package mfr offers standard functional operations: Map, Filter, Reduce
Package esquery provides a non-obtrusive, idiomatic and easy-to-use query and aggregation builder for the official Go client (https://github.com/elastic/go-elasticsearch) for the ElasticSearch database (https://www.elastic.co/products/elasticsearch). esquery alleviates the need to use extremely nested maps (map[string]interface{}) and serializing queries to JSON manually. It also helps eliminating common mistakes such as misspelling query types, as everything is statically typed. Using `esquery` can make your code much easier to write, read and maintain, and significantly reduce the amount of code you write. esquery provides a method chaining-style API for building and executing queries and aggregations. It does not wrap the official Go client nor does it require you to change your existing code in order to integrate the library. Queries can be directly built with `esquery`, and executed by passing an `*elasticsearch.Client` instance (with optional search parameters). Results are returned as-is from the official client (e.g. `*esapi.Response` objects). Getting started is extremely simple: esquery currently supports version 7 of the ElasticSearch Go client. The library cannot currently generate "short queries". For example, whereas ElasticSearch can accept this: { "query": { "term": { "user": "Kimchy" } } } The library will always generate this: This is also true for queries such as "bool", where fields like "must" can either receive one query object, or an array of query objects. `esquery` will generate an array even if there's only one query object.
Package esquery provides a non-obtrusive, idiomatic and easy-to-use query and aggregation builder for the official Go client (https://github.com/elastic/go-elasticsearch) for the ElasticSearch database (https://www.elastic.co/products/elasticsearch). esquery alleviates the need to use extremely nested maps (map[string]interface{}) and serializing queries to JSON manually. It also helps eliminating common mistakes such as misspelling query types, as everything is statically typed. Using `esquery` can make your code much easier to write, read and maintain, and significantly reduce the amount of code you write. esquery provides a method chaining-style API for building and executing queries and aggregations. It does not wrap the official Go client nor does it require you to change your existing code in order to integrate the library. Queries can be directly built with `esquery`, and executed by passing an `*elasticsearch.Client` instance (with optional search parameters). Results are returned as-is from the official client (e.g. `*esapi.Response` objects). Getting started is extremely simple: esquery currently supports version 7 of the ElasticSearch Go client. The library cannot currently generate "short queries". For example, whereas ElasticSearch can accept this: { "query": { "term": { "user": "Kimchy" } } } The library will always generate this: This is also true for queries such as "bool", where fields like "must" can either receive one query object, or an array of query objects. `esquery` will generate an array even if there's only one query object.
Package esquery provides a non-obtrusive, idiomatic and easy-to-use query and aggregation builder for the official Go client (https://github.com/elastic/go-elasticsearch) for the ElasticSearch database (https://www.elastic.co/products/elasticsearch). esquery alleviates the need to use extremely nested maps (map[string]interface{}) and serializing queries to JSON manually. It also helps eliminating common mistakes such as misspelling query types, as everything is statically typed. Using `esquery` can make your code much easier to write, read and maintain, and significantly reduce the amount of code you write. esquery provides a method chaining-style API for building and executing queries and aggregations. It does not wrap the official Go client nor does it require you to change your existing code in order to integrate the library. Queries can be directly built with `esquery`, and executed by passing an `*elasticsearch.Client` instance (with optional search parameters). Results are returned as-is from the official client (e.g. `*esapi.Response` objects). Getting started is extremely simple: esquery currently supports version 7 of the ElasticSearch Go client. The library cannot currently generate "short queries". For example, whereas ElasticSearch can accept this: { "query": { "term": { "user": "Kimchy" } } } The library will always generate this: This is also true for queries such as "bool", where fields like "must" can either receive one query object, or an array of query objects. `esquery` will generate an array even if there's only one query object.
Package ldap is a CoreDNS plugin that resolves A, AAAA y PTR RR from a ldap backend. It serves as a backend connector for autoritative zone data. Ldap is often used for bare metal inventories. This use is the main use case for this plugin. Other use cases might eventually be supported. fqdn and ip4 / ip6 information is mapped from it's respective ldap schema and served as DNS records over coredns. Mapping is configurable. To reduce load on the backend, a configurable cache is bundled.
Package couchdb provides components to work with CouchDB 2.x with Go. Resource is the low-level wrapper functions of HTTP methods used for communicating with CouchDB Server. Server contains all the functions to work with CouchDB server, including some basic functions to facilitate the basic user management provided by it. Database contains all the functions to work with CouchDB database, such as documents manipulating and querying. ViewResults represents the results produced by design document views. When calling any of its functions like Offset(), TotalRows(), UpdateSeq() or Rows(), it will perform a query on views on server side, and returns results as slice of Row ViewDefinition is a definition of view stored in a specific design document, you can define your own map-reduce functions and Sync with the database. Document represents a document object in database. All struct that can be mapped into CouchDB document must have it embedded. For example: Then you can call Store(db, &user) to store it into CouchDB or Load(db, user.GetID(), &anotherUser) to get the data from database. ViewField represents a view definition value bound to Document.
