom JSON decoder that incrementally parses the result set as follows. This option will reduce the memory footprint to half or even quarter, but it can significantly degrade the performance depending on the environment. The test cases running on Travis Ubuntu box show five times less memory footprint while four times slower. Be cautious when using the option. The Go Snowflake Driver supports JWT (JSON Web Token) authentication. To enable this feature, construct the DSN with fields "authenticator=SNOWFLAKE_JWT&privateKey=<your_private_key>", or using a Config structure specifying: The <your_private_key> should be a base64 URL encoded PKCS8 rsa private key string. One way to encode a byte slice to URL base 64 URL format is through the base64.URLEncoding.EncodeToString() function. On the server side, you can alter the public key with the SQL command: The <your_public_key> should be a base64 Standard encoded PKI public key string. One way to encode a byte slice to base 64 Standard format is through the base64.StdEncoding.EncodeToString() function. To generate the valid key pair, you can execute the following commands in the shell: Note: As of February 2020, Golang's official library does not support passcode-encrypted PKCS8 private key. For security purposes, Snowflake highly recommends that you store the passcode-encrypted private key on the disk and decrypt the key in your application using a library you trust. JWT tokens are recreated on each retry and they are valid (`exp` claim) for `jwtTimeout` seconds. Each retry timeout is configured by `jwtClientTimeout`. Retries are limited by total time of `loginTimeout`. The driver allows to authenticate using the external browser. When a connection is created, the driver will open the browser window and ask the user to sign in. To enable this feature, construct the DSN with field "authenticator=EXTERNALBROWSER" or using a Config structure with following Authenticator specified: The external browser authentication implements timeout mechanism. This prevents the driver from hanging interminably when browser window was closed, or not responding. Timeout defaults to 120s and can be changed through setting DSN field "externalBrowserTimeout=240" (time in seconds) or using a Config structure with following ExternalBrowserTimeout specified: This feature is available in version 1.3.8 or later of the driver. By default, Snowflake returns an error for queries issued with multiple statements. This restriction helps protect against SQL Injection attacks (https://en.wikipedia.org/wiki/SQL_injection). The multi-statement feature allows users skip this restriction and execute multiple SQL statements through a single Golang function call. However, this opens up the possibility for SQL injection, so it should be used carefully. The risk can be reduced by specifying the exact number of statements to be executed, which makes it more difficult to inject a statement by appending it. More details are below. The Go Snowflake Driver provides two functions that can execute multiple SQL statements in a single call: To compose a multi-statement query, simply create a string that contains all the queries, separated by semicolons, in the order in which the statements should be executed. To protect against SQL Injection attacks while using the multi-statement feature, pass a Context that specifies the number of statements in the string. For example: When multiple queries are executed by a single call to QueryContext(), multiple result sets are returned. After you process the first result set, get the next result set (for the next SQL statement) by calling NextResultSet(). The following pseudo-code shows how to process multiple result sets: The function db.ExecContext() returns a single result, which is the sum of the number of rows changed by each individual statement. For example, if your multi-statement query executed two UPDATE statements, each of which updated 10 rows, then the result returned would be 20. Individual row counts for individual statements are not available. The following code shows how to retrieve the result of a multi-statement query executed through db.ExecContext(): Note: Because a multi-statement ExecContext() returns a single value, you cannot detect offsetting errors. For example, suppose you expected the return value to be 20 because you expected each UPDATE statement to update 10 rows. If one UPDATE statement updated 15 rows and the other UPDATE statement updated only 5 rows, the total would still be 20. You would see no indication that the UPDATES had not functioned as expected. The ExecContext() function does not return an error if passed a query (e.g. a SELECT statement). However, it still returns only a single value, not a result set, so using it to execute queries (or a mix of queries and non-query statements) is impractical. The QueryContext() function does not return an error if passed non-query statements (e.g. DML). The function returns a result set for each statement, whether or not the statement is a query. For each non-query statement, the result set contains a single row that contains a single column; the value is the number of rows changed by the statement. If you want to execute a mix of query and non-query statements (e.g. a mix of SELECT and DML statements) in a multi-statement query, use QueryContext(). You can retrieve the result sets for the queries, and you can retrieve or ignore the row counts for the non-query statements. Note: PUT statements are not supported for multi-statement queries. If a SQL statement passed to ExecQuery() or QueryContext() fails to compile or execute, that statement is aborted, and subsequent statements are not executed. Any statements prior to the aborted statement are unaffected. For example, if the statements below are run as one multi-statement query, the multi-statement query fails on the third statement, and an exception is thrown. If you then query the contents of the table named "test", the values 1 and 2 would be present. When using the QueryContext() and ExecContext() functions, golang code can check for errors the usual way. For example: Preparing statements