Package saltpack is an implementation of the saltpack message format. Saltpack is a light wrapper around Dan Berstein's famous NaCl library. It adds support for longer messages, streaming input and output of data, multiple recipients for encrypted messages, and a reasonable armoring format. We intend Saltpack as a replacement for the PGP messaging format, as it can be used in many of the same circumstances. However, it is designed to be: (1) simpler; (2) easier to implement; (3) judicious (perhaps judgmental) in its crypto usage; (4) fully modern (no CFB mode here); (5) high performance; (6) less bug- prone; (7) generally unwilling to output unauthenticated data; and (8) easier to compose with other software in any manner of languages or platforms. Saltpack makes no attempt to manage keys. We assume the wrapping application has a story for key management. Saltpack supports three modes of operation: encrypted messages, attached signatures, and detached signatures. Encrypted messages use NaCl's authenticated public-key encryption; we add repudiable authentication. An attached signature contains a message and a signature that authenticates it. A detached signature contains just the signature, and assumes an independent delievery mechanism for the file (this might come up when distributing an ISO and separate signature of the file). Saltpack has two encoding modes: binary and armored. In armored mode, saltpack outputs in Base62-encoding, suitable for publication into any manner of Web settings without fear of markup-caused mangling. This saltpack library implementation supports two API patterns: streaming and all-at-once. The former is useful for large files that can't fit into memory; the latter is more convenient. Both produce the same output. See https://saltpack.org
Package parquet is a library for working with parquet files. For an overview of Parquet's qualities as a storage format, see this blog post: https://blog.twitter.com/engineering/en_us/a/2013/dremel-made-simple-with-parquet Or see the Parquet documentation: https://parquet.apache.org/docs/
Package storagegateway provides the API client, operations, and parameter types for AWS Storage Gateway. Amazon FSx File Gateway is no longer available to new customers. Existing customers of FSx File Gateway can continue to use the service normally. For capabilities similar to FSx File Gateway, visit this blog post. Storage Gateway is the service that connects an on-premises software appliance with cloud-based storage to provide seamless and secure integration between an organization's on-premises IT environment and the Amazon Web Services storage infrastructure. The service enables you to securely upload data to the Amazon Web Services Cloud for cost effective backup and rapid disaster recovery. Use the following links to get started using the Storage Gateway Service API Reference: Storage Gateway required request headers Signing requests Error responses Operations in Storage Gateway Storage Gateway endpoints and quotas Storage Gateway resource IDs are in uppercase. When you use these resource IDs with the Amazon EC2 API, EC2 expects resource IDs in lowercase. You must change your resource ID to lowercase to use it with the EC2 API. For example, in Storage Gateway the ID for a volume might be vol-AA22BB012345DAF670 . When you use this ID with the EC2 API, you must change it to vol-aa22bb012345daf670 . Otherwise, the EC2 API might not behave as expected. IDs for Storage Gateway volumes and Amazon EBS snapshots created from gateway volumes are changing to a longer format. Starting in December 2016, all new volumes and snapshots will be created with a 17-character string. Starting in April 2016, you will be able to use these longer IDs so you can test your systems with the new format. For more information, see Longer EC2 and EBS resource IDs. For example, a volume Amazon Resource Name (ARN) with the longer volume ID format looks like the following: arn:aws:storagegateway:us-west-2:111122223333:gateway/sgw-12A3456B/volume/vol-1122AABBCCDDEEFFG . A snapshot ID with the longer ID format looks like the following: snap-78e226633445566ee . For more information, see Announcement: Heads-up – Longer Storage Gateway volume and snapshot IDs coming in 2016.
Package disgord provides Go bindings for the documented Discord API, and allows for a stateful Client using the Session interface, with the option of a configurable caching system or bypass the built-in caching logic all together. Create a Disgord client to get access to the REST API and gateway functionality. In the following example, we listen for new messages and respond with "hello". Session interface: https://pkg.go.dev/github.com/andersfylling/disgord?tab=doc#Session You don't have to use a callback function, channels are supported too! Never close a channel without removing the handler from Disgord, as it will cause a panic. You can control the lifetime of a handler or injected channel by in injecting a controller: disgord.HandlerCtrl. Since you are the owner of the channel, disgord will never close it for you. Disgord handles sharding for you automatically; when starting the bot, when discord demands you to scale up your shards (during runtime), etc. It also gives you control over the shard setup in case you want to run multiple instances of Disgord (in these cases you must handle scaling yourself as Disgord can not). Sharding is done behind the scenes, so you do not need to worry about any settings. Disgord will simply ask Discord for the recommended amount of shards for your bot on startup. However, to set specific amount of shards you can use the `disgord.ShardConfig` to specify a range of valid shard IDs (starts from 0). starting a bot with exactly 5 shards Running multiple instances each with 1 shard (note each instance must use unique shard ids) Handle scaling options yourself You can inject your own cache implementation. By default a read only LFU implementation is used, this should be sufficient for the average user. But you can overwrite certain methods as well! Say you dislike the implementation for MESSAGE_CREATE events, you can embed the default cache and define your own logic: > Note: if you inject your own cache, remember that the cache is also responsible for initiating the objects. > See disgord.CacheNop Whenever you call a REST method from the Session interface; the cache is always checked first. Upon a cache hit, no REST request is executed and you get the data from the cache in return. However, if this is problematic for you or there exist a bug which gives you bad/outdated data, you can bypass it by using Disgord flags. In addition to disgord.IgnoreCache, as shown above, you can pass in other flags such as: disgord.SortByID, disgord.OrderAscending, etc. You can find these flags in the flag.go file. `disgord_diagnosews` will store all the incoming and outgoing JSON data as files in the directory "diagnose-report/packets". The file format is as follows: unix_clientType_direction_shardID_operationCode_sequenceNumber[_eventName].json
Package exif parses raw EXIF information given a block of raw EXIF data. It can also construct new EXIF information, and provides tools for doing so. This package is not involved with the parsing of particular file-formats. The EXIF data must first be extracted and then provided to us. Conversely, when constructing new EXIF data, the caller is responsible for packaging this in whichever format they require.
Package update provides functionality to implement secure, self-updating Go programs (or other single-file targets). For complete updating solutions please see Equinox (https://equinox.io) and go-tuf (https://github.com/flynn/go-tuf). This example shows how to update a program remotely from a URL. Go binaries can often be large. It can be advantageous to only ship a binary patch to a client instead of the complete program text of a new version. This example shows how to update a program with a bsdiff binary patch. Other patch formats may be applied by implementing the Patcher interface. Updating executable code on a computer can be a dangerous operation unless you take the appropriate steps to guarantee the authenticity of the new code. While checksum verification is important, it should always be combined with signature verification (next section) to guarantee that the code came from a trusted party. selfupdate validates SHA256 checksums by default, but this is pluggable via the Hash property on the Options struct. This example shows how to guarantee that the newly-updated binary is verified to have an appropriate checksum (that was otherwise retrieved via a secure channel) specified as a hex string. Cryptographic verification of new code from an update is an extremely important way to guarantee the security and integrity of your updates. Verification is performed by validating the signature of a hash of the new file. This means nothing changes if you apply your update with a patch. This example shows how to add signature verification to your updates. To make all of this work an application distributor must first create a public/private key pair and embed the public key into their application. When they issue a new release, the issuer must sign the new executable file with the private key and distribute the signature along with the selfupdate. In order to update a Go application with selfupdate, you must distribute it as a single executable. This is often easy, but some applications require static assets (like HTML and CSS asset files or TLS certificates). In order to update applications like these, you'll want to make sure to embed those asset files into the distributed binary with a tool like go-bindata (my favorite): https://github.com/jteeuwen/go-bindata Mechanisms and protocols for determining whether an update should be applied and, if so, which one are out of scope for this package. Please consult go-tuf (https://github.com/flynn/go-tuf) or Equinox (https://equinox.io) for more complete solutions. selfupdate only works for self-updating applications that are distributed as a single binary, i.e. applications that do not have additional assets or dependency files. Updating application that are distributed as multiple on-disk files is out of scope, although this may change in future versions of this library.
Package unixfs implements a data format for files in the IPFS filesystem It is not the only format in ipfs, but it is the one that the filesystem assumes
Package validator implements value validations for structs and individual fields based on tags. It can also handle Cross-Field and Cross-Struct validation for nested structs and has the ability to dive into arrays and maps of any type. see more examples https://github.com/go-playground/validator/tree/v9/_examples Doing things this way is actually the way the standard library does, see the file.Open method here: The authors return type "error" to avoid the issue discussed in the following, where err is always != nil: Validator only InvalidValidationError for bad validation input, nil or ValidationErrors as type error; so, in your code all you need to do is check if the error returned is not nil, and if it's not check if error is InvalidValidationError ( if necessary, most of the time it isn't ) type cast it to type ValidationErrors like so err.(validator.ValidationErrors). Custom Validation functions can be added. Example: Cross-Field Validation can be done via the following tags: If, however, some custom cross-field validation is required, it can be done using a custom validation. Why not just have cross-fields validation tags (i.e. only eqcsfield and not eqfield)? The reason is efficiency. If you want to check a field within the same struct "eqfield" only has to find the field on the same struct (1 level). But, if we used "eqcsfield" it could be multiple levels down. Example: Multiple validators on a field will process in the order defined. Example: Bad Validator definitions are not handled by the library. Example: Baked In Cross-Field validation only compares fields on the same struct. If Cross-Field + Cross-Struct validation is needed you should implement your own custom validator. Comma (",") is the default separator of validation tags. If you wish to have a comma included within the parameter (i.e. excludesall=,) you will need to use the UTF-8 hex representation 0x2C, which is replaced in the code as a comma, so the above will become excludesall=0x2C. Pipe ("|") is the 'or' validation tags deparator. If you wish to have a pipe included within the parameter i.e. excludesall=| you will need to use the UTF-8 hex representation 0x7C, which is replaced in the code as a pipe, so the above will become excludesall=0x7C Here is a list of the current built in validators: Tells the validation to skip this struct field; this is particularly handy in ignoring embedded structs from being validated. (Usage: -) This is the 'or' operator allowing multiple validators to be used and accepted. (Usage: rbg|rgba) <-- this would allow either rgb or rgba colors to be accepted. This can also be combined with 'and' for example ( Usage: omitempty,rgb|rgba) When a field that is a nested struct is encountered, and contains this flag any validation on the nested struct will be run, but none of the nested struct fields will be validated. This is useful if inside of your program you know the struct will be valid, but need to verify it has been assigned. NOTE: only "required" and "omitempty" can be used on a struct itself. Same as structonly tag except that any struct level validations will not run. Allows conditional validation, for example if a field is not set with a value (Determined by the "required" validator) then other validation such as min or max won't run, but if a value is set validation will run. This tells the validator to dive into a slice, array or map and validate that level of the slice, array or map with the validation tags that follow. Multidimensional nesting is also supported, each level you wish to dive will require another dive tag. dive has some sub-tags, 'keys' & 'endkeys', please see the Keys & EndKeys section just below. Example #1 Example #2 Keys & EndKeys These are to be used together directly after the dive tag and tells the validator that anything between 'keys' and 'endkeys' applies to the keys of a map and not the values; think of it like the 'dive' tag, but for map keys instead of values. Multidimensional nesting is also supported, each level you wish to validate will require another 'keys' and 'endkeys' tag. These tags are only valid for maps. Example #1 Example #2 This validates that the value is not the data types default zero value. For numbers ensures value is not zero. For strings ensures value is not "". For slices, maps, pointers, interfaces, channels and functions ensures the value is not nil. The field under validation must be present and not empty only if any of the other specified fields are present. For strings ensures value is not "". For slices, maps, pointers, interfaces, channels and functions ensures the value is not nil. Examples: The field under validation must be present and not empty only if all of the other specified fields are present. For strings ensures value is not "". For slices, maps, pointers, interfaces, channels and functions ensures the value is not nil. Example: The field under validation must be present and not empty only when any of the other specified fields are not present. For strings ensures value is not "". For slices, maps, pointers, interfaces, channels and functions ensures the value is not nil. Examples: The field under validation must be present and not empty only when all of the other specified fields are not present. For strings ensures value is not "". For slices, maps, pointers, interfaces, channels and functions ensures the value is not nil. Example: This validates that the value is the default value and is almost the opposite of required. For numbers, length will ensure that the value is equal to the parameter given. For strings, it checks that the string length is exactly that number of characters. For slices, arrays, and maps, validates the number of items. For numbers, max will ensure that the value is less than or equal to the parameter given. For strings, it checks that the string length is at most that number of characters. For slices, arrays, and maps, validates the number of items. For numbers, min will ensure that the value is greater or equal to the parameter given. For strings, it checks that the string length is at least that number of characters. For slices, arrays, and maps, validates the number of items. For strings & numbers, eq will ensure that the value is equal to the parameter given. For slices, arrays, and maps, validates the number of items. For strings & numbers, ne will ensure that the value is not equal to the parameter given. For slices, arrays, and maps, validates the number of items. For strings, ints, and uints, oneof will ensure that the value is one of the values in the parameter. The parameter should be a list of values separated by whitespace. Values may be strings or numbers. For numbers, this will ensure that the value is greater than the parameter given. For strings, it checks that the string length is greater than that number of characters. For slices, arrays and maps it validates the number of items. Example #1 Example #2 (time.Time) For time.Time ensures the time value is greater than time.Now.UTC(). Same as 'min' above. Kept both to make terminology with 'len' easier. Example #1 Example #2 (time.Time) For time.Time ensures the time value is greater than or equal to time.Now.UTC(). For numbers, this will ensure that the value is less than the parameter given. For strings, it checks that the string length is less than that number of characters. For slices, arrays, and maps it validates the number of items. Example #1 Example #2 (time.Time) For time.Time ensures the time value is less than time.Now.UTC(). Same as 'max' above. Kept both to make terminology with 'len' easier. Example #1 Example #2 (time.Time) For time.Time ensures the time value is less than or equal to time.Now.UTC(). This will validate the field value against another fields value either within a struct or passed in field. Example #1: Example #2: Field Equals Another Field (relative) This does the same as eqfield except that it validates the field provided relative to the top level struct. This will validate the field value against another fields value either within a struct or passed in field. Examples: Field Does Not Equal Another Field (relative) This does the same as nefield except that it validates the field provided relative to the top level struct. Only valid for Numbers and time.Time types, this will validate the field value against another