Package codec provides a High Performance, Feature-Rich Idiomatic Go 1.4+ codec/encoding library for binc, msgpack, cbor, json. Supported Serialization formats are: This package will carefully use 'package unsafe' for performance reasons in specific places. You can build without unsafe use by passing the safe or appengine tag i.e. 'go install -tags=safe ...'. For detailed usage information, read the primer at http://ugorji.net/blog/go-codec-primer . The idiomatic Go support is as seen in other encoding packages in the standard library (ie json, xml, gob, etc). Rich Feature Set includes: Users can register a function to handle the encoding or decoding of their custom types. There are no restrictions on what the custom type can be. Some examples: As an illustration, MyStructWithUnexportedFields would normally be encoded as an empty map because it has no exported fields, while UUID would be encoded as a string. However, with extension support, you can encode any of these however you like. There is also seamless support provided for registering an extension (with a tag) but letting the encoding mechanism default to the standard way. This package maintains symmetry in the encoding and decoding halfs. We determine how to encode or decode by walking this decision tree This symmetry is important to reduce chances of issues happening because the encoding and decoding sides are out of sync e.g. decoded via very specific encoding.TextUnmarshaler but encoded via kind-specific generalized mode. Consequently, if a type only defines one-half of the symmetry (e.g. it implements UnmarshalJSON() but not MarshalJSON() ), then that type doesn't satisfy the check and we will continue walking down the decision tree. RPC Client and Server Codecs are implemented, so the codecs can be used with the standard net/rpc package. The Handle is SAFE for concurrent READ, but NOT SAFE for concurrent modification. The Encoder and Decoder are NOT safe for concurrent use. Consequently, the usage model is basically: Sample usage model: To run tests, use the following: To run the full suite of tests, use the following: You can run the tag 'safe' to run tests or build in safe mode. e.g. Running Benchmarks Please see http://github.com/NebojsaHorvat/go-codec-codec-bench . Struct fields matching the following are ignored during encoding and decoding Every other field in a struct will be encoded/decoded. Embedded fields are encoded as if they exist in the top-level struct, with some caveats. See Encode documentation.
Package codec provides a High Performance, Feature-Rich Idiomatic Go 1.4+ codec/encoding library for binc, msgpack, cbor, json. Supported Serialization formats are: To install: This package will carefully use 'unsafe' for performance reasons in specific places. You can build without unsafe use by passing the safe or appengine tag i.e. 'go install -tags=safe ...'. Note that unsafe is only supported for the last 3 go sdk versions e.g. current go release is go 1.9, so we support unsafe use only from go 1.7+ . This is because supporting unsafe requires knowledge of implementation details. For detailed usage information, read the primer at http://ugorji.net/blog/go-codec-primer . The idiomatic Go support is as seen in other encoding packages in the standard library (ie json, xml, gob, etc). Rich Feature Set includes: Users can register a function to handle the encoding or decoding of their custom types. There are no restrictions on what the custom type can be. Some examples: As an illustration, MyStructWithUnexportedFields would normally be encoded as an empty map because it has no exported fields, while UUID would be encoded as a string. However, with extension support, you can encode any of these however you like. This package maintains symmetry in the encoding and decoding halfs. We determine how to encode or decode by walking this decision tree This symmetry is important to reduce chances of issues happening because the encoding and decoding sides are out of sync e.g. decoded via very specific encoding.TextUnmarshaler but encoded via kind-specific generalized mode. Consequently, if a type only defines one-half of the symmetry (e.g. it implements UnmarshalJSON() but not MarshalJSON() ), then that type doesn't satisfy the check and we will continue walking down the decision tree. RPC Client and Server Codecs are implemented, so the codecs can be used with the standard net/rpc package. The Handle is SAFE for concurrent READ, but NOT SAFE for concurrent modification. The Encoder and Decoder are NOT safe for concurrent use. Consequently, the usage model is basically: Sample usage model: To run tests, use the following: To run the full suite of tests, use the following: You can run the tag 'safe' to run tests or build in safe mode. e.g. Please see http://github.com/ugorji/go-codec-bench . Struct fields matching the following are ignored during encoding and decoding Every other field in a struct will be encoded/decoded. Embedded fields are encoded as if they exist in the top-level struct, with some caveats. See Encode documentation.