and using bind variables are also not supported for multi-statement queries. The Go Snowflake Driver supports asynchronous execution of SQL statements. Asynchronous execution allows you to start executing a statement and then retrieve the result later without being blocked while waiting. While waiting for the result of a SQL statement, you can perform other tasks, including executing other SQL statements. Most of the steps to execute an asynchronous query are the same as the steps to execute a synchronous query. However, there is an additional step, which is that you must call the WithAsyncMode() function to update your Context object to specify that asynchronous mode is enabled. In the code below, the call to "WithAsyncMode()" is specific to asynchronous mode. The rest of the code is compatible with both asynchronous mode and synchronous mode. The function db.QueryContext() returns an object of type snowflakeRows regardless of whether the query is synchronous or asynchronous. However: The call to the Next() function of snowflakeRows is always synchronous (i.e. blocking). If the query has not yet completed and the snowflakeRows object (named "rows" in this example) has not been filled in yet, then rows.Next() waits until the result set has been filled in. More generally, calls to any Golang SQL API function implemented in snowflakeRows or snowflakeResult are blocking calls, and wait if results are not yet available. (Examples of other synchronous calls include: snowflakeRows.Err(), snowflakeRows.Columns(), snowflakeRows.columnTypes(), snowflakeRows.Scan(), and snowflakeResult.RowsAffected().) Because the example code above executes only one query and no other activity, there is no significant difference in behavior between asynchronous and synchronous behavior. The differences become significant if, for example, you want to perform some other activity after the query starts and before it completes. The example code below starts a query, which run in the background, and then retrieves the results later. This example uses small SELECT statements that do not retrieve enough data to require asynchronous handling. However, the technique works for larger data sets, and for situations where the programmer might want to do other work after starting the queries and before retrieving the results. For a more elaborative example please see cmd/async/async.go The Go Snowflake Driver supports the PUT and GET commands. The PUT command copies a file from a local computer (the computer where the Golang client is running) to a stage on the cloud platform. The GET command copies data files from a stage on the cloud platform to a local computer. See the following for information on the syntax and supported parameters: Using PUT: The following example shows how to run a PUT command by passing a string to the db.Query() function: "<local_file>" should include the file path as well as the name. Snowflake recommends using an absolute path rather than a relative path. For example: Different client platforms (e.g. linux, Windows) have different path name conventions. Ensure that you specify path names appropriately. This is particularly important on Windows, which uses the backslash character as both an escape character and as a separator in path names. To send information from a stream (rather than a file) use code similar to the code below. (The ReplaceAll() function is needed on Windows to handle backslashes in the path to the file.) Note: PUT statements are not supported for multi-statement queries. Using GET: The following example shows how to run a GET command by passing a string to the db.Query() function: "<local_file>" should include the file path as well as the name. Snowflake recommends using an absolute path rather than a relative path. For example: To download a file into an in-memory stream (rather than a file) use code similar to the code below. Note: GET statements are not supported for multi-statement queries. Specifying temporary directory for encryption and compression: Putting and getting requires compression and/or encryption, which is done in the OS temporary directory. If you cannot use default temporary directory for your OS or you want to specify it yourself, you can use "tmpDirPath" DSN parameter. Remember, to encode slashes. Example: Using custom configuration for PUT/GET: If you want to override some default configuration options, you can use `WithFileTransferOptions` context. There are multiple config parameters including progress bars or compression.
Package elasticsearch provides a non-obtrusive, idiomatic and easy-to-use query and aggregation builder for the official Go client (https://github.com/elastic/go-elasticsearch) for the ElasticSearch database (https://www.elastic.co/products/elasticsearch). elasticsearch alleviates the need to use extremely nested maps (map[string]interface{}) and serializing queries to JSON manually. It also helps eliminating common mistakes such as misspelling query types, as everything is statically typed. Using `elasticsearch` can make your code much easier to write, read and maintain, and significantly reduce the amount of code you write. elasticsearch provides a method chaining-style API for building and executing queries and aggregations. It does not wrap the official Go client nor does it require you to change your existing code in order to integrate the library. Queries can be directly built with `elasticsearch`, and executed by passing an `*elasticsearch.Client` instance (with optional search parameters). Results are returned as-is from the official client (e.g. `*esapi.Response` objects). Getting started is extremely simple: elasticsearch currently supports version 7 of the ElasticSearch Go client. The library cannot currently generate "short queries". For example, whereas ElasticSearch can accept this: { "query": { "term": { "user": "Kimchy" } } } The library will always generate this: This is also true for queries such as "bool", where fields like "must" can either receive one query object, or an array of query objects. `elasticsearch` will generate an array even if there's only one query object.