fields value either within a struct or passed in field. usage examples are for validation of a Start and End date: Example #1: Example #2: This does the same as gtfield except that it validates the field provided relative to the top level struct. Only valid for Numbers and time.Time types, this will validate the field value against another fields value either within a struct or passed in field. usage examples are for validation of a Start and End date: Example #1: Example #2: This does the same as gtefield except that it validates the field provided relative to the top level struct. Only valid for Numbers and time.Time types, this will validate the field value against another fields value either within a struct or passed in field. usage examples are for validation of a Start and End date: Example #1: Example #2: This does the same as ltfield except that it validates the field provided relative to the top level struct. Only valid for Numbers and time.Time types, this will validate the field value against another fields value either within a struct or passed in field. usage examples are for validation of a Start and End date: Example #1: Example #2: This does the same as ltefield except that it validates the field provided relative to the top level struct. This does the same as contains except for struct fields. It should only be used with string types. See the behavior of reflect.Value.String() for behavior on other types. This does the same as excludes except for struct fields. It should only be used with string types. See the behavior of reflect.Value.String() for behavior on other types. For arrays & slices, unique will ensure that there are no duplicates. For maps, unique will ensure that there are no duplicate values. For slices of struct, unique will ensure that there are no duplicate values in a field of the struct specified via a parameter. This validates that a string value contains ASCII alpha characters only This validates that a string value contains ASCII alphanumeric characters only This validates that a string value contains unicode alpha characters only This validates that a string value contains unicode alphanumeric characters only This validates that a string value contains a basic numeric value. basic excludes exponents etc... for integers or float it returns true. This validates that a string value contains a valid hexadecimal. This validates that a string value contains a valid hex color including hashtag (#) This validates that a string value contains a valid rgb color This validates that a string value contains a valid rgba color This validates that a string value contains a valid hsl color This validates that a string value contains a valid hsla color This validates that a string value contains a valid email This may not conform to all possibilities of any rfc standard, but neither does any email provider accept all possibilities. This validates that a string value contains a valid file path and that the file exists on the machine. This is done using os.Stat, which is a platform independent function. This validates that a string value contains a valid url This will accept any url the golang request uri accepts but must contain a schema for example http:// or rtmp:// This validates that a string value contains a valid uri This will accept any uri the golang request uri accepts This validataes that a string value contains a valid URN according to the RFC 2141 spec. This validates that a string value contains a valid base64 value. Although an empty string is valid base64 this will report an empty string as an error, if you wish to accept an empty string as valid you can use this with the omitempty tag. This validates that a string value contains a valid base64 URL safe value according the the RFC4648 spec. Although an empty string is a valid base64 URL safe value, this will report an empty string as an error, if you wish to accept an empty string as valid you can use this with the omitempty tag. This validates that a string value contains a valid bitcoin address. The format of the string is checked to ensure it matches one of the three formats P2PKH, P2SH and performs checksum validation. Bitcoin Bech32 Address (segwit) This validates that a string value contains a valid bitcoin Bech32 address as defined by bip-0173 (https://github.com/bitcoin/bips/blob/master/bip-0173.mediawiki) Special thanks to Pieter Wuille for providng reference implementations. This validates that a string value contains a valid ethereum address. The format of the string is checked to ensure it matches the standard Ethereum address format Full validation is blocked by https://github.com/golang/crypto/pull/28 This validates that a string value contains the substring value. This validates that a string value contains any Unicode code points in the substring value. This validates that a string value contains the supplied rune value. This validates that a string value does not contain the substring value. This validates that a string value does not contain any Unicode code points in the substring value. This validates that a string value does not contain the supplied rune value. This validates that a string value starts with the supplied string value This validates that a string value ends with the supplied string value This validates that a string value contains a valid isbn10 or isbn13 value. This validates that a string value contains a valid isbn10 value. This validates that a string value contains a valid isbn13 value. This validates that a string value contains a valid UUID. Uppercase UUID values will not pass - use `uuid_rfc4122` instead. This validates that a string value contains a valid version 3 UUID. Uppercase UUID values will not pass - use `uuid3_rfc4122` instead. This validates that a string value contains a valid version 4 UUID. Uppercase UUID values will not pass - use `uuid4_rfc4122` instead. This validates that a string value contains a valid version 5 UUID. Uppercase UUID values will not pass - use `uuid5_rfc4122` instead. This validates that a string value contains only ASCII characters. NOTE: if the string is blank, this validates as true. This validates that a string value contains only printable ASCII characters. NOTE: if the string is blank, this validates as true. This validates that a string value contains one or more multibyte characters. NOTE: if the string is blank, this validates as true. This validates that a string value contains a valid DataURI. NOTE: this will also validate that the data portion is valid base64 This validates that a string value contains a valid latitude. This validates that a string value contains a valid longitude. This validates that a string value contains a valid U.S. Social Security Number. This validates that a string value contains a valid IP Address. This validates that a string value contains a valid v4 IP Address. This validates that a string value contains a valid v6 IP Address. This validates that a string value contains a valid CIDR Address. This validates that a string value contains a valid v4 CIDR Address. This validates that a string value contains a valid v6 CIDR Address. This validates that a string value contains a valid resolvable TCP Address. This validates that a string value contains a valid resolvable v4 TCP Address. This validates that a string value contains a valid resolvable v6 TCP Address. This validates that a string value contains a valid resolvable UDP Address. This validates that a string value contains a valid resolvable v4 UDP Address. This validates that a string value contains a valid resolvable v6 UDP Address. This validates that a string value contains a valid resolvable IP Address. This validates that a string value contains a valid resolvable v4 IP Address. This validates that a string value contains a valid resolvable v6 IP Address. This validates that a string value contains a valid Unix Address. This validates that a string value contains a valid MAC Address. Note: See Go's ParseMAC for accepted formats and types: This validates that a string value is a valid Hostname according to RFC 952 https://tools.ietf.org/html/rfc952 This validates that a string value is a valid Hostname according to RFC 1123 https://tools.ietf.org/html/rfc1123 Full Qualified Domain Name (FQDN) This validates that a string value contains a valid FQDN. This validates that a string value appears to be an HTML element tag including those described at https://developer.mozilla.org/en-US/docs/Web/HTML/Element This validates that a string value is a proper character reference in decimal or hexadecimal format This validates that a string value is percent-encoded (URL encoded) according to https://tools.ietf.org/html/rfc3986#section-2.1 This validates that a string value contains a valid directory and that it exists on the machine. This is done using os.Stat, which is a platform independent function. NOTE: When returning an error, the tag returned in "FieldError" will be the alias tag unless the dive tag is part of the alias. Everything after the dive tag is not reported as the alias tag. Also, the "ActualTag" in the before case will be the actual tag within the alias that failed. Here is a list of the current built in alias tags: Validator notes: A collection of validation rules that are frequently needed but are more complex than the ones found in the baked in validators. A non standard validator must be registered manually like you would with your own custom validation functions. Example of registration and use: Here is a list of the current non standard validators: This package panics when bad input is provided, this is by design, bad code like that should not make it to production.
Package aw is a "plug-and-play" workflow development library/framework for Alfred 3 & 4 (https://www.alfredapp.com/). It requires Go 1.13 or later. It provides everything you need to create a polished and blazing-fast Alfred frontend for your project. As of AwGo 0.26, all applicable features of Alfred 4.1 are supported. The main features are: AwGo is an opinionated framework that expects to be used in a certain way in order to eliminate boilerplate. It *will* panic if not run in a valid, minimally Alfred-like environment. At a minimum the following environment variables should be set to meaningful values: NOTE: AwGo is currently in development. The API *will* change and should not be considered stable until v1.0. Until then, be sure to pin a version using go modules or similar. Be sure to also check out the _examples/ subdirectory, which contains some simple, but complete, workflows that demonstrate the features of AwGo and useful workflow idioms. Typically, you'd call your program's main entry point via Workflow.Run(). This way, the library will rescue any panic, log the stack trace and show an error message to the user in Alfred. In the Script box (Language = "/bin/bash"): To generate results for Alfred to show in a Script Filter, use the feedback API of Workflow: You can set workflow variables (via feedback) with Workflow.Var, Item.Var and Modifier.Var. See Workflow.SendFeedback for more documentation. Alfred requires a different JSON format if you wish to set workflow variables. Use the ArgVars (named for its equivalent element in Alfred) struct to generate output from Run Script actions. Be sure to set TextErrors to true to prevent Workflow from generating Alfred JSON if it catches a panic: See ArgVars for more information. New() creates a *Workflow using the default values and workflow settings read from environment variables set by Alfred. You can change defaults by passing one or more Options to New(). If you do not want to use Alfred's environment variables, or they aren't set (i.e. you're not running the code in Alfred), use NewFromEnv() with a custom Env implementation. A Workflow can be re-configured later using its Configure() method. See the documentation for Option for more information on configuring a Workflow. AwGo can check for and install new versions of your workflow. Subpackage update provides an implementation of the Updater interface and sources to load updates from GitHub or Gitea releases, or from the URL of an Alfred `metadata.json` file. See subpackage update and _examples/update. AwGo can filter Script Filter feedback using a Sublime Text-like fuzzy matching algorithm. Workflow.Filter() sorts feedback Items against the provided query, removing those that do not match. See _examples/fuzzy for a basic demonstration, and _examples/bookmarks for a demonstration of implementing fuzzy.Sortable on your own structs and customising the fuzzy sort settings. Fuzzy matching is done by package https://godoc.org/go.deanishe.net/fuzzy AwGo automatically configures the default log package to write to STDERR (Alfred's debugger) and a log file in the workflow's cache directory. The log file is necessary because background processes aren't connected to Alfred, so their output is only visible in the log. It is rotated when it exceeds 1 MiB in size. One previous log is kept. AwGo detects when Alfred's debugger is open (Workflow.Debug() returns true) and in this case prepends filename:linenumber: to log messages. The Config struct (which is included in Workflow as Workflow.Config) provides an interface to the workflow's settings from the Workflow Environment Variables panel (see https://www.alfredapp.com/help/workflows/advanced/variables/#environment). Alfred exports these settings as environment variables, and you can read them ad-hoc with the Config.Get*() methods, and save values back to Alfred/info.plist with Config.Set(). Using Config.To() and Config.From(), you can "bind" your own structs to the settings in Alfred: See the documentation for Config.To and Config.From for more information, and _examples/settings for a demo workflow based on the API. The Alfred struct provides methods for the rest of Alfred's AppleScript API. Amongst other things, you can use it to tell Alfred to open, to search for a query, to browse/action files & directories, or to run External Triggers. See documentation of the Alfred struct for more information. AwGo provides a basic, but useful, API for loading and saving data. In addition to reading/writing bytes and marshalling/unmarshalling to/from JSON, the API can auto-refresh expired cache data. See Cache and Session for the API documentation. Workflow has three caches tied to different directories: These all share (almost) the same API. The difference is in when the data go away. Data saved with Session are deleted after the user closes Alfred or starts using a different workflow. The Cache directory is in a system cache directory, so may be deleted by the system or "system maintenance" tools. The Data directory lives with Alfred's application data and would not normally be deleted. Subpackage util provides several functions for running script files and snippets of AppleScript/JavaScript code. See util for documentation and examples. AwGo offers a simple API to start/stop background processes via Workflow's RunInBackground(), IsRunning() and Kill() methods. This is useful for running checks for updates and other jobs that hit the network or take a significant amount of time to complete, allowing you to keep your Script Filters extremely responsive. See _examples/update and _examples/workflows for demonstrations of this API.
Package mpq is a decoder/parser of Blizzard's MPQ archive file format. This is not a full MPQ implementation. It is primarily intended to parse StarCraft II replay files (*.SC2Replay), but that is fully supported. Usage is simple. Opening an MPQ archive file: Getting a named file from the archive: If you already have the MPQ data in memory: The_MoPaQ_Archive_Format: http://wiki.devklog.net/index.php?title=The_MoPaQ_Archive_Format MPQ on wikipedia: http://en.wikipedia.org/wiki/MPQ Zezula MPQ description: http://www.zezula.net/mpq.html Stormlib: https://github.com/ladislav-zezula/StormLib Libmpq project: https://github.com/ge0rg/libmpq (old: https://libmpq.org/) MPQ parser of the Scelight project: https://github.com/icza/scelight/tree/master/src-app-libs/hu/belicza/andras/mpq Format of the "(attributes)" meta attributes file: https://github.com/stormlib/StormLib/blob/3a926f0228c68d7d91cf3946624d7859976440ec/src/SFileAttributes.cpp If has CRC32: int * BlockTableSize If has FILETIME: long * BlockTableSize If has MD5: MD5SIZE * BlockTableSize If has PATCH_BIT: enough bytes to hold BlockTableSize bits
Package archiver facilitates convenient, cross-platform, high-level archival and compression operations for a variety of formats and compression algorithms. This package and its dependencies are written in pure Go (not cgo) and have no external dependencies, so they should run on all major platforms. (It also comes with a command for CLI use in the cmd/arc folder.) Each supported format or algorithm has a unique type definition that implements the interfaces corresponding to the tasks they perform. For example, the Tar type implements Reader, Writer, Archiver, Unarchiver, Walker, and several other interfaces. The most common functions are implemented at the package level for convenience: Archive, Unarchive, Walk, Extract, CompressFile, and DecompressFile. With these, the format type is chosen implicitly, and a sane default configuration is used. To customize a format's configuration, create an instance of its struct with its fields set to the desired values. You can also use and customize the handy Default* (replace the wildcard with the format's type name) for a quick, one-off instance of the format's type. To obtain a new instance of a format's struct with the default config, use the provided New*() functions. This is not required, however. An empty struct of any type, for example &Zip{} is perfectly valid, so you may create the structs manually, too. The examples on this page show how either may be done. See the examples in this package for an idea of how to wield this package for common tasks. Most of the examples which are specific to a certain format type, for example Zip, can be applied to other types that implement the same interfaces. For example, using Zip is very similar to using Tar or TarGz (etc), and using Gz is very similar to using Sz or Xz (etc). When creating archives or compressing files using a specific instance of the format's type, the name of the output file MUST match that of the format, to prevent confusion later on. If you absolutely need a different file extension, you may rename the file afterward. Values in this package are NOT safe for concurrent use. There is no performance benefit of reusing them, and since they may contain important state (especially while walking, reading, or writing), it is NOT recommended to reuse values from this package or change their configuration after they are in use.