This module was written with the sole intention of making writing unit tests in Go use far less boiler plate checks. As such most of the boiler plate functionality is reduced into helpful functions that require little to no additional checking or setup. Sometimes it is helpful to write a wrapper function to do a bunch of the boiler plate testing for you, however this causes the testing library to output a useless line number when reporting an error. As such this library implements a Fatal/Fatalf that will output the full stack trace where the error was encountered. Often error checking around initialization or setup functionality can become extensive which means that often error returns will get ignored since developers don't want to keep typing up boiler plate error checking. Since the errors rarely ever happen the pain isn't really uncovered until later. This library makes testing for expected errors or success super trivial. See the Examples section for simple examples explaining how to do this. When writing temporary files people often assume that something will clean them up for them but in Go this is far from the truth. Often an external process cal clean them after some period but it is not rare to find /tmp completely full of random temporary cruft that explodes when running a large suite of unit tests. This library implements functionality to ensure that the temporary files that get created will be removed. It does this via a child process launched that will wait for the parent to die before removing all temporary files created. Using a new processes helps ensure that a panic or hard crash won't prevent files from being cleaned. It can be quite tedious to validate that two objects are equal. Especially if they are maps of complex data types. Often this leads to dozens of helper functions or code explosion. The Equal() and NotEqual() functions are designed to eliminate this completely. Using reflection they walk through objects verifying that they are in fact equal, regardless of types. Unlike most other implementations this will also follow pointers to ensure that referenced data is also equal. Simple documentation showing the basic usage of this library with some really easy to follow examples.
Package dom provides GopherJS and Go bindings for the JavaScript DOM APIs. This package is an in progress effort of providing idiomatic Go bindings for the DOM, wrapping the JavaScript DOM APIs. The API is neither complete nor frozen yet, but a great amount of the DOM is already useable. While the package tries to be idiomatic Go, it also tries to stick closely to the JavaScript APIs, so that one does not need to learn a new set of APIs if one is already familiar with it. One decision that hasn't been made yet is what parts exactly should be part of this package. It is, for example, possible that the canvas APIs will live in a separate package. On the other hand, types such as StorageEvent (the event that gets fired when the HTML5 storage area changes) will be part of this package, simply due to how the DOM is structured – even if the actual storage APIs might live in a separate package. This might require special care to avoid circular dependencies. The documentation for some of the identifiers is based on the MDN Web Docs by Mozilla Contributors (https://developer.mozilla.org/en-US/docs/Web/API), licensed under CC-BY-SA 2.5 (https://creativecommons.org/licenses/by-sa/2.5/). The usual entry point of using the dom package is by using the GetWindow() function which will return a Window, from which you can get things such as the current Document. The DOM has a big amount of different element and event types, but they all follow three interfaces. All functions that work on or return generic elements/events will return one of the three interfaces Element, HTMLElement or Event. In these interface values there will be concrete implementations, such as HTMLParagraphElement or FocusEvent. It's also not unusual that values of type Element also implement HTMLElement. In all cases, type assertions can be used. Example: Several functions in the JavaScript DOM return "live" collections of elements, that is collections that will be automatically updated when elements get removed or added to the DOM. Our bindings, however, return static slices of elements that, once created, will not automatically reflect updates to the DOM. This is primarily done so that slices can actually be used, as opposed to a form of iterator, but also because we think that magically changing data isn't Go's nature and that snapshots of state are a lot easier to reason about. This does not, however, mean that all objects are snapshots. Elements, events and generally objects that aren't slices or maps are simple wrappers around JavaScript objects, and as such attributes as well as method calls will always return the most current data. To reflect this behaviour, these bindings use pointers to make the semantics clear. Consider the following example: The above example will print `true`. Some objects in the JS API have two versions of attributes, one that returns a string and one that returns a DOMTokenList to ease manipulation of string-delimited lists. Some other objects only provide DOMTokenList, sometimes DOMSettableTokenList. To simplify these bindings, only the DOMTokenList variant will be made available, by the type TokenList. In cases where the string attribute was the only way to completely replace the value, our TokenList will provide Set([]string) and SetString(string) methods, which will be able to accomplish the same. Additionally, our TokenList will provide methods to convert it to strings and slices. This package has a relatively stable API. However, there will be backwards incompatible changes from time to time. This is because the package isn't complete yet, as well as because the DOM is a moving target, and APIs do change sometimes. While an attempt is made to reduce changing function signatures to a minimum, it can't always be guaranteed. Sometimes mistakes in the bindings are found that require changing arguments or return values. Interfaces defined in this package may also change on a semi-regular basis, as new methods are added to them. This happens because the bindings aren't complete and can never really be, as new features are added to the DOM. If you depend on none of the APIs changing unexpectedly, you're advised to vendor this package.