Package openweathermap is a library for use to access the http://openweathermap.org API. JSON is the only return format supported at this time. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.
Package gofpdf implements a PDF document generator with high level support for text, drawing and images. - UTF-8 support - Choice of measurement unit, page format and margins - Page header and footer management - Automatic page breaks, line breaks, and text justification - Inclusion of JPEG, PNG, GIF, TIFF and basic path-only SVG images - Colors, gradients and alpha channel transparency - Outline bookmarks - Internal and external links - TrueType, Type1 and encoding support - Page compression - Lines, Bézier curves, arcs, and ellipses - Rotation, scaling, skewing, translation, and mirroring - Clipping - Document protection - Layers - Templates - Barcodes - Charting facility - Import PDFs as templates gofpdf has no dependencies other than the Go standard library. All tests pass on Linux, Mac and Windows platforms. gofpdf supports UTF-8 TrueType fonts and “right-to-left” languages. Note that Chinese, Japanese, and Korean characters may not be included in many general purpose fonts. For these languages, a specialized font (for example, NotoSansSC for simplified Chinese) can be used. Also, support is provided to automatically translate UTF-8 runes to code page encodings for languages that have fewer than 256 glyphs. This repository will not be maintained, at least for some unknown duration. But it is hoped that gofpdf has a bright future in the open source world. Due to Go’s promise of compatibility, gofpdf should continue to function without modification for a longer time than would be the case with many other languages. Forks should be based on the last viable commit. Tools such as active-forks can be used to select a fork that looks promising for your needs. If a particular fork looks like it has taken the lead in attracting followers, this README will be updated to point people in that direction. The efforts of all contributors to this project have been deeply appreciated. Best wishes to all of you. To install the package on your system, run Later, to receive updates, run The following Go code generates a simple PDF file. See the functions in the fpdf_test.go file (shown as examples in this documentation) for more advanced PDF examples. If an error occurs in an Fpdf method, an internal error field is set. After this occurs, Fpdf method calls typically return without performing any operations and the error state is retained. This error management scheme facilitates PDF generation since individual method calls do not need to be examined for failure; it is generally sufficient to wait until after Output() is called. For the same reason, if an error occurs in the calling application during PDF generation, it may be desirable for the application to transfer the error to the Fpdf instance by calling the SetError() method or the SetErrorf() method. At any time during the life cycle of the Fpdf instance, the error state can be determined with a call to Ok() or Err(). The error itself can be retrieved with a call to Error(). This package is a relatively straightforward translation from the original FPDF library written in PHP (despite the caveat in the introduction to Effective Go). The API names have been retained even though the Go idiom would suggest otherwise (for example, pdf.GetX() is used rather than simply pdf.X()). The similarity of the two libraries makes the original FPDF website a good source of information. It includes a forum and FAQ. However, some internal changes have been made. Page content is built up using buffers (of type bytes.Buffer) rather than repeated string concatenation. Errors are handled as explained above rather than panicking. Output is generated through an interface of type io.Writer or io.WriteCloser. A number of the original PHP methods behave differently based on the type of the arguments that are passed to them; in these cases additional methods have been exported to provide similar functionality. Font definition files are produced in JSON rather than PHP. A side effect of running go test ./... is the production of a number of example PDFs. These can be found in the gofpdf/pdf directory after the tests complete. Please note that these examples run in the context of a test. In order run an example as a standalone application, you’ll need to examine fpdf_test.go for some helper routines, for example exampleFilename() and summary(). Example PDFs can be compared with reference copies in order to verify that they have been generated as expected. This comparison will be performed if a PDF with the same name as the example PDF is placed in the gofpdf/pdf/reference directory and if the third argument to ComparePDFFiles() in internal/example/example.go is true. (By default it is false.) The routine that summarizes an example will look for this file and, if found, will call ComparePDFFiles() to check the example PDF for equality with its reference PDF. If differences exist between the two files they will be printed to standard output and the test will fail. If the reference file is missing, the comparison is considered to succeed. In order to successfully compare two PDFs, the placement of internal resources must be consistent and the internal creation timestamps must be the same. To do this, the methods SetCatalogSort() and SetCreationDate() need to be called for both files. This is done automatically for all examples. Nothing special is required to use the standard PDF fonts (courier, helvetica, times, zapfdingbats) in your documents other than calling SetFont(). You should use AddUTF8Font() or AddUTF8FontFromBytes() to add a TrueType UTF-8 encoded font. Use RTL() and LTR() methods switch between “right-to-left” and “left-to-right” mode. In order to use a different non-UTF-8 TrueType or Type1 font, you will need to generate a font definition file and, if the font will be embedded into PDFs, a compressed version of the font file. This is done by calling the MakeFont function or using the included makefont command line utility. To create the utility, cd into the makefont subdirectory and run “go build”. This will produce a standalone executable named makefont. Select the appropriate encoding file from the font subdirectory and run the command as in the following example. In your PDF generation code, call AddFont() to load the font and, as with the standard fonts, SetFont() to begin using it. Most examples, including the package example, demonstrate this method. Good sources of free, open-source fonts include Google Fonts and DejaVu Fonts. The draw2d package is a two dimensional vector graphics library that can generate output in different forms. It uses gofpdf for its document production mode. gofpdf is a global community effort and you are invited to make it even better. If you have implemented a new feature or corrected a problem, please consider contributing your change to the project. A contribution that does not directly pertain to the core functionality of gofpdf should be placed in its own directory directly beneath the contrib directory. Here are guidelines for making submissions. Your change should - be compatible with the MIT License - be properly documented - be formatted with go fmt - include an example in fpdf_test.go if appropriate - conform to the standards of golint and go vet, that is, golint . and go vet . should not generate any warnings - not diminish test coverage Pull requests are the preferred means of accepting your changes. gofpdf is released under the MIT License. It is copyrighted by Kurt Jung and the contributors acknowledged below. This package’s code and documentation are closely derived from the FPDF library created by Olivier Plathey, and a number of font and image resources are copied directly from it. Bruno Michel has provided valuable assistance with the code. Drawing support is adapted from the FPDF geometric figures script by David Hernández Sanz. Transparency support is adapted from the FPDF transparency script by Martin Hall-May. Support for gradients and clipping is adapted from FPDF scripts by Andreas Würmser. Support for outline bookmarks is adapted from Olivier Plathey by Manuel Cornes. Layer support is adapted from Olivier Plathey. Support for transformations is adapted from the FPDF transformation script by Moritz Wagner and Andreas Würmser. PDF protection is adapted from the work of Klemen Vodopivec for the FPDF product. Lawrence Kesteloot provided code to allow an image’s extent to be determined prior to placement. Support for vertical alignment within a cell was provided by Stefan Schroeder. Ivan Daniluk generalized the font and image loading code to use the Reader interface while maintaining backward compatibility. Anthony Starks provided code for the Polygon function. Robert Lillack provided the Beziergon function and corrected some naming issues with the internal curve function. Claudio Felber provided implementations for dashed line drawing and generalized font loading. Stani Michiels provided support for multi-segment path drawing with smooth line joins, line join styles, enhanced fill modes, and has helped greatly with package presentation and tests. Templating is adapted by Marcus Downing from the FPDF_Tpl library created by Jan Slabon and Setasign. Jelmer Snoeck contributed packages that generate a variety of barcodes and help with registering images on the web. Jelmer Snoek and Guillermo Pascual augmented the basic HTML functionality with aligned text. Kent Quirk implemented backwards-compatible support for reading DPI from images that support it, and for setting DPI manually and then having it properly taken into account when calculating image size. Paulo Coutinho provided support for static embedded fonts. Dan Meyers added support for embedded JavaScript. David Fish added a generic alias-replacement function to enable, among other things, table of contents functionality. Andy Bakun identified and corrected a problem in which the internal catalogs were not sorted stably. Paul Montag added encoding and decoding functionality for templates, including images that are embedded in templates; this allows templates to be stored independently of gofpdf. Paul also added support for page boxes used in printing PDF documents. Wojciech Matusiak added supported for word spacing. Artem Korotkiy added support of UTF-8 fonts. Dave Barnes added support for imported objects and templates. Brigham Thompson added support for rounded rectangles. Joe Westcott added underline functionality and optimized image storage. Benoit KUGLER contributed support for rectangles with corners of unequal radius, modification times, and for file attachments and annotations. - Remove all legacy code page font support; use UTF-8 exclusively - Improve test coverage as reported by the coverage tool. Example demonstrates the generation of a simple PDF document. Note that since only core fonts are used (in this case Arial, a synonym for Helvetica), an empty string can be specified for the font directory in the call to New(). Note also that the example.Filename() and example.Summary() functions belong to a separate, internal package and are not part of the gofpdf library. If an error occurs at some point during the construction of the document, subsequent method calls exit immediately and the error is finally retrieved with the output call where it can be handled by the application.
Command golines is a formatter that shortens long go code lines, in addition to the formatting fixes done by gofmt. See the project README for more details: File bugs or feature requests at:
Package zip provides support for reading and writing password protected ZIP archives. See: http://www.pkware.com/documents/casestudies/APPNOTE.TXT This package does not support disk spanning. A note about ZIP64: To be backwards compatible the FileHeader has both 32 and 64 bit Size fields. The 64 bit fields will always contain the correct value and for normal archives both fields will be the same. For files requiring the ZIP64 format the 32 bit fields will be 0xffffffff and the 64 bit fields must be used instead. Can read/write password protected files that use Winzip's AES encryption method. See: http://www.winzip.com/aes_info.htm
Package wav is a package allowing developers to decode and encode audio PCM data using the Waveform Audio File Format https://en.wikipedia.org/wiki/WAV
Package ucfg provides a common representation for hierarchical configurations. The common representation provided by the Config type can be used with different configuration file formats like XML, JSON, HSJSON, YAML, or TOML. Config provides a low level and a high level interface for reading settings with additional features like custom unpackers, validation and capturing sub-configurations for deferred interpretation, lazy intra-configuration variable expansion, and OS environment variable expansion.
Package hujson contains a parser and packer for the JWCC format: JSON With Commas and Comments (or "human JSON"). JWCC is an extension of standard JSON (as defined in RFC 8259) in order to make it more suitable for humans and configuration files. In particular, it supports line comments (e.g., //...), block comments (e.g., /*...*/), and trailing commas after the last member or element in a JSON object or array. See https://nigeltao.github.io/blog/2021/json-with-commas-comments.html The Parse function parses HuJSON input as a Value, which is a syntax tree exactly representing the input. Comments and whitespace are represented using the Extra type. Composite types in JSON are represented using the Object and Array types. Primitive types in JSON are represented using the Literal type. The Value.Pack method serializes the syntax tree as raw output, which is byte-for-byte identical to the input if no transformations were performed on the value. A HuJSON value can be transformed using the Minimize, Standardize, Format, or Patch methods. Each of these methods mutate the value in place. Call the Clone method beforehand in order to preserve the original value. The Minimize and Standardize methods coerces HuJSON into standard JSON. The Format method formats the value; it is similar to `go fmt`, but instead for the HuJSON and standard JSON format. The Patch method applies a JSON Patch (RFC 6902) to the receiving value. The changes to the JSON grammar are: This package operates with HuJSON as an AST. In order to parse HuJSON into arbitrary Go types, use this package to parse HuJSON input as an AST, strip the AST of any HuJSON-specific lexicographical elements, and then pack the AST as a standard JSON output. Example usage:
Package golangNeo4jBoltDriver implements a driver for the Neo4J Bolt Protocol. The driver is compatible with Golang's sql.driver interface, but aims to implement a more complete featureset in line with what Neo4J and Bolt provides. As such, there are multiple interfaces the user can choose from. It's highly recommended that the user use the Neo4J-specific interfaces as they are more flexible and efficient than the provided sql.driver compatible methods. The interface tries to be consistent throughout. The sql.driver interfaces are standard, but the Neo4J-specific ones contain a naming convention of either "Neo" or "Pipeline". The "Neo" ones are the basic interfaces for making queries to Neo4j and it's expected that these would be used the most. The "Pipeline" ones are to support Bolt's pipelining features. Pipelines allow the user to send Neo4j many queries at once and have them executed by the database concurrently. This is useful if you have a bunch of queries that aren't necessarily dependant on one another, and you want to get better performance. The internal APIs will also pipeline statements where it is able to reliably do so, but by manually using the pipelining feature you can maximize your throughput. The API provides connection pooling using the `NewDriverPool` method. This allows you to pass it the maximum number of open connections to be used in the pool. Once this limit is hit, any new clients will have to wait for a connection to become available again. The sql driver is registered as "neo4j-bolt". The sql.driver interface is much more limited than what bolt and neo4j supports. In some cases, concessions were made in order to make that interface work with the neo4j way of doing things. The main instance of this is the marshalling of objects to/from the sql.driver.Value interface. In order to support object types that aren't supported by this interface, the internal encoding package is used to marshal these objects to byte strings. This ultimately makes for a less efficient and more 'clunky' implementation. A glaring instance of this is passing parameters. Neo4j expects named parameters but the driver interface can only really support positional parameters. To get around this, the user must create a map[string]interface{} of their parameters and marshal it to a driver.Value using the encoding.Marshal function. Similarly, the user must unmarshal data returned from the queries using the encoding.Unmarshal function, then use type assertions to retrieve the proper type. In most cases the driver will return the data from neo as the proper go-specific types. For integers they always come back as int64 and floats always come back as float64. This is for the convenience of the user and acts similarly to go's JSON interface. This prevents the user from having to use reflection to get these values. Internally, the types are always transmitted over the wire with as few bytes as possible. There are also cases where no go-specific type matches the returned values, such as when you query for a node, relationship, or path. The driver exposes specific structs which represent this data in the 'structures.graph' package. There are 4 types - Node, Relationship, UnboundRelationship, and Path. The driver returns interface{} objects which must have their types properly asserted to get the data out. There are some limitations to the types of collections the driver supports. Specifically, maps should always be of type map[string]interface{} and lists should always be of type []interface{}. It doesn't seem that the Bolt protocol supports uint64 either, so the biggest number it can send right now is the int64 max. The URL format is: `bolt://(user):(password)@(host):(port)` Schema must be `bolt`. User and password is only necessary if you are authenticating. TLS is supported by using query parameters on the connection string, like so: `bolt://host:port?tls=true&tls_no_verify=false` The supported query params are: * timeout - the number of seconds to set the connection timeout to. Defaults to 60 seconds. * tls - Set to 'true' or '1' if you want to use TLS encryption * tls_no_verify - Set to 'true' or '1' if you want to accept any server certificate (for testing, not secure) * tls_ca_cert_file - path to a custom ca cert for a self-signed TLS cert * tls_cert_file - path to a cert file for this client (need to verify this is processed by Neo4j) * tls_key_file - path to a key file for this client (need to verify this is processed by Neo4j) Errors returned from the API support wrapping, so if you receive an error from the library, it might be wrapping other errors. You can get the innermost error by using the `InnerMost` method. Failure messages from Neo4J are reported, along with their metadata, as an error. In order to get the failure message metadata from a wrapped error, you can do so by calling `err.(*errors.Error).InnerMost().(messages.FailureMessage).Metadata` If there is an error with the database connection, you should get a sql/driver ErrBadConn as per the best practice recommendations of the Golang SQL Driver. However, this error may be wrapped, so you might have to call `InnerMost` to get it, as specified above.
Package fig loads configuration files and/or environment variables into Go structs with extra juice for validating fields and setting defaults. Config files may be defined in yaml, json or toml format. When you call `Load()`, fig takes the following steps: Define your configuration file in the root of your project: Define your struct and load it: Pass options as additional parameters to `Load()` to configure fig's behaviour. Do not look for any configuration file with `IgnoreFile()`. If IgnoreFile is given then any other configuration file related options like `File` and `Dirs` are simply ignored. File & Dirs By default fig searches for a file named `config.yaml` in the directory it is run from. Change the file and directories fig searches in with `File()` and `Dirs()`. Fig searches for the file in dirs sequentially and uses the first matching file. The decoder (yaml/json/toml) used is picked based on the file's extension. The struct tag key tag fig looks for to find the field's alt name can be changed using `Tag()`. By default fig uses the tag key `fig`. Fig can be configured to additionally set fields using the environment. This behaviour can be enabled using the option `UseEnv(prefix)`. If loading from file is also enabled then first the struct is loaded from a config file and thus any values found in the environment will overwrite existing values in the struct. Prefix is a string that will be prepended to the keys that are searched in the environment. Although discouraged, prefix may be left empty. Fig searches for keys in the form PREFIX_FIELD_PATH, or if prefix is left empty then FIELD_PATH. A field's path is formed by prepending its name with the names of all the surrounding structs up to the root struct, upper-cased and separated by an underscore. If a field has an alt name defined in its struct tag then that name is preferred over its struct name. With the struct above and `UseEnv("myapp")` fig would search for the following environment variables: Fields contained in struct slices whose elements already exists can be also be set via the environment in the form PARENT_IDX_FIELD, where idx is the index of the field in the slice. With the config above individual servers may be configured with the following environment variable: Note: the Server slice must already have members inside it (i.e. from loading of the configuration file) for the containing fields to be altered via the environment. Fig will not instantiate and insert elements into the slice. Maps and map values cannot be populated from the environment. Change the layout fig uses to parse times using `TimeLayout()`. By default fig parses time using the `RFC.3339` layout (`2006-01-02T15:04:05Z07:00`). By default fig ignores any fields in the config file that are not present in the struct. This behaviour can be changed using `UseStrict()` to achieve strict parsing. When strict parsing is enabled, extra fields in the config file will cause an error. A validate key with a required value in the field's struct tag makes fig check if the field has been set after it's been loaded. Required fields that are not set are returned as an error. Fig uses the following properties to check if a field is set: See example below to help understand: A default key in the field tag makes fig fill the field with the value specified when the field is not otherwise set. Fig attempts to parse the value based on the field's type. If parsing fails then an error is returned. A default value can be set for the following types: Successive elements of slice defaults should be separated by a comma. The entire slice can optionally be enclosed in square brackets: Boolean values: Fig cannot distinguish between false and an unset value for boolean types. As a result, default values for booleans are not currently supported. Maps: Maps are not supported because providing a map in a string form would be complex and error-prone. Users are encouraged to use structs instead for more reliable and structured data handling. Map values: Values retrieved from a map through reflection are not addressable. Therefore, setting default values for map values is not currently supported. The required validation and the default field tags are mutually exclusive as they are contradictory. This is not allowed: A wrapped error `ErrFileNotFound` is returned when fig is not able to find a config file to load. This can be useful for instance to fallback to a different configuration loading mechanism.
Package gomarkdoc formats documentation for one or more packages as markdown for usage outside of the main https://pkg.go.dev site. It supports custom templates for tweaking representation of documentation at fine-grained levels, exporting both exported and unexported symbols, and custom formatters for different backends. If you want to use this package as a command-line tool, you can install the command by running the following on go 1.16+: For older versions of go, you can install using the following method instead: The command line tool supports configuration for all of the features of the importable package: The gomarkdoc command processes each of the provided packages, generating documentation for the package in markdown format and writing it to console. For example, if you have a package in your current directory and want to send it to a documentation markdown file, you might do something like this: The gomarkdoc tool supports generating documentation for both local packages and remote ones. To specify a local package, start the name of the package with a period (.) or specify an absolute path on the filesystem. All other package signifiers are assumed to be remote packages. You may specify both local and remote packages in the same command invocation as separate arguments. If you have a project with many packages but you want to skip documentation generation for some, you can use the --exclude-dirs option. This will remove any matching directories from the list of directories to process. Excluded directories are specified using the same pathing syntax as the packages to process. Multiple expressions may be comma-separated or specified by using the --exclude-dirs flag multiple times. For example, in this repository we generate documentation for the entire project while excluding our test packages by running: By default, the documentation generated by the gomarkdoc command is sent to standard output, where it can be redirected to a file. This can be useful if you want to perform additional modifications to the documentation or send it somewhere other than a file. However, keep in mind that there are some inconsistencies in how various shells/platforms handle redirected command output (for example, Powershell encodes in UTF-16, not UTF-8). As a result, the --output option described below is recommended for most use cases. If you want to redirect output for each processed package to a file, you can provide the --output/-o option, which accepts a template specifying how to generate the path of the output file. A common usage of this option is when generating README documentation for a package with subpackages (which are supported via the ... signifier as in other parts of the golang toolchain). In addition, this option provides consistent behavior across platforms and shells: You can see all of the data available to the output template in the PackageSpec struct in the github.com/princjef/gomarkdoc/cmd/gomarkdoc package. The documentation information that is output is formatted using a series of text templates for the various components of the overall documentation which get generated. Higher level templates contain lower level templates, but any template may be replaced with an override template using the --template/-t option. The full list of templates that may be overridden are: file: generates documentation for a file containing one or more packages, depending on how the tool is configured. This is the root template for documentation generation. package: generates documentation for an entire package. type: generates documentation for a single type declaration, as well as any related functions/methods. func: generates documentation for a single function or method. It may be referenced from within a type, or directly in the package, depending on nesting. value: generates documentation for a single variable or constant declaration block within a package. index: generates an index of symbols within a package, similar to what is seen for godoc.org. The index links to types, funcs, variables, and constants generated by other templates, so it may need to be overridden as well if any of those templates are changed in a material way. example: generates documentation for a single example for a package or one of its symbols. The example is generated alongside whichever symbol it represents, based on the standard naming conventions outlined in https://blog.golang.org/examples#TOC_4. doc: generates the freeform documentation block for any of the above structures that can contain a documentation section. import: generates the import code used to pull in a package. Overriding with the --template-file option uses a key-value pair mapping a template name to the file containing the contents of the override template to use. Specified template files must exist: As with the godoc tool itself, only exported symbols will be shown in documentation. This can be expanded to include all symbols in a package by adding the --include-unexported/-u flag. If you want to blend the documentation generated by gomarkdoc with your own hand-written markdown, you can use the --embed/-e flag to change the gomarkdoc tool into an append/embed mode. When documentation is generated, gomarkdoc looks for a file in the location where the documentation is to be written and embeds the documentation if present. Otherwise, the documentation is appended to the end of the file. When running with embed mode enabled, gomarkdoc will look for either this single comment: Or the following pair of comments (in which case all content in between is replaced): If you would like to include files that are part of a build tag, you can specify build tags with the --tags flag. Tags are also supported through GOFLAGS, though command line and configuration file definitions override tags specified through GOFLAGS. You can also run gomarkdoc in a verification mode with the --check/-c flag. This is particularly useful for continuous integration when you want to make sure that a commit correctly updated the generated documentation. This flag is only supported when the --output/-o flag is specified, as the file provided there is what the tool is checking: If you're experiencing difficulty with gomarkdoc or just want to get more information about how it's executing underneath, you can add -v to show more logs. This can be chained a second time to show even more verbose logs: Some features of gomarkdoc rely on being able to detect information from the git repository containing the project. Since individual local git repositories may be configured differently from person to person, you may want to manually specify the information for the repository to remove any inconsistencies. This can be achieved with the --repository.url, --repository.default-branch and --repository.path options. For example, this repository would be configured with: If you want to reuse configuration options across multiple invocations, you can specify a file in the folder where you invoke gomarkdoc containing configuration information that you would otherwise provide on the command line. This file may be a JSON, TOML, YAML, HCL, env, or Java properties file, but the name is expected to start with .gomarkdoc (e.g. .gomarkdoc.yml). All configuration options are available with the camel-cased form of their long name (e.g. --include-unexported becomes includeUnexported). Template overrides are specified as a map, rather than a set of key-value pairs separated by =. Options provided on the command line override those provided in the configuration file if an option is present in both. While most users will find the command line utility sufficient for their needs, this package may also be used programmatically by installing it directly, rather than its command subpackage. The programmatic usage provides more flexibility when selecting what packages to work with and what components to generate documentation for. A common usage will look something like this: This project uses itself to generate the README files in github.com/princjef/gomarkdoc and its subdirectories. To see the commands that are run to generate documentation for this repository, take a look at the Doc() and DocVerify() functions in magefile.go and the .gomarkdoc.yml file in the root of this repository. To run these commands in your own project, simply replace `go run ./cmd/gomarkdoc` with `gomarkdoc`. Know of another project that is using gomarkdoc? Open an issue with a description of the project and link to the repository and it might be featured here!