Package osquery provides a non-obtrusive, idiomatic and easy-to-use query and aggregation builder for the official Go client (https://github.com/elastic/go-elasticsearch) for the ElasticSearch database (https://www.elastic.co/products/elasticsearch). osquery alleviates the need to use extremely nested maps (map[string]interface{}) and serializing queries to JSON manually. It also helps eliminating common mistakes such as misspelling query types, as everything is statically typed. Using `osquery` can make your code much easier to write, read and maintain, and significantly reduce the amount of code you write. osquery provides a method chaining-style API for building and executing queries and aggregations. It does not wrap the official Go client nor does it require you to change your existing code in order to integrate the library. Queries can be directly built with `osquery`, and executed by passing an `*elasticsearch.Client` instance (with optional search parameters). Results are returned as-is from the official client (e.g. `*esapi.Response` objects). Getting started is extremely simple: osquery currently supports version 7 of the ElasticSearch Go client. The library cannot currently generate "short queries". For example, whereas ElasticSearch can accept this: { "query": { "term": { "user": "Kimchy" } } } The library will always generate this: This is also true for queries such as "bool", where fields like "must" can either receive one query object, or an array of query objects. `osquery` will generate an array even if there's only one query object.
Package codec provides a High Performance, Feature-Rich Idiomatic Go 1.4+ codec/encoding library for binc, msgpack, cbor, json. Supported Serialization formats are: To install: This package will carefully use 'unsafe' for performance reasons in specific places. You can build without unsafe use by passing the safe or appengine tag i.e. 'go install -tags=safe ...'. Note that unsafe is only supported for the last 3 go sdk versions e.g. current go release is go 1.9, so we support unsafe use only from go 1.7+ . This is because supporting unsafe requires knowledge of implementation details. For detailed usage information, read the primer at http://ugorji.net/blog/go-codec-primer . The idiomatic Go support is as seen in other encoding packages in the standard library (ie json, xml, gob, etc). Rich Feature Set includes: Users can register a function to handle the encoding or decoding of their custom types. There are no restrictions on what the custom type can be. Some examples: As an illustration, MyStructWithUnexportedFields would normally be encoded as an empty map because it has no exported fields, while UUID would be encoded as a string. However, with extension support, you can encode any of these however you like. This package maintains symmetry in the encoding and decoding halfs. We determine how to encode or decode by walking this decision tree This symmetry is important to reduce chances of issues happening because the encoding and decoding sides are out of sync e.g. decoded via very specific encoding.TextUnmarshaler but encoded via kind-specific generalized mode. Consequently, if a type only defines one-half of the symmetry (e.g. it implements UnmarshalJSON() but not MarshalJSON() ), then that type doesn't satisfy the check and we will continue walking down the decision tree. RPC Client and Server Codecs are implemented, so the codecs can be used with the standard net/rpc package. The Handle is SAFE for concurrent READ, but NOT SAFE for concurrent modification. The Encoder and Decoder are NOT safe for concurrent use. Consequently, the usage model is basically: Sample usage model: To run tests, use the following: To run the full suite of tests, use the following: You can run the tag 'safe' to run tests or build in safe mode. e.g. Please see http://github.com/ugorji/go-codec-bench . Struct fields matching the following are ignored during encoding and decoding Every other field in a struct will be encoded/decoded. Embedded fields are encoded as if they exist in the top-level struct, with some caveats. See Encode documentation.
Package rill provides composable channel-based concurrency primitives for Go that simplify parallel processing, batching, and stream handling. It offers building blocks for constructing concurrent pipelines from reusable parts while maintaining precise control over concurrency levels. The package reduces boilerplate, abstracts away goroutine orchestration, features centralized error handling, and has zero external dependencies. In this package, a stream refers to a channel of Try containers. A Try container is a simple struct that holds a value and an error. When an "empty stream" is referred to, it means a channel of Try containers that has been closed and was never written to. Most functions in this package are concurrent, and the level of concurrency can be controlled by the argument n. Some functions share common behaviors and characteristics, which are described below. Functions such as Map, Filter, and Batch take a stream as an input and return a new stream as an output. They do not block and return the output stream immediately. All the processing is done in the background by the goroutine pools they spawn. These functions forward all errors from the input stream to the output stream. Any errors returned by the user-provided functions are also sent to the output stream. When such a function reaches the end of the input stream, it closes the output stream, stops processing and cleans up resources. Such functions are designed to be composed together to build complex processing pipelines: Functions such as ForEach, Reduce and MapReduce are used at the last stage of the pipeline to consume the stream and return the final result or error. Usually, these functions block until one of the following conditions is met: In case of an early termination (before reaching the end of the input stream), such functions initiate background draining of the remaining items. This is done to prevent goroutine leaks by ensuring that all goroutines feeding the stream are allowed to complete. The input stream should not be used anymore after calling such functions. It's also possible to consume the pipeline results manually, for example using a for-range loop. In this case, add a deferred call to DrainNB before the loop to ensure that goroutines are not leaked. Functions such as Map, Filter, and FlatMap write items to the output stream as soon as they become available. Due to the concurrent nature of these functions, the order of items in the output stream may not match the order of items in the input stream. These functions prioritize performance and concurrency over maintaining the original order. Functions such as OrderedMap or OrderedFilter preserve the order of items from the input stream. These functions are still concurrent, but use special synchronization techniques to ensure that items are written to the output stream in the same order as they were read from the input stream. This additional