Package template implements data-driven templates for generating textual output. To generate HTML output, see package html/template, which has the same interface as this package but automatically secures HTML output against certain attacks. Templates are executed by applying them to a data structure. Annotations in the template refer to elements of the data structure (typically a field of a struct or a key in a map) to control execution and derive values to be displayed. Execution of the template walks the structure and sets the cursor, represented by a period '.' and called "dot", to the value at the current location in the structure as execution proceeds. The input text for a template is UTF-8-encoded text in any format. "Actions"--data evaluations or control structures--are delimited by "{{" and "}}"; all text outside actions is copied to the output unchanged. Actions may not span newlines, although comments can. Once parsed, a template may be executed safely in parallel. Here is a trivial example that prints "17 items are made of wool". More intricate examples appear below. Here is the list of actions. "Arguments" and "pipelines" are evaluations of data, defined in detail below. An argument is a simple value, denoted by one of the following. Arguments may evaluate to any type; if they are pointers the implementation automatically indirects to the base type when required. If an evaluation yields a function value, such as a function-valued field of a struct, the function is not invoked automatically, but it can be used as a truth value for an if action and the like. To invoke it, use the call function, defined below. A pipeline is a possibly chained sequence of "commands". A command is a simple value (argument) or a function or method call, possibly with multiple arguments: A pipeline may be "chained" by separating a sequence of commands with pipeline characters '|'. In a chained pipeline, the result of the each command is passed as the last argument of the following command. The output of the final command in the pipeline is the value of the pipeline. The output of a command will be either one value or two values, the second of which has type error. If that second value is present and evaluates to non-nil, execution terminates and the error is returned to the caller of Execute. A pipeline inside an action may initialize a variable to capture the result. The initialization has syntax where $variable is the name of the variable. An action that declares a variable produces no output. If a "range" action initializes a variable, the variable is set to the successive elements of the iteration. Also, a "range" may declare two variables, separated by a comma: in which case $index and $element are set to the successive values of the array/slice index or map key and element, respectively. Note that if there is only one variable, it is assigned the element; this is opposite to the convention in Go range clauses. A variable's scope extends to the "end" action of the control structure ("if", "with", or "range") in which it is declared, or to the end of the template if there is no such control structure. A template invocation does not inherit variables from the point of its invocation. When execution begins, $ is set to the data argument passed to Execute, that is, to the starting value of dot. Here are some example one-line templates demonstrating pipelines and variables. All produce the quoted word "output": During execution functions are found in two function maps: first in the template, then in the global function map. By default, no functions are defined in the template but the Funcs method can be used to add them. Predefined global functions are named as follows. The boolean functions take any zero value to be false and a non-zero value to be true. There is also a set of binary comparison operators defined as functions: For simpler multi-way equality tests, eq (only) accepts two or more arguments and compares the second and subsequent to the first, returning in effect (Unlike with || in Go, however, eq is a function call and all the arguments will be evaluated.) The comparison functions work on basic types only (or named basic types, such as "type Celsius float32"). They implement the Go rules for comparison of values, except that size and exact type are ignored, so any integer value, signed or unsigned, may be compared with any other integer value. (The arithmetic value is compared, not the bit pattern, so all negative integers are less than all unsigned integers.) However, as usual, one may not compare an int with a float32 and so on. Each template is named by a string specified when it is created. Also, each template is associated with zero or more other templates that it may invoke by name; such associations are transitive and form a name space of templates. A template may use a template invocation to instantiate another associated template; see the explanation of the "template" action above. The name must be that of a template associated with the template that contains the invocation. When parsing a template, another template may be defined and associated with the template being parsed. Template definitions must appear at the top level of the template, much like global variables in a Go program. The syntax of such definitions is to surround each template declaration with a "define" and "end" action. The define action names the template being created by providing a string constant. Here is a simple example: This defines two templates, T1 and T2, and a third T3 that invokes the other two when it is executed. Finally it invokes T3. If executed this template will produce the text By construction, a template may reside in only one association. If it's necessary to have a template addressable from multiple associations, the template definition must be parsed multiple times to create distinct *Template values, or must be copied with the Clone or AddParseTree method. Parse may be called multiple times to assemble the various associated templates; see the ParseFiles and ParseGlob functions and methods for simple ways to parse related templates stored in files. A template may be executed directly or through ExecuteTemplate, which executes an associated template identified by name. To invoke our example above, we might write, or to invoke a particular template explicitly by name,
Package fpdf implements a PDF document generator with high level support for text, drawing and images. - UTF-8 support - Choice of measurement unit, page format and margins - Page header and footer management - Automatic page breaks, line breaks, and text justification - Inclusion of JPEG, PNG, GIF, TIFF and basic path-only SVG images - Colors, gradients and alpha channel transparency - Outline bookmarks - Internal and external links - TrueType, Type1 and encoding support - Page compression - Lines, Bézier curves, arcs, and ellipses - Rotation, scaling, skewing, translation, and mirroring - Clipping - Document protection - Layers - Templates - Barcodes - Charting facility - Import PDFs as templates go-pdf/fpdf has no dependencies other than the Go standard library. All tests pass on Linux, Mac and Windows platforms. go-pdf/fpdf supports UTF-8 TrueType fonts and “right-to-left” languages. Note that Chinese, Japanese, and Korean characters may not be included in many general purpose fonts. For these languages, a specialized font (for example, NotoSansSC for simplified Chinese) can be used. Also, support is provided to automatically translate UTF-8 runes to code page encodings for languages that have fewer than 256 glyphs. To install the package on your system, run Later, to receive updates, run The following Go code generates a simple PDF file. See the functions in the fpdf_test.go file (shown as examples in this documentation) for more advanced PDF examples. If an error occurs in an Fpdf method, an internal error field is set. After this occurs, Fpdf method calls typically return without performing any operations and the error state is retained. This error management scheme facilitates PDF generation since individual method calls do not need to be examined for failure; it is generally sufficient to wait until after Output() is called. For the same reason, if an error occurs in the calling application during PDF generation, it may be desirable for the application to transfer the error to the Fpdf instance by calling the SetError() method or the SetErrorf() method. At any time during the life cycle of the Fpdf instance, the error state can be determined with a call to Ok() or Err(). The error itself can be retrieved with a call to Error(). This package is a relatively straightforward translation from the original FPDF library written in PHP (despite the caveat in the introduction to Effective Go). The API names have been retained even though the Go idiom would suggest otherwise (for example, pdf.GetX() is used rather than simply pdf.X()). The similarity of the two libraries makes the original FPDF website a good source of information. It includes a forum and FAQ. However, some internal changes have been made. Page content is built up using buffers (of type bytes.Buffer) rather than repeated string concatenation. Errors are handled as explained above rather than panicking. Output is generated through an interface of type io.Writer or io.WriteCloser. A number of the original PHP methods behave differently based on the type of the arguments that are passed to them; in these cases additional methods have been exported to provide similar functionality. Font definition files are produced in JSON rather than PHP. A side effect of running go test ./... is the production of a number of example PDFs. These can be found in the go-pdf/fpdf/pdf directory after the tests complete. Please note that these examples run in the context of a test. In order run an example as a standalone application, you’ll need to examine fpdf_test.go for some helper routines, for example exampleFilename() and summary(). Example PDFs can be compared with reference copies in order to verify that they have been generated as expected. This comparison will be performed if a PDF with the same name as the example PDF is placed in the go-pdf/fpdf/pdf/reference directory and if the third argument to ComparePDFFiles() in internal/example/example.go is true. (By default it is false.) The routine that summarizes an example will look for this file and, if found, will call ComparePDFFiles() to check the example PDF for equality with its reference PDF. If differences exist between the two files they will be printed to standard output and the test will fail. If the reference file is missing, the comparison is considered to succeed. In order to successfully compare two PDFs, the placement of internal resources must be consistent and the internal creation timestamps must be the same. To do this, the methods SetCatalogSort() and SetCreationDate() need to be called for both files. This is done automatically for all examples. Nothing special is required to use the standard PDF fonts (courier, helvetica, times, zapfdingbats) in your documents other than calling SetFont(). You should use AddUTF8Font() or AddUTF8FontFromBytes() to add a TrueType UTF-8 encoded font. Use RTL() and LTR() methods switch between “right-to-left” and “left-to-right” mode. In order to use a different non-UTF-8 TrueType or Type1 font, you will need to generate a font definition file and, if the font will be embedded into PDFs, a compressed version of the font file. This is done by calling the MakeFont function or using the included makefont command line utility. To create the utility, cd into the makefont subdirectory and run “go build”. This will produce a standalone executable named makefont. Select the appropriate encoding file from the font subdirectory and run the command as in the following example. In your PDF generation code, call AddFont() to load the font and, as with the standard fonts, SetFont() to begin using it. Most examples, including the package example, demonstrate this method. Good sources of free, open-source fonts include Google Fonts and DejaVu Fonts. The draw2d package is a two dimensional vector graphics library that can generate output in different forms. It uses gofpdf for its document production mode. gofpdf is a global community effort and you are invited to make it even better. If you have implemented a new feature or corrected a problem, please consider contributing your change to the project. A contribution that does not directly pertain to the core functionality of gofpdf should be placed in its own directory directly beneath the contrib directory. Here are guidelines for making submissions. Your change should - be compatible with the MIT License - be properly documented - be formatted with go fmt - include an example in fpdf_test.go if appropriate - conform to the standards of golint and go vet, that is, golint . and go vet . should not generate any warnings - not diminish test coverage Pull requests are the preferred means of accepting your changes. gofpdf is released under the MIT License. It is copyrighted by Kurt Jung and the contributors acknowledged below. This package’s code and documentation are closely derived from the FPDF library created by Olivier Plathey, and a number of font and image resources are copied directly from it. Bruno Michel has provided valuable assistance with the code. Drawing support is adapted from the FPDF geometric figures script by David Hernández Sanz. Transparency support is adapted from the FPDF transparency script by Martin Hall-May. Support for gradients and clipping is adapted from FPDF scripts by Andreas Würmser. Support for outline bookmarks is adapted from Olivier Plathey by Manuel Cornes. Layer support is adapted from Olivier Plathey. Support for transformations is adapted from the FPDF transformation script by Moritz Wagner and Andreas Würmser. PDF protection is adapted from the work of Klemen Vodopivec for the FPDF product. Lawrence Kesteloot provided code to allow an image’s extent to be determined prior to placement. Support for vertical alignment within a cell was provided by Stefan Schroeder. Ivan Daniluk generalized the font and image loading code to use the Reader interface while maintaining backward compatibility. Anthony Starks provided code for the Polygon function. Robert Lillack provided the Beziergon function and corrected some naming issues with the internal curve function. Claudio Felber provided implementations for dashed line drawing and generalized font loading. Stani Michiels provided support for multi-segment path drawing with smooth line joins, line join styles, enhanced fill modes, and has helped greatly with package presentation and tests. Templating is adapted by Marcus Downing from the FPDF_Tpl library created by Jan Slabon and Setasign. Jelmer Snoeck contributed packages that generate a variety of barcodes and help with registering images on the web. Jelmer Snoek and Guillermo Pascual augmented the basic HTML functionality with aligned text. Kent Quirk implemented backwards-compatible support for reading DPI from images that support it, and for setting DPI manually and then having it properly taken into account when calculating image size. Paulo Coutinho provided support for static embedded fonts. Dan Meyers added support for embedded JavaScript. David Fish added a generic alias-replacement function to enable, among other things, table of contents functionality. Andy Bakun identified and corrected a problem in which the internal catalogs were not sorted stably. Paul Montag added encoding and decoding functionality for templates, including images that are embedded in templates; this allows templates to be stored independently of gofpdf. Paul also added support for page boxes used in printing PDF documents. Wojciech Matusiak added supported for word spacing. Artem Korotkiy added support of UTF-8 fonts. Dave Barnes added support for imported objects and templates. Brigham Thompson added support for rounded rectangles. Joe Westcott added underline functionality and optimized image storage. Benoit KUGLER contributed support for rectangles with corners of unequal radius, modification times, and for file attachments and annotations. - Remove all legacy code page font support; use UTF-8 exclusively - Improve test coverage as reported by the coverage tool. Example demonstrates the generation of a simple PDF document. Note that since only core fonts are used (in this case Arial, a synonym for Helvetica), an empty string can be specified for the font directory in the call to New(). Note also that the example.Filename() and example.SummaryCompare() functions belong to a separate, internal package and are not part of the gofpdf library. If an error occurs at some point during the construction of the document, subsequent method calls exit immediately and the error is finally retrieved with the output call where it can be handled by the application.
The full goiardi documentation has been moved out of this file because it was getting too big to be easily manageable. It now uses sphinx to manage and format the documentation, which can be found under the `docs/` directory. To learn about sphinx-doc, see http://sphinx-doc.org/. The documentation can also be found online at http://goiardi.readthedocs.io/en/latest/. The godocs for goiardi are now focused on development and internals.
Golex is a lex/flex like (not fully POSIX lex compatible) utility. It renders .l formated data (http://flex.sourceforge.net/manual/Format.html#Format) to Go source code. The .l data can come from a file named in a command line argument. If no non-opt args are given, golex reads stdin. Options: To get the latest golex version: Please see http://godoc.org/github.com/cznic/golex/lex. 2014-11-18: Golex now supports %yym - a hook which can be used to mark an accepting state. Consider for example this .l file: Execution and output: 2014-11-15: Golex's output is now gofmt'ed, if possible. Missing/differing functionality of the current renderer (compared to flex): Further limitations on the .l source are listed in the cznic/lex package godocs. A simple golex program example (make example1 && ./example1):
Package mscfb implements a reader for Microsoft's Compound File Binary File Format (http://msdn.microsoft.com/en-us/library/dd942138.aspx). The Compound File Binary File Format is also known as the Object Linking and Embedding (OLE) or Component Object Model (COM) format and was used by many early MS software such as MS Office. Example:
Package siegfried identifies file formats Example:
Package bindata converts any file into manageable Go source code. Useful for embedding binary data into a go program. The file data is optionally gzip compressed before being converted to a raw byte slice. The following paragraphs cover some of the customization options which can be specified in the Config struct, which must be passed into the Translate() call. When used with the `Debug` option, the generated code does not actually include the asset data. Instead, it generates function stubs which load the data from the original file on disk. The asset API remains identical between debug and release builds, so your code will not have to change. This is useful during development when you expect the assets to change often. The host application using these assets uses the same API in both cases and will not have to care where the actual data comes from. An example is a Go webserver with some embedded, static web content like HTML, JS and CSS files. While developing it, you do not want to rebuild the whole server and restart it every time you make a change to a bit of javascript. You just want to build and launch the server once. Then just press refresh in the browser to see those changes. Embedding the assets with the `debug` flag allows you to do just that. When you are finished developing and ready for deployment, just re-invoke `go-bindata` without the `-debug` flag. It will now embed the latest version of the assets. The `NoMemCopy` option will alter the way the output file is generated. It will employ a hack that allows us to read the file data directly from the compiled program's `.rodata` section. This ensures that when we call call our generated function, we omit unnecessary memcopies. The downside of this, is that it requires dependencies on the `reflect` and `unsafe` packages. These may be restricted on platforms like AppEngine and thus prevent you from using this mode. Another disadvantage is that the byte slice we create, is strictly read-only. For most use-cases this is not a problem, but if you ever try to alter the returned byte slice, a runtime panic is thrown. Use this mode only on target platforms where memory constraints are an issue. The default behaviour is to use the old code generation method. This prevents the two previously mentioned issues, but will employ at least one extra memcopy and thus increase memory requirements. For instance, consider the following two examples: This would be the default mode, using an extra memcopy but gives a safe implementation without dependencies on `reflect` and `unsafe`: Here is the same functionality, but uses the `.rodata` hack. The byte slice returned from this example can not be written to without generating a runtime error. The NoCompress option indicates that the supplied assets are *not* GZIP compressed before being turned into Go code. The data should still be accessed through a function call, so nothing changes in the API. This feature is useful if you do not care for compression, or the supplied resource is already compressed. Doing it again would not add any value and may even increase the size of the data. The default behaviour of the program is to use compression. The keys used in the `_bindata` map are the same as the input file name passed to `go-bindata`. This includes the path. In most cases, this is not desirable, as it puts potentially sensitive information in your code base. For this purpose, the tool supplies another command line flag `-prefix`. This accepts a [regular expression](https://github.com/google/re2/wiki/Syntax) string, which will be used to match a portion of the map keys and function names that should be stripped out. For example, running without the `-prefix` flag, we get: Running with the `-prefix` flag, we get: With the optional Tags field, you can specify any go build tags that must be fulfilled for the output file to be included in a build. This is useful when including binary data in multiple formats, where the desired format is specified at build time with the appropriate tags. The tags are appended to a `// +build` line in the beginning of the output file and must follow the build tags syntax specified by the go tool. When you want to embed big files or plenty of files, then the generated output is really big (maybe over 3Mo). Even if the generated file shouldn't be read, you probably need use analysis tool or an editor which can become slower with a such file. Generating big files can be avoided with `-split` command line option. In that case, the given output is a directory path, the tool will generate one source file per file to embed, and it will generate a common file nammed `common.go` which contains commons parts like API.
Module mp4ff implements MP4 media file parsing and writing for AVC and HEVC video, AAC and AC-3 audio, stpp and wvtt subtitles, and timed metadata tracks. It is focused on fragmented files as used for streaming in MPEG-DASH, MSS and HLS fMP4, but can also decode and encode all boxes needed for progressive MP4 files. Some useful command line tools are available in [cmd](cmd) directory. You can install these tools by going to their respective directory and run `go install .` or directly from the repo with for each individual tool. Example code for some common use cases is available in the [examples](examples) directory. The examples and their functions are: The top-level packages in the mp4ff module are The main specification for the MP4 file format is the ISO Base Media File Format (ISOBMFF) standard ISO/IEC 14496-12 7th edition 2021. Some boxes are specified in other standards, as should be commented in the code.
Package well provides a framework that helps implementation of commands having these features: Better logging: By using github.com/cybozu-go/log package, logs can be structured in JSON or logfmt format. HTTP servers log accesses automatically. Graceful exit: The framework provides functions to manage goroutines and network server implementation that can be shutdown gracefully. Signal handlers: The framework installs SIGINT/SIGTERM signal handlers for graceful exit, and SIGUSR1 signal handler to reopen log files. Environment: Environment is the heart of the framework. It provides a base context.Context that will be canceled before program stops, and methods to manage goroutines. To use the framework easily, the framework provides an instance of Environment as the default, and functions to work with it. The most basic usage of the framework. HTTP server that stops gracefully.
Package rpm implements the rpm package file format. For more information about the rpm file format, see: http://ftp.rpm.org/max-rpm/s1-rpm-file-format-rpm-file-format.html Packages are composed of two headers: the Signature header and the "Header" header. Each contains key-value pairs called tags. Tags map an integer key to a value whose data type will be one of the TagType types. Tag values can be decoded with the appropriate Tag method for the data type. Many known tags are available as Package methods. For example, RPMTAG_NAME and RPMTAG_BUILDTIME are available as Package.Name and Package.BuildTime respectively. Tags can be retrieved and decoded from the Signature or Header headers directly using Header.GetTag and their tag identifier. Header.GetTag and all Tag methods will return a zero value if the header or the tag do not exist, or if the tag has a different data type. You may enumerate all tags in a header with Header.Tags: In the rpm ecosystem, package versions are compared using EVR; epoch, version, release. Versions may be compared using the Compare function. Packages may be be sorted using the PackageSlice type which implements sort.Interface. Packages are sorted lexically by name ascending and then by version descending. Version is evaluated first by epoch, then by version string, then by release. The Sort function is provided for your convenience. Packages may be validated using MD5Check or GPGCheck. See the example for each function. The payload of an rpm package is typically archived in cpio format and compressed with xz. To decompress and unarchive an rpm payload, the reader that read the rpm package headers will be positioned at the beginning of the payload and can be reused with the appropriate Go packages for the rpm payload format. You can check the archive format with Package.PayloadFormat and the compression algorithm with Package.PayloadCompression. For the cpio archive format, the following package is recommended: https://github.com/cavaliergopher/cpio For xz compression, the following package is recommended: https://github.com/ulikunitz/xz See README.md for a working example of extracting files from a cpio/xz rpm package using these packages. See cmd/rpmdump and cmd/rpminfo for example programs that emulate tools from the rpm ecosystem.
Package goreadme generates readme markdown file from go doc. The package can be used as a command line tool and as Github action, described below: Github actions can be configured to update the README file automatically every time it is needed. Below there is an example that on every time a new change is pushed to the main branch, the action is trigerred, generates a new README file, and if there is a change - commits and pushes it to the main branch. In pull requests that affect the README content, if the `GITHUB_TOKEN` is given, the action will post a comment on the pull request with changes that will be made to the README file. To use this with Github actions, add the following content to `.github/workflows/goreadme.yml`. See ./action.yml for all available input options. Use as a command line tool Both Go doc and readme files are important. Go doc to be used by your user's library, and README file to welcome users to use your library. They share common content, which is usually duplicated from the doc to the readme or vice versa once the library is ready. The problem is that keeping documentation updated is important, and hard enough - keeping both updated is twice as hard. The formatting of the README.md is done by the go doc parser. This makes the result README.md a bit more limited. Currently, `goreadme` supports the formatting as explained in (godoc page) https://blog.golang.org/godoc-documenting-go-code, or (here) https://pkg.go.dev/github.com/fluhus/godoc-tricks. Meaning: * A header is a single line that is separated from a paragraph above. * Code block is recognized by indentation as Go code. * Inline code is marked with `backticks`. * URLs will just automatically be converted to links: https://github.com/posener/goreadme Additionally, the syntax was extended to include some more markdown features while keeping the Go doc readable: * Bulleted and numbered lists are possible when each bullet item is followed by an empty line. * Diff blocks are automatically detected when each line in a code block starts with a `' '`, `'-'` or `'+'`: * A repository file can be linked when providing a path that start with `./`: ./goreadme.go. * A link can have a link text by prefixing it with parenthesised text: (goreadme page) https://github.com/posener/goreadme. * A link to repository file and can have a link text: (goreadme main file) ./goreamde.go. * An image can be added by prefixing a link to an image with `(image/<image title>)`: (image/title of image) https://github.githubassets.com/images/icons/emoji/unicode/1f44c.png The goreadme tests the test cases in the ./testdata directory. It generates readme files for all the packages in that directory and asserts that the result readme matches the existing one. When modifying goreadme behavior, there is no need to manually change these readme files. It is possible to run `WRITE_READMES=1 go test ./...` which regenerates them and check the changes match the expected (optionally using `git diff`).
Package gcfg reads "INI-style" text-based configuration files with "name=value" pairs grouped into sections (gcfg files). This package is still a work in progress; see the sections below for planned changes. The syntax is based on that used by git config: http://git-scm.com/docs/git-config#_syntax . There are some (planned) differences compared to the git config format: The functions in this package read values into a user-defined struct. Each section corresponds to a struct field in the config struct, and each variable in a section corresponds to a data field in the section struct. The mapping of each section or variable name to fields is done either based on the "gcfg" struct tag or by matching the name of the section or variable, ignoring case. In the latter case, hyphens '-' in section and variable names correspond to underscores '_' in field names. Fields must be exported; to use a section or variable name starting with a letter that is neither upper- or lower-case, prefix the field name with 'X'. (See https://code.google.com/p/go/issues/detail?id=5763#c4 .) For sections with subsections, the corresponding field in config must be a map, rather than a struct, with string keys and pointer-to-struct values. Values for subsection variables are stored in the map with the subsection name used as the map key. (Note that unlike section and variable names, subsection names are case sensitive.) When using a map, and there is a section with the same section name but without a subsection name, its values are stored with the empty string used as the key. It is possible to provide default values for subsections in the section "default-<sectionname>" (or by setting values in the corresponding struct field "Default_<sectionname>"). The functions in this package panic if config is not a pointer to a struct, or when a field is not of a suitable type (either a struct or a map with string keys and pointer-to-struct values). The section structs in the config struct may contain single-valued or multi-valued variables. Variables of unnamed slice type (that is, a type starting with `[]`) are treated as multi-value; all others (including named slice types) are treated as single-valued variables. Single-valued variables are handled based on the type as follows. Unnamed pointer types (that is, types starting with `*`) are dereferenced, and if necessary, a new instance is allocated. For types implementing the encoding.TextUnmarshaler interface, the UnmarshalText method is used to set the value. Implementing this method is the recommended way for parsing user-defined types. For fields of string kind, the value string is assigned to the field, after unquoting and unescaping as needed. For fields of bool kind, the field is set to true if the value is "true", "yes", "on" or "1", and set to false if the value is "false", "no", "off" or "0", ignoring case. In addition, single-valued bool fields can be specified with a "blank" value (variable name without equals sign and value); in such case the value is set to true. Predefined integer types [u]int(|8|16|32|64) and big.Int are parsed as decimal or hexadecimal (if having '0x' prefix). (This is to prevent unintuitively handling zero-padded numbers as octal.) Other types having [u]int* as the underlying type, such as os.FileMode and uintptr allow decimal, hexadecimal, or octal values. Parsing mode for integer types can be overridden using the struct tag option ",int=mode" where mode is a combination of the 'd', 'h', and 'o' characters (each standing for decimal, hexadecimal, and octal, respectively.) All other types are parsed using fmt.Sscanf with the "%v" verb. For multi-valued variables, each individual value is parsed as above and appended to the slice. If the first value is specified as a "blank" value (variable name without equals sign and value), a new slice is allocated; that is any values previously set in the slice will be ignored. The types subpackage for provides helpers for parsing "enum-like" and integer types. There are 3 types of errors: Programmer errors trigger panics. These are should be fixed by the programmer before releasing code that uses gcfg. Data errors cause gcfg to return a non-nil error value. This includes the case when there are extra unknown key-value definitions in the configuration data (extra data). However, in some occasions it is desirable to be able to proceed in situations when the only data error is that of extra data. These errors are handled at a different (warning) priority and can be filtered out programmatically. To ignore extra data warnings, wrap the gcfg.Read*Into invocation into a call to gcfg.FatalOnly. The following is a list of changes under consideration:
Package ql implements a pure Go embedded SQL database engine. Builder results available at QL is a member of the SQL family of languages. It is less complex and less powerful than SQL (whichever specification SQL is considered to be). 2020-12-10: sql/database driver now supports url parameter removeemptywal=N which has the same semantics as passing RemoveEmptyWAL = N != 0 to OpenFile options. 2020-11-09: Add IF NOT EXISTS support for the INSERT INTO statement. Add IsDuplicateUniqueIndexError function. 2018-11-04: Back end file format V2 is now released. To use the new format for newly created databases set the FileFormat field in *Options passed to OpenFile to value 2 or use the driver named "ql2" instead of "ql". - Both the old and new driver will properly open and use, read and write the old (V1) or new file (V2) format of an existing database. - V1 format has a record size limit of ~64 kB. V2 format record size limit is math.MaxInt32. - V1 format uncommitted transaction size is limited by memory resources. V2 format uncommitted transaction is limited by free disk space. - A direct consequence of the previous is that small transactions perform better using V1 format and big transactions perform better using V2 format. - V2 format uses substantially less memory. 2018-08-02: Release v1.2.0 adds initial support for Go modules. 2017-01-10: Release v1.1.0 fixes some bugs and adds a configurable WAL headroom. 2016-07-29: Release v1.0.6 enables alternatively using = instead of == for equality operation. 2016-07-11: Release v1.0.5 undoes vendoring of lldb. QL now uses stable lldb (modernc.org/lldb). 2016-07-06: Release v1.0.4 fixes a panic when closing the WAL file. 2016-04-03: Release v1.0.3 fixes a data race. 2016-03-23: Release v1.0.2 vendors gitlab.com/cznic/exp/lldb and github.com/camlistore/go4/lock. 2016-03-17: Release v1.0.1 adjusts for latest goyacc. Parser error messages are improved and changed, but their exact form is not considered a API change. 2016-03-05: The current version has been tagged v1.0.0. 2015-06-15: To improve compatibility with other SQL implementations, the count built-in aggregate function now accepts * as its argument. 2015-05-29: The execution planner was rewritten from scratch. It should use indices in all places where they were used before plus in some additional situations. It is possible to investigate the plan using the newly added EXPLAIN statement. The QL tool is handy for such analysis. If the planner would have used an index, but no such exists, the plan includes hints in form of copy/paste ready CREATE INDEX statements. The planner is still quite simple and a lot of work on it is yet ahead. You can help this process by filling an issue with a schema and query which fails to use an index or indices when it should, in your opinion. Bonus points for including output of `ql 'explain <query>'`. 2015-05-09: The grammar of the CREATE INDEX statement now accepts an expression list instead of a single expression, which was further limited to just a column name or the built-in id(). As a side effect, composite indices are now functional. However, the values in the expression-list style index are not yet used by other statements or the statement/query planner. The composite index is useful while having UNIQUE clause to check for semantically duplicate rows before they get added to the table or when such a row is mutated using the UPDATE statement and the expression-list style index tuple of the row is thus recomputed. 2015-05-02: The Schema field of table __Table now correctly reflects any column constraints and/or defaults. Also, the (*DB).Info method now has that information provided in new ColumInfo fields NotNull, Constraint and Default. 2015-04-20: Added support for {LEFT,RIGHT,FULL} [OUTER] JOIN. 2015-04-18: Column definitions can now have constraints and defaults. Details are discussed in the "Constraints and defaults" chapter below the CREATE TABLE statement documentation. 2015-03-06: New built-in functions formatFloat and formatInt. Thanks urandom! (https://github.com/urandom) 2015-02-16: IN predicate now accepts a SELECT statement. See the updated "Predicates" section. 2015-01-17: Logical operators || and && have now alternative spellings: OR and AND (case insensitive). AND was a keyword before, but OR is a new one. This can possibly break existing queries. For the record, it's a good idea to not use any name appearing in, for example, [7] in your queries as the list of QL's keywords may expand for gaining better compatibility with existing SQL "standards". 2015-01-12: ACID guarantees were tightened at the cost of performance in some cases. The write collecting window mechanism, a formerly used implementation detail, was removed. Inserting rows one by one in a transaction is now slow. I mean very slow. Try to avoid inserting single rows in a transaction. Instead, whenever possible, perform batch updates of tens to, say thousands of rows in a single transaction. See also: http://www.sqlite.org/faq.html#q19, the discussed synchronization principles involved are the same as for QL, modulo minor details. Note: A side effect is that closing a DB before exiting an application, both for the Go API and through database/sql driver, is no more required, strictly speaking. Beware that exiting an application while there is an open (uncommitted) transaction in progress means losing the transaction data. However, the DB will not become corrupted because of not closing it. Nor that was the case before, but formerly failing to close a DB could have resulted in losing the data of the last transaction. 2014-09-21: id() now optionally accepts a single argument - a table name. 2014-09-01: Added the DB.Flush() method and the LIKE pattern matching predicate. 2014-08-08: The built in functions max and min now accept also time values. Thanks opennota! (https://github.com/opennota) 2014-06-05: RecordSet interface extended by new methods FirstRow and Rows. 2014-06-02: Indices on id() are now used by SELECT statements. 2014-05-07: Introduction of Marshal, Schema, Unmarshal. 2014-04-15: Added optional IF NOT EXISTS clause to CREATE INDEX and optional IF EXISTS clause to DROP INDEX. 2014-04-12: The column Unique in the virtual table __Index was renamed to IsUnique because the old name is a keyword. Unfortunately, this is a breaking change, sorry. 2014-04-11: Introduction of LIMIT, OFFSET. 2014-04-10: Introduction of query rewriting. 