synchronization has some overhead, but it is negligible for i/o bound workloads. Some other functions, such as ToSlice, Batch or First are not concurrent and are ordered by nature. Error handling can be non-trivial in concurrent applications. Rill simplifies this by providing a structured error handling approach. As described above, all errors are automatically propagated down the pipeline to the final stage, where they can be caught. This allows the pipeline to terminate after the first error is encountered and return it to the caller. In cases where more complex error handling logic is required, the Catch function can be used. It can catch and handle errors at any point in the pipeline, providing the flexibility to handle not only the first error, but any of them. This example demonstrates a Rill pipeline that fetches users from an API, updates their status to active and saves them back. Both operations are performed concurrently This example demonstrates a Rill pipeline that fetches users from an API, and updates their status to active and saves them back. Users are fetched concurrently and in batches to reduce the number of API calls. This example demonstrates how batching can be used to group similar concurrent database updates into a single query. The UpdateUserTimestamp function is used to update the last_active_at column in the users table. Updates are not executed immediately, but are rather queued and then sent to the database in batches of up to 5. When updates are sparse, it can take some time to collect a full batch. In this case the Batch function emits partial batches, ensuring that updates are delayed by at most 100ms. For simplicity, this example does not have retries, error handling and synchronization This example demonstrates how to gracefully stop a pipeline on the first error. The CheckAllUsersExist uses several concurrent workers and returns an error as soon as it encounters a non-existent user. Such early return triggers the context cancellation, which in turn stops all remaining users fetches. This example demonstrates how to use the Fan-in and Fan-out patterns to send messages through multiple servers concurrently. This example demonstrates using FlatMap to fetch users from multiple departments concurrently. Additionally, it demonstrates how to write a reusable streaming wrapper over paginated API calls - the StreamUsers function This example demonstrates how to find the first file containing a specific string among 1000 large files hosted online. Downloading all files at once would consume too much memory, while processing them one-by-one would take too long. And traditional concurrency patterns do not preserve the order of files, and would make it challenging to find the first match. The combination of OrderedFilter and First functions solves the problem, while downloading and holding in memory at most 5 files at the same time.
Package dom provides GopherJS bindings for the JavaScript DOM APIs. This package is an in progress effort of providing idiomatic Go bindings for the DOM, wrapping the JavaScript DOM APIs. The API is neither complete nor frozen yet, but a great amount of the DOM is already useable. While the package tries to be idiomatic Go, it also tries to stick closely to the JavaScript APIs, so that one does not need to learn a new set of APIs if one is already familiar with it. One decision that hasn't been made yet is what parts exactly should be part of this package. It is, for example, possible that the canvas APIs will live in a separate package. On the other hand, types such as StorageEvent (the event that gets fired when the HTML5 storage area changes) will be part of this package, simply due to how the DOM is structured – even if the actual storage APIs might live in a separate package. This might require special care to avoid circular dependencies. The documentation for some of the identifiers is based on the MDN Web Docs by Mozilla Contributors (https://developer.mozilla.org/en-US/docs/Web/API), licensed under CC-BY-SA 2.5 (https://creativecommons.org/licenses/by-sa/2.5/). The usual entry point of using the dom package is by using the GetWindow() function which will return a Window, from which you can get things such as the current Document. The DOM has a big amount of different element and event types, but they all follow three interfaces. All functions that work on or return generic elements/events will return one of the three interfaces Element, HTMLElement or Event. In these interface values there will be concrete implementations, such as HTMLParagraphElement or FocusEvent. It's also not unusual that values of type Element also implement HTMLElement. In all cases, type assertions can be used. Example: Several functions in the JavaScript DOM return "live" collections of elements, that is collections that will be automatically updated when elements get removed or added to the DOM. Our bindings, however, return static slices of elements that, once created, will not automatically reflect updates to the DOM. This is primarily done so that slices can actually be used, as opposed to a form of iterator, but also because we think that magically changing data isn't Go's nature and that snapshots of state are a lot easier to reason about. This does not, however, mean that all objects are snapshots. Elements, events and generally objects that aren't slices or maps are simple wrappers around JavaScript objects, and as such attributes as well as method calls will always return the most current data. To reflect this behaviour, these bindings use pointers to make the semantics clear. Consider the following example: The above example will print `true`. Some objects in the JS API have two versions of attributes, one that returns a string and one that returns a DOMTokenList to ease manipulation of string-delimited lists. Some other objects only provide DOMTokenList, sometimes DOMSettableTokenList. To simplify these bindings, only the DOMTokenList variant will be made available, by the type TokenList. In cases where the string attribute was the only way to completely replace the value, our TokenList will provide Set([]string) and SetString(string) methods, which will be able to accomplish the same. Additionally, our TokenList will provide methods to convert it to strings and slices. This package has a relatively stable API. However, there will be backwards incompatible changes from time to time. This is because the package isn't complete yet, as well as because the DOM is a moving target, and APIs do change sometimes. While an attempt is made to reduce changing function signatures to a minimum, it can't always be guaranteed. Sometimes mistakes in the bindings are found that require changing arguments or return values. Interfaces defined in this package may also change on a semi-regular basis, as new methods are added to them. This happens because the bindings aren't complete and can never really be, as new features are added to the DOM. If you depend on none of the APIs changing unexpectedly, you're advised to vendor this package.
Package esquery provides a non-obtrusive, idiomatic and easy-to-use query and aggregation builder for the official Go client (https://github.com/elastic/go-elasticsearch) for the ElasticSearch database (https://www.elastic.co/products/elasticsearch). esquery alleviates the need to use extremely nested maps (map[string]interface{}) and serializing queries to JSON manually. It also helps eliminating common mistakes such as misspelling query types, as everything is statically typed. Using `esquery` can make your code much easier to write, read and maintain, and significantly reduce the amount of code you write. esquery provides a method chaining-style API for building and executing queries and aggregations. It does not wrap the official Go client nor does it require you to change your existing code in order to integrate the library. Queries can be directly built with `esquery`, and executed by passing an `*elasticsearch.Client` instance (with optional search parameters). Results are returned as-is from the official client (e.g. `*esapi.Response` objects). Getting started is extremely simple: esquery currently supports version 7 of the ElasticSearch Go client. The library cannot currently generate "short queries". For example, whereas ElasticSearch can accept this: { "query": { "term": { "user": "Kimchy" } } } The library will always generate this: This is also true for queries such as "bool", where fields like "must" can either receive one query object, or an array of query objects. `esquery` will generate an array even if there's only one query object.
Package codec provides a High Performance, Feature-Rich Idiomatic Go 1.4+ codec/encoding library for binc, msgpack, cbor, json. Supported Serialization formats are: This package will carefully use 'package unsafe' for performance reasons in specific places. You can build without unsafe use by passing the safe or appengine tag i.e. 'go install -tags=codec.safe ...'. This library works with both the standard `gc` and the `gccgo` compilers. For detailed usage information, read the primer at http://ugorji.net/blog/go-codec-primer . The idiomatic Go support is as seen in other encoding packages in the standard library (ie json, xml, gob, etc). Rich Feature Set includes: Users can register a function to handle the encoding or decoding of their custom types. There are no restrictions on what the custom type can be. Some examples: As an illustration, MyStructWithUnexportedFields would normally be encoded as an empty map because it has no exported fields, while UUID would be encoded as a string. However, with extension support, you can encode any of these however you like. There is also seamless support provided for registering an extension (with a tag) but letting the encoding mechanism default to the standard way. This package maintains symmetry in the encoding and decoding halfs. We determine how to encode or decode by walking this decision tree This symmetry is important to reduce chances of issues happening because the encoding and decoding sides are out of sync e.g. decoded via very specific encoding.TextUnmarshaler but encoded via kind-specific generalized mode. Consequently, if a type only defines one-half of the symmetry (e.g. it implements UnmarshalJSON() but not MarshalJSON() ), then that type doesn't satisfy the check and we will continue walking down the decision tree. RPC Client and Server Codecs are implemented, so the codecs can be used with the standard net/rpc package. The Handle is SAFE for concurrent READ, but NOT SAFE for concurrent modification. The Encoder and Decoder are NOT safe for concurrent use. Consequently, the usage model is basically: Sample usage model: To run tests, use the following: To run the full suite of tests, use the following: You can run the tag 'codec.safe' to run tests or build in safe mode. e.g. Running Benchmarks Please see http://github.com/ugorji/go-codec-bench . Struct fields matching the following are ignored during encoding and decoding Every other field in a struct will be encoded/decoded. Embedded fields are encoded as if they exist in the top-level struct, with some caveats. See Encode documentation.