2014-04-07: Introduction of indices. QL imports zappy[8], a block-based compressor, which speeds up its performance by using a C version of the compression/decompression algorithms. If a CGO-free (pure Go) version of QL, or an app using QL, is required, please include 'purego' in the -tags option of go {build,get,install}. For example: If zappy was installed before installing QL, it might be necessary to rebuild zappy first (or rebuild QL with all its dependencies using the -a option): The syntax is specified using Extended Backus-Naur Form (EBNF) Lower-case production names are used to identify lexical tokens. Non-terminals are in CamelCase. Lexical tokens are enclosed in double quotes "" or back quotes “. The form a … b represents the set of characters from a through b as alternatives. The horizontal ellipsis … is also used elsewhere in the spec to informally denote various enumerations or code snippets that are not further specified. QL source code is Unicode text encoded in UTF-8. The text is not canonicalized, so a single accented code point is distinct from the same character constructed from combining an accent and a letter; those are treated as two code points. For simplicity, this document will use the unqualified term character to refer to a Unicode code point in the source text. Each code point is distinct; for instance, upper and lower case letters are different characters. Implementation restriction: For compatibility with other tools, the parser may disallow the NUL character (U+0000) in the statement. Implementation restriction: A byte order mark is disallowed anywhere in QL statements. The following terms are used to denote specific character classes The underscore character _ (U+005F) is considered a letter. Lexical elements are comments, tokens, identifiers, keywords, operators and delimiters, integer, floating-point, imaginary, rune and string literals and QL parameters. Line comments start with the character sequence // or -- and stop at the end of the line. A line comment acts like a space. General comments start with the character sequence /* and continue through the character sequence */. A general comment acts like a space. Comments do not nest. Tokens form the vocabulary of QL. There are four classes: identifiers, keywords, operators and delimiters, and literals. White space, formed from spaces (U+0020), horizontal tabs (U+0009), carriage returns (U+000D), and newlines (U+000A), is ignored except as it separates tokens that would otherwise combine into a single token. The formal grammar uses semicolons ";" as separators of QL statements. A single QL statement or the last QL statement in a list of statements can have an optional semicolon terminator. (Actually a separator from the following empty statement.) Identifiers name entities such as tables or record set columns. There are two kinds of identifiers, normal idententifiers and quoted identifiers. An normal identifier is a sequence of one or more letters and digits. The first character in an identifier must be a letter. For example A quoted identifier is a string of any charaters between guillmets «». Quoted identifiers allow QL key words or phrases with spaces to be used as identifiers. The guillemets were chosen because QL already uses double quotes, single quotes, and backticks for other quoting purposes. «TRANSACTION» «duration» «lovely stories» No identifiers are predeclared, however note that no keyword can be used as a normal identifier. Identifiers starting with two underscores are used for meta data virtual tables names. For forward compatibility, users should generally avoid using any identifiers starting with two underscores. For example The following keywords are reserved and may not be used as identifiers. Keywords are not case sensitive. The following character sequences represent operators, delimiters, and other special tokens Operators consisting of more than one character are referred to by names in the rest of the documentation An integer literal is a sequence of digits representing an integer constant. An optional prefix sets a non-decimal base: 0 for octal, 0x or 0X for hexadecimal. In hexadecimal literals, letters a-f and A-F represent values 10 through 15. For example A floating-point literal is a decimal representation of a floating-point constant. It has an integer part, a decimal point, a fractional part, and an exponent part. The integer and fractional part comprise decimal digits; the exponent part is an e or E followed by an optionally signed decimal exponent. One of the integer part or the fractional part may be elided; one of the decimal point or the exponent may be elided. For example An imaginary literal is a decimal representation of the imaginary part of a complex constant. It consists of a floating-point literal or decimal integer followed by the lower-case letter i. For example A rune literal represents a rune constant, an integer value identifying a Unicode code point. A rune literal is expressed as one or more characters enclosed in single quotes. Within the quotes, any character may appear except single quote and newline. A single quoted character represents the Unicode value of the character itself, while multi-character sequences beginning with a backslash encode values in various formats. The simplest form represents the single character within the quotes; since QL statements are Unicode characters encoded in UTF-8, multiple UTF-8-encoded bytes may represent a single integer value. For instance, the literal 'a' holds a single byte representing a literal a, Unicode U+0061, value 0x61, while 'ä' holds two bytes (0xc3 0xa4) representing a literal a-dieresis, U+00E4, value 0xe4. Several backslash escapes allow arbitrary values to be encoded as ASCII text. There are four ways to represent the integer value as a numeric constant: \x followed by exactly two hexadecimal digits; \u followed by exactly four hexadecimal digits; \U followed by exactly eight hexadecimal digits, and a plain backslash \ followed by exactly three octal digits. In each case the value of the literal is the value represented by the digits in the corresponding base. Although these representations all result in an integer, they have different valid ranges. Octal escapes must represent a value between 0 and 255 inclusive. Hexadecimal escapes satisfy this condition by construction. The escapes \u and \U represent Unicode code points so within them some values are illegal, in particular those above 0x10FFFF and surrogate halves. After a backslash, certain single-character escapes represent special values All other sequences starting with a backslash are illegal inside rune literals. For example A string literal represents a string constant obtained from concatenating a sequence of characters. There are two forms: raw string literals and interpreted string literals. Raw string literals are character sequences between back quotes “. Within the quotes, any character is legal except back quote. The value of a raw string literal is the string composed of the uninterpreted (implicitly UTF-8-encoded) characters between the quotes; in particular, backslashes have no special meaning and the string may contain newlines. Carriage returns inside raw string literals are discarded from the raw string value. Interpreted string literals are character sequences between double quotes "". The text between the quotes, which may not contain newlines, forms the value of the literal, with backslash escapes interpreted as they are in rune literals (except that \' is illegal and \" is legal), with the same restrictions. The three-digit octal (\nnn) and two-digit hexadecimal (\xnn) escapes represent individual bytes of the resulting string; all other escapes represent the (possibly multi-byte) UTF-8 encoding of individual characters. Thus inside a string literal \377 and \xFF represent a single byte of value 0xFF=255, while ÿ, \u00FF, \U000000FF and \xc3\xbf represent the two bytes 0xc3 0xbf of the UTF-8 encoding of character U+00FF. For example These examples all represent the same string If the statement source represents a character as two code points, such as a combining form involving an accent and a letter, the result will be an error if placed in a rune literal (it is not a single code point), and will appear as two code points if placed in a string literal. Literals are assigned their values from the respective text representation at "compile" (parse) time. QL parameters provide the same functionality as literals, but their value is assigned at execution time from an expression list passed to DB.Run or DB.Execute. Using '?' or '$' is completely equivalent. For example Keywords 'false' and 'true' (not case sensitive) represent the two possible constant values of type bool (also not case sensitive). Keyword 'NULL' (not case sensitive) represents an untyped constant which is assignable to any type. NULL is distinct from any other value of any type. A type determines the set of values and operations specific to values of that type. A type is specified by a type name. Named instances of the boolean, numeric, and string types are keywords. The names are not case sensitive. Note: The blob type is exchanged between the back end and the API as []byte. On 32 bit platforms this limits the size which the implementation can handle to 2G. A boolean type represents the set of Boolean truth values denoted by the predeclared constants true and false. The predeclared boolean type is bool. A duration type represents the elapsed time between two instants as an int64 nanosecond count. The representation limits the largest representable duration to approximately 290 years. A numeric type represents sets of integer or floating-point values. The predeclared architecture-independent numeric types are The value of an n-bit integer is n bits wide and represented using two's complement arithmetic. Conversions are required when different numeric types are mixed in an expression or assignment. A string type represents the set of string values. A string value is a (possibly empty) sequence of bytes. The case insensitive keyword for the string type is 'string'. The length of a string (its size in bytes) can be discovered using the built-in function len. A time type represents an instant in time with nanosecond precision. Each time has associated with it a location, consulted when computing the presentation form of the time. The following functions are implicitly declared An expression specifies the computation of a value by applying operators and functions to operands. Operands denote the elementary values in an expression. An operand may be a literal, a (possibly qualified) identifier denoting a constant or a function or a table/record set column, or a parenthesized expression. A qualified identifier is an identifier qualified with a table/record set name prefix. For example Primary expression are the operands for unary and binary expressions. For example A primary expression of the form denotes the element of a string indexed by x. Its type is byte. The value x is called the index. The following rules apply - The index x must be of integer type except bigint or duration; it is in range if 0 <= x < len(s), otherwise it is out of range. - A constant index must be non-negative and representable by a value of type int. - A constant index must be in range if the string a is a literal. - If x is out of range at run time, a run-time error occurs. - s[x] is the byte at index x and the type of s[x] is byte. If s is NULL or x is NULL then the result is NULL. Otherwise s[x] is illegal. For a string, the primary expression constructs a substring. The indices low and high select which elements appear in the result. The result has indices starting at 0 and length equal to high - low. For convenience, any of the indices may be omitted. A missing low index defaults to zero; a missing high index defaults to the length of the sliced operand The indices low and high are in range if 0 <= low <= high <= len(a), otherwise they are out of range. A constant index must be non-negative and representable by a value of type int. If both indices are constant, they must satisfy low <= high. If the indices are out of range at run time, a run-time error occurs. Integer values of type bigint or duration cannot be used as indices. If s is NULL the result is NULL. If low or high is not omitted and is NULL then the result is NULL. Given an identifier f denoting a predeclared function, calls f with arguments a1, a2, … an. Arguments are evaluated before the function is called. The type of the expression is the result type of f. In a function call, the function value and arguments are evaluated in the usual order. After they are evaluated, the parameters of the call are passed by value to the function and the called function begins execution. The return value of the function is passed by value when the function returns. Calling an undefined function causes a compile-time error. Operators combine operands into expressions. Comparisons are discussed elsewhere. For other binary operators, the operand types must be identical unless the operation involves shifts or untyped constants. For operations involving constants only, see the section on constant expressions. Except for shift operations, if one operand is an untyped constant and the other operand is not, the constant is converted to the type of the other operand. The right operand in a shift expression must have unsigned integer type or be an untyped constant that can be converted to unsigned integer type. If the left operand of a non-constant shift expression is an untyped constant, the type of the constant is what it would be if the shift expression were replaced by its left operand alone. Expressions of the form yield a boolean value true if expr2, a regular expression, matches expr1 (see also [6]). Both expression must be of type string. If any one of the expressions is NULL the result is NULL. Predicates are special form expressions having a boolean result type. Expressions of the form are equivalent, including NULL handling, to The types of involved expressions must be comparable as defined in "Comparison operators". Another form of the IN predicate creates the expression list from a result of a SelectStmt. The SelectStmt must select only one column. The produced expression list is resource limited by the memory available to the process. NULL values produced by the SelectStmt are ignored, but if all records of the SelectStmt are NULL the predicate yields NULL. The select statement is evaluated only once. If the type of expr is not the same as the type of the field returned by the SelectStmt then the set operation yields false. The type of the column returned by the SelectStmt must be one of the simple (non blob-like) types: Expressions of the form are equivalent, including NULL handling, to The types of involved expressions must be ordered as defined in "Comparison operators". Expressions of the form yield a boolean value true if expr does not have a specific type (case A) or if expr has a specific type (case B). In other cases the result is a boolean value false. Unary operators have the highest precedence. There are five precedence levels for binary operators. Multiplication operators bind strongest, followed by addition operators, comparison operators, && (logical AND), and finally || (logical OR) Binary operators of the same precedence associate from left to right. For instance, x / y * z is the same as (x / y) * z. Note that the operator precedence is reflected explicitly by the grammar. Arithmetic operators apply to numeric values and yield a result of the same type as the first operand. The four standard arithmetic operators (+, -, *, /) apply to integer, rational, floating-point, and complex types; + also applies to strings; +,- also applies to times. All other arithmetic operators apply to integers only. sum integers, rationals, floats, complex values, strings difference integers, rationals, floats, complex values, times product integers, rationals, floats, complex values / quotient integers, rationals, floats, complex values % remainder integers & bitwise AND integers | bitwise OR integers ^ bitwise XOR integers &^ bit clear (AND NOT) integers << left shift integer << unsigned integer >> right shift integer >> unsigned integer Strings can be concatenated using the + operator String addition creates a new string by concatenating the operands. A value of type duration can be added to or subtracted from a value of type time. Times can subtracted from each other producing a value of type duration. For two integer values x and y, the integer quotient q = x / y and remainder r = x % y satisfy the following relationships with x / y truncated towards zero ("truncated division"). As an exception to this rule, if the dividend x is the most negative value for the int type of x, the quotient q = x / -1 is equal to x (and r = 0). If the divisor is a constant expression, it must not be zero. If the divisor is zero at run time, a run-time error occurs. If the dividend is non-negative and the divisor is a constant power of 2, the division may be replaced by a right shift, and computing the remainder may be replaced by a bitwise AND operation The shift operators shift the left operand by the shift count specified by the right operand. They implement arithmetic shifts if the left operand is a signed integer and logical shifts if it is an unsigned integer. There is no upper limit on the shift count. Shifts behave as if the left operand is shifted n times by 1 for a shift count of n. As a result, x << 1 is the same as x*2 and x >> 1 is the same as x/2 but truncated towards negative infinity. For integer operands, the unary operators +, -, and ^ are defined as follows For floating-point and complex numbers, +x is the same as x, while -x is the negation of x. The result of a floating-point or complex division by zero is not specified beyond the IEEE-754 standard; whether a run-time error occurs is implementation-specific. Whenever any operand of any arithmetic operation, unary or binary, is NULL, as well as in the case of the string concatenating operation, the result is NULL. For unsigned integer values, the operations +, -, *, and << are computed modulo 2n, where n is the bit width of the unsigned integer's type. Loosely speaking, these unsigned integer operations discard high bits upon overflow, and expressions may rely on “wrap around”. For signed integers with a finite bit width, the operations +, -, *, and << may legally overflow and the resulting value exists and is deterministically defined by the signed integer representation, the operation, and its operands. No exception is raised as a result of overflow. An evaluator may not optimize an expression under the assumption that overflow does not occur. For instance, it may not assume that x < x + 1 is always true. Integers of type bigint and rationals do not overflow but their handling is limited by the memory resources available to the program. Comparison operators compare two operands and yield a boolean value. In any comparison, the first operand must be of same type as is the second operand, or vice versa. The equality operators == and != apply to operands that are comparable. The ordering operators <, <=, >, and >= apply to operands that are ordered. These terms and the result of the comparisons are defined as follows - Boolean values are comparable. Two boolean values are equal if they are either both true or both false. - Complex values are comparable. Two complex values u and v are equal if both real(u) == real(v) and imag(u) == imag(v). - Integer values are comparable and ordered, in the usual way. Note that durations are integers. - Floating point values are comparable and ordered, as defined by the IEEE-754 standard. - Rational values are comparable and ordered, in the usual way. - String and Blob values are comparable and ordered, lexically byte-wise. - Time values are comparable and ordered. Whenever any operand of any comparison operation is NULL, the result is NULL. Note that slices are always of type string. Logical operators apply to boolean values and yield a boolean result. The right operand is evaluated conditionally. The truth tables for logical operations with NULL values Conversions are expressions of the form T(x) where T is a type and x is an expression that can be converted to type T. A constant value x can be converted to type T in any of these cases: - x is representable by a value of type T. - x is a floating-point constant, T is a floating-point type, and x is representable by a value of type T after rounding using IEEE 754 round-to-even rules. The constant T(x) is the rounded value. - x is an integer constant and T is a string type. The same rule as for non-constant x applies in this case. Converting a constant yields a typed constant as result. A non-constant value x can be converted to type T in any of these cases: - x has type T. - x's type and T are both integer or floating point types. - x's type and T are both complex types. - x is an integer, except bigint or duration, and T is a string type. Specific rules apply to (non-constant) conversions between numeric types or to and from a string type. These conversions may change the representation of x and incur a run-time cost. All other conversions only change the type but not the representation of x. A conversion of NULL to any type yields NULL. For the conversion of non-constant numeric values, the following rules apply 1. When converting between integer types, if the value is a signed integer, it is sign extended to implicit infinite precision; otherwise it is zero extended. It is then truncated to fit in the result type's size. For example, if v == uint16(0x10F0), then uint32(int8(v)) == 0xFFFFFFF0. The conversion always yields a valid value; there is no indication of overflow. 