Command yy processes yacc source code and produces three output files: - A Go file containing definitions of AST nodes. - A Go file containing documentation examples[0] of productions defined by the yacc grammar. - A new yacc file with automatic actions instantiating the AST nodes. To install yy http://godoc.org/modernc.org/yy Invocation: Flags handled by the yy command: 2019-02-27: Added -position flag. 2017-10-23: Added the case directive. A partial example: see the testdata directory and files The three output files were generated by A more complete, working project using yy can be found at http://godoc.org/modernc.org/pl0 Every rule is turned into a definition of a struct type in ast.go (adjust using the -ast flag). The fields of the type are a sum of all productions (cases) of the rule. The generated type will be something like In the above, Foo and Bar fields will be non nill when Case is 0 and Foo and Baz fields will be non nil when Case is 1. The above holds when both Foo and Bar are non terminal symbols. If the production(s) contain also terminal symbols, all those symbols are turned into fields named Token with an optional numeric suffix when more than one non terminal appears in any of the production(s). The generated type will be like In the above, Token will capture '+' when Case is 0. For Case 1, Token will capture '[', Token2 NUMBER and Token3 ']'. MyTokenType is the type defined in the yacc %union as in It is assumed that the lexer passed as an argument to yyParse instantiantes the lval.Token field with additional token information, like the lexeme value, starting position in the file etc. There's a direct mapping, though not in the same order, of yacc pseudo variables $1, $2, ... and fields of the generated node types. For every production not disabled by the yy:ignore direction, yy injects code for instantiating the AST node when the production is reduced. For example, this rule from input.y having no semantic action is turned into in output.y. The default yacc type of AST nodes is 'node' and can be changed using the -node flag. Option-like rules, for example as in in output.y, ie. the empty case does not produce a &RuleOpt{}, but nil instead to conserve space. Generated examples depend on an user supplied function, by default named exampleAST, with a signature This function is called with the production number, as assigned by goyacc and an example string generated by yy. exampleAST should parse the example string and return the AST created when production rule is reduced. When the project's parser is not yet working, a dummy exampleAST function returnin always nil is a workaround. yy inspects rule actions found in the input file. If the action code mentions identifier lx, yy asumes it refers to the yyLexer passed to yyParse. In that case code like is injected near the beginning of the semantic action. The specific type into which the yylex parameter is type asserted is adjustable using the -yylex flag. Similarly, when identifier lhs is mentioned, a short variable definiton of variable lhs, like is injected into the output.y action, replacing the default generated action (see "Concepts") For example, an action in input.y Produces in output.y. The AST examples generator depends on presence of the yy:token directive for all non constant terminal symbols or the presence of the constant token value as in this example The AST examples yy generates must be post processed by using the fe command (http://godoc.org/modernc.org/fe), for example One of the reasons why this is not done automatically by yy is that the above command will succeed only after your project has a _working_ scanner/parser combination. That's not the case in the early stages. yy recognizes specially formatted comments within the input as directives. All directive have the format Note that the directive must follow immediately the comment opening. There must be no empty line(s) between the directive and the production it aplies to. For example The argument of the example directive is a doubly quoted Go string. The string is used instead of an automatically generated example. For example The argument of the field directive is the text up to the end of the comment. The argument is added to the automatically generated fields of the node type of Rule. For example The ignore directive has no arguments. The directive disables generating of the node type of Rule as well as generating code instantiating such node. For example The list directive has no arguments. yy by default detects all left recursive rules. When such rule has name having suffix 'List', yy automatically generates proper reversing of the rule items. Using the list directive enables the same when such a left recursive rule does not have suffix 'List' in its name. For example The argument of the token directive is a doubly quoted Go string. The string is passed to a fmt.Sprinf call with an numeric argument chosen by yy that falls small ASCII letters. The resulting string is used to generate textual token values in examples. For example The argument of the case directive is an identifier, which is appended to the rule name to produce a symbolic and typed case number value. The type name is <RuleName>Case.
Package iterator contains an implementation of the map, filter, reduce pattern for Go.
Package esquery provides a non-obtrusive, idiomatic and easy-to-use query and aggregation builder for the official Go client (https://github.com/elastic/go-elasticsearch) for the ElasticSearch database (https://www.elastic.co/products/elasticsearch). esquery alleviates the need to use extremely nested maps (map[string]interface{}) and serializing queries to JSON manually. It also helps eliminating common mistakes such as misspelling query types, as everything is statically typed. Using `esquery` can make your code much easier to write, read and maintain, and significantly reduce the amount of code you write. esquery provides a method chaining-style API for building and executing queries and aggregations. It does not wrap the official Go client nor does it require you to change your existing code in order to integrate the library. Queries can be directly built with `esquery`, and executed by passing an `*elasticsearch.Client` instance (with optional search parameters). Results are returned as-is from the official client (e.g. `*esapi.Response` objects). Getting started is extremely simple: esquery currently supports version 7 of the ElasticSearch Go client. The library cannot currently generate "short queries". For example, whereas ElasticSearch can accept this: { "query": { "term": { "user": "Kimchy" } } } The library will always generate this: This is also true for queries such as "bool", where fields like "must" can either receive one query object, or an array of query objects. `esquery` will generate an array even if there's only one query object.
Package dom provides GopherJS bindings for the JavaScript DOM APIs. This package is an in progress effort of providing idiomatic Go bindings for the DOM, wrapping the JavaScript DOM APIs. The API is neither complete nor frozen yet, but a great amount of the DOM is already useable. While the package tries to be idiomatic Go, it also tries to stick closely to the JavaScript APIs, so that one does not need to learn a new set of APIs if one is already familiar with it. One decision that hasn't been made yet is what parts exactly should be part of this package. It is, for example, possible that the canvas APIs will live in a separate package. On the other hand, types such as StorageEvent (the event that gets fired when the HTML5 storage area changes) will be part of this package, simply due to how the DOM is structured – even if the actual storage APIs might live in a separate package. This might require special care to avoid circular dependencies. The documentation for some of the identifiers is based on the MDN Web Docs by Mozilla Contributors (https://developer.mozilla.org/en-US/docs/Web/API), licensed under CC-BY-SA 2.5 (https://creativecommons.org/licenses/by-sa/2.5/). The usual entry point of using the dom package is by using the GetWindow() function which will return a Window, from which you can get things such as the current Document. The DOM has a big amount of different element and event types, but they all follow three interfaces. All functions that work on or return generic elements/events will return one of the three interfaces Element, HTMLElement or Event. In these interface values there will be concrete implementations, such as HTMLParagraphElement or FocusEvent. It's also not unusual that values of type Element also implement HTMLElement. In all cases, type assertions can be used. Example: Several functions in the JavaScript DOM return "live" collections of elements, that is collections that will be automatically updated when elements get removed or added to the DOM. Our bindings, however, return static slices of elements that, once created, will not automatically reflect updates to the DOM. This is primarily done so that slices can actually be used, as opposed to a form of iterator, but also because we think that magically changing data isn't Go's nature and that snapshots of state are a lot easier to reason about. This does not, however, mean that all objects are snapshots. Elements, events and generally objects that aren't slices or maps are simple wrappers around JavaScript objects, and as such attributes as well as method calls will always return the most current data. To reflect this behaviour, these bindings use pointers to make the semantics clear. Consider the following example: The above example will print `true`. Some objects in the JS API have two versions of attributes, one that returns a string and one that returns a DOMTokenList to ease manipulation of string-delimited lists. Some other objects only provide DOMTokenList, sometimes DOMSettableTokenList. To simplify these bindings, only the DOMTokenList variant will be made available, by the type TokenList. In cases where the string attribute was the only way to completely replace the value, our TokenList will provide Set([]string) and SetString(string) methods, which will be able to accomplish the same. Additionally, our TokenList will provide methods to convert it to strings and slices. This package has a relatively stable API. However, there will be backwards incompatible changes from time to time. This is because the package isn't complete yet, as well as because the DOM is a moving target, and APIs do change sometimes. While an attempt is made to reduce changing function signatures to a minimum, it can't always be guaranteed. Sometimes mistakes in the bindings are found that require changing arguments or return values. Interfaces defined in this package may also change on a semi-regular basis, as new methods are added to them. This happens because the bindings aren't complete and can never really be, as new features are added to the DOM. If you depend on none of the APIs changing unexpectedly, you're advised to vendor this package.
Package codec provides a High Performance, Feature-Rich Idiomatic Go 1.4+ codec/encoding library for binc, msgpack, cbor, json. Supported Serialization formats are: To install: This package will carefully use 'unsafe' for performance reasons in specific places. You can build without unsafe use by passing the safe or appengine tag i.e. 'go install -tags=safe ...'. Note that unsafe is only supported for the last 3 go sdk versions e.g. current go release is go 1.9, so we support unsafe use only from go 1.7+ . This is because supporting unsafe requires knowledge of implementation details. For detailed usage information, read the primer at http://ugorji.net/blog/go-codec-primer . The idiomatic Go support is as seen in other encoding packages in the standard library (ie json, xml, gob, etc). Rich Feature Set includes: Users can register a function to handle the encoding or decoding of their custom types. There are no restrictions on what the custom type can be. Some examples: As an illustration, MyStructWithUnexportedFields would normally be encoded as an empty map because it has no exported fields, while UUID would be encoded as a string. However, with extension support, you can encode any of these however you like. This package maintains symmetry in the encoding and decoding halfs. We determine how to encode or decode by walking this decision tree This symmetry is important to reduce chances of issues happening because the encoding and decoding sides are out of sync e.g. decoded via very specific encoding.TextUnmarshaler but encoded via kind-specific generalized mode. Consequently, if a type only defines one-half of the symmetry (e.g. it implements UnmarshalJSON() but not MarshalJSON() ), then that type doesn't satisfy the check and we will continue walking down the decision tree. RPC Client and Server Codecs are implemented, so the codecs can be used with the standard net/rpc package. The Handle is SAFE for concurrent READ, but NOT SAFE for concurrent modification. The Encoder and Decoder are NOT safe for concurrent use. Consequently, the usage model is basically: Sample usage model: To run tests, use the following: To run the full suite of tests, use the following: You can run the tag 'safe' to run tests or build in safe mode. e.g. Please see http://github.com/ugorji/go-codec-bench . Struct fields matching the following are ignored during encoding and decoding Every other field in a struct will be encoded/decoded. Embedded fields are encoded as if they exist in the top-level struct, with some caveats. See Encode documentation.