2. When converting a floating-point number to an integer, the fraction is discarded (truncation towards zero). 3. When converting an integer or floating-point number to a floating-point type, or a complex number to another complex type, the result value is rounded to the precision specified by the destination type. For instance, the value of a variable x of type float32 may be stored using additional precision beyond that of an IEEE-754 32-bit number, but float32(x) represents the result of rounding x's value to 32-bit precision. Similarly, x + 0.1 may use more than 32 bits of precision, but float32(x + 0.1) does not. In all non-constant conversions involving floating-point or complex values, if the result type cannot represent the value the conversion succeeds but the result value is implementation-dependent. 1. Converting a signed or unsigned integer value to a string type yields a string containing the UTF-8 representation of the integer. Values outside the range of valid Unicode code points are converted to "\uFFFD". 2. Converting a blob to a string type yields a string whose successive bytes are the elements of the blob. 3. Converting a value of a string type to a blob yields a blob whose successive elements are the bytes of the string. 4. Converting a value of a bigint type to a string yields a string containing the decimal decimal representation of the integer. 5. Converting a value of a string type to a bigint yields a bigint value containing the integer represented by the string value. A prefix of “0x” or “0X” selects base 16; the “0” prefix selects base 8, and a “0b” or “0B” prefix selects base 2. Otherwise the value is interpreted in base 10. An error occurs if the string value is not in any valid format. 6. Converting a value of a rational type to a string yields a string containing the decimal decimal representation of the rational in the form "a/b" (even if b == 1). 7. Converting a value of a string type to a bigrat yields a bigrat value containing the rational represented by the string value. The string can be given as a fraction "a/b" or as a floating-point number optionally followed by an exponent. An error occurs if the string value is not in any valid format. 8. Converting a value of a duration type to a string returns a string representing the duration in the form "72h3m0.5s". Leading zero units are omitted. As a special case, durations less than one second format using a smaller unit (milli-, micro-, or nanoseconds) to ensure that the leading digit is non-zero. The zero duration formats as 0, with no unit. 9. Converting a string value to a duration yields a duration represented by the string. A duration string is a possibly signed sequence of decimal numbers, each with optional fraction and a unit suffix, such as "300ms", "-1.5h" or "2h45m". Valid time units are "ns", "us" (or "µs"), "ms", "s", "m", "h". 10. Converting a time value to a string returns the time formatted using the format string When evaluating the operands of an expression or of function calls, operations are evaluated in lexical left-to-right order. For example, in the evaluation of the function calls and evaluation of c happen in the order h(), i(), j(), c. Floating-point operations within a single expression are evaluated according to the associativity of the operators. Explicit parentheses affect the evaluation by overriding the default associativity. In the expression x + (y + z) the addition y + z is performed before adding x. Statements control execution. The empty statement does nothing. Alter table statements modify existing tables. With the ADD clause it adds a new column to the table. The column must not exist. With the DROP clause it removes an existing column from a table. The column must exist and it must be not the only (last) column of the table. IOW, there cannot be a table with no columns. For example When adding a column to a table with existing data, the constraint clause of the ColumnDef cannot be used. Adding a constrained column to an empty table is fine. Begin transactions statements introduce a new transaction level. Every transaction level must be eventually balanced by exactly one of COMMIT or ROLLBACK statements. Note that when a transaction is roll-backed because of a statement failure then no explicit balancing of the respective BEGIN TRANSACTION is statement is required nor permitted. Failure to properly balance any opened transaction level may cause dead locks and/or lose of data updated in the uppermost opened but never properly closed transaction level. For example A database cannot be updated (mutated) outside of a transaction. Statements requiring a transaction A database is effectively read only outside of a transaction. Statements not requiring a transaction The commit statement closes the innermost transaction nesting level. If that's the outermost level then the updates to the DB made by the transaction are atomically made persistent. For example Create index statements create new indices. Index is a named projection of ordered values of a table column to the respective records. As a special case the id() of the record can be indexed. Index name must not be the same as any of the existing tables and it also cannot be the same as of any column name of the table the index is on. For example Now certain SELECT statements may use the indices to speed up joins and/or to speed up record set filtering when the WHERE clause is used; or the indices might be used to improve the performance when the ORDER BY clause is present. The UNIQUE modifier requires the indexed values tuple to be index-wise unique or have all values NULL. The optional IF NOT EXISTS clause makes the statement a no operation if the index already exists. A simple index consists of only one expression which must be either a column name or the built-in id(). A more complex and more general index is one that consists of more than one expression or its single expression does not qualify as a simple index. In this case the type of all expressions in the list must be one of the non blob-like types. Note: Blob-like types are blob, bigint, bigrat, time and duration. Create table statements create new tables. A column definition declares the column name and type. Table names and column names are case sensitive. Neither a table or an index of the same name may exist in the DB. For example The optional IF NOT EXISTS clause makes the statement a no operation if the table already exists. The optional constraint clause has two forms. The first one is found in many SQL dialects. This form prevents the data in column DepartmentName to be NULL. The second form allows an arbitrary boolean expression to be used to validate the column. If the value of the expression is true then the validation succeeded. If the value of the expression is false or NULL then the validation fails. If the value of the expression is not of type bool an error occurs. The optional DEFAULT clause is an expression which, if present, is substituted instead of a NULL value when the colum is assigned a value. Note that the constraint and/or default expressions may refer to other columns by name: When a table row is inserted by the INSERT INTO statement or when a table row is updated by the UPDATE statement, the order of operations is as follows: 1. The new values of the affected columns are set and the values of all the row columns become the named values which can be referred to in default expressions evaluated in step 2. 2. If any row column value is NULL and the DEFAULT clause is present in the column's definition, the default expression is evaluated and its value is set as the respective column value. 3. The values, potentially updated, of row columns become the named values which can be referred to in constraint expressions evaluated during step 4. 4. All row columns which definition has the constraint clause present will have that constraint checked. If any constraint violation is detected, the overall operation fails and no changes to the table are made. Delete from statements remove rows from a table, which must exist. For example If the WHERE clause is not present then all rows are removed and the statement is equivalent to the TRUNCATE TABLE statement. Drop index statements remove indices from the DB. The index must exist. For example The optional IF EXISTS clause makes the statement a no operation if the index does not exist. Drop table statements remove tables from the DB. The table must exist. For example The optional IF EXISTS clause makes the statement a no operation if the table does not exist. Insert into statements insert new rows into tables. New rows come from literal data, if using the VALUES clause, or are a result of select statement. In the later case the select statement is fully evaluated before the insertion of any rows is performed, allowing to insert values calculated from the same table rows are to be inserted into. If the ColumnNameList part is omitted then the number of values inserted in the row must be the same as are columns in the table. If the ColumnNameList part is present then the number of values per row must be same as the same number of column names. All other columns of the record are set to NULL. The type of the value assigned to a column must be the same as is the column's type or the value must be NULL. If there exists an unique index that would make the insert statement fail, the optional IF NOT EXISTS turns the insert statement in such case into a no-op. For example If any of the columns of the table were defined using the optional constraints clause or the optional defaults clause then those are processed on a per row basis. The details are discussed in the "Constraints and defaults" chapter below the CREATE TABLE statement documentation. Explain statement produces a recordset consisting of lines of text which describe the execution plan of a statement, if any. For example, the QL tool treats the explain statement specially and outputs the joined lines: The explanation may aid in uderstanding how a statement/query would be executed and if indices are used as expected - or which indices may possibly improve the statement performance. The create index statements above were directly copy/pasted in the terminal from the suggestions provided by the filter recordset pipeline part returned by the explain statement. If the statement has nothing special in its plan, the result is the original statement. To get an explanation of the select statement of the IN predicate, use the EXPLAIN statement with that particular select statement. The rollback statement closes the innermost transaction nesting level discarding any updates to the DB made by it. If that's the outermost level then the effects on the DB are as if the transaction never happened. For example The (temporary) record set from the last statement is returned and can be processed by the client. In this case the rollback is the same as 'DROP TABLE tmp;' but it can be a more complex operation. Select from statements produce recordsets. The optional DISTINCT modifier ensures all rows in the result recordset are unique. Either all of the resulting fields are returned ('*') or only those named in FieldList. RecordSetList is a list of table names or parenthesized select statements, optionally (re)named using the AS clause. The result can be filtered using a WhereClause and orderd by the OrderBy clause. For example If Recordset is a nested, parenthesized SelectStmt then it must be given a name using the AS clause if its field are to be accessible in expressions. A field is an named expression. Identifiers, not used as a type in conversion or a function name in the Call clause, denote names of (other) fields, values of which should be used in the expression. The expression can be named using the AS clause. If the AS clause is not present and the expression consists solely of a field name, then that field name is used as the name of the resulting field. Otherwise the field is unnamed. For example The SELECT statement can optionally enumerate the desired/resulting fields in a list. No two identical field names can appear in the list. When more than one record set is used in the FROM clause record set list, the result record set field names are rewritten to be qualified using the record set names. If a particular record set doesn't have a name, its respective fields became unnamed. The optional JOIN clause, for example is mostly equal to except that the rows from a which, when they appear in the cross join, never made expr to evaluate to true, are combined with a virtual row from b, containing all nulls, and added to the result set. For the RIGHT JOIN variant the discussed rules are used for rows from b not satisfying expr == true and the virtual, all-null row "comes" from a. The FULL JOIN adds the respective rows which would be otherwise provided by the separate executions of the LEFT JOIN and RIGHT JOIN variants. For more thorough OUTER JOIN discussion please see the Wikipedia article at [10]. Resultins rows of a SELECT statement can be optionally ordered by the ORDER BY clause. Collating proceeds by considering the expressions in the expression list left to right until a collating order is determined. Any possibly remaining expressions are not evaluated. All of the expression values must yield an ordered type or NULL. Ordered types are defined in "Comparison operators". Collating of elements having a NULL value is different compared to what the comparison operators yield in expression evaluation (NULL result instead of a boolean value). Below, T denotes a non NULL value of any QL type. NULL collates before any non NULL value (is considered smaller than T). Two NULLs have no collating order (are considered equal). The WHERE clause restricts records considered by some statements, like SELECT FROM, DELETE FROM, or UPDATE. It is an error if the expression evaluates to a non null value of non bool type. Another form of the WHERE clause is an existence predicate of a parenthesized select statement. The EXISTS form evaluates to true if the parenthesized SELECT statement produces a non empty record set. The NOT EXISTS form evaluates to true if the parenthesized SELECT statement produces an empty record set. The parenthesized SELECT statement is evaluated only once (TODO issue #159). The GROUP BY clause is used to project rows having common values into a smaller set of rows. For example Using the GROUP BY without any aggregate functions in the selected fields is in certain cases equal to using the DISTINCT modifier. The last two examples above produce the same resultsets. The optional OFFSET clause allows to ignore first N records. For example The above will produce only rows 11, 12, ... of the record set, if they exist. The value of the expression must a non negative integer, but not bigint or duration. The optional LIMIT clause allows to ignore all but first N records. For example The above will return at most the first 10 records of the record set. The value of the expression must a non negative integer, but not bigint or duration. The LIMIT and OFFSET clauses can be combined. For example Considering table t has, say 10 records, the above will produce only records 4 - 8. After returning record #8, no more result rows/records are computed. 1. The FROM clause is evaluated, producing a Cartesian product of its source record sets (tables or nested SELECT statements). 2. If present, the JOIN cluase is evaluated on the result set of the previous evaluation and the recordset specified by the JOIN clause. (... JOIN Recordset ON ...) 3. If present, the WHERE clause is evaluated on the result set of the previous evaluation. 4. If present, the GROUP BY clause is evaluated on the result set of the previous evaluation(s). 5. The SELECT field expressions are evaluated on the result set of the previous evaluation(s). 6. If present, the DISTINCT modifier is evaluated on the result set of the previous evaluation(s). 7. If present, the ORDER BY clause is evaluated on the result set of the previous evaluation(s). 8. If present, the OFFSET clause is evaluated on the result set of the previous evaluation(s). The offset expression is evaluated once for the first record produced by the previous evaluations. 9. If present, the LIMIT clause is evaluated on the result set of the previous evaluation(s). The limit expression is evaluated once for the first record produced by the previous evaluations. Truncate table statements remove all records from a table. The table must exist. For example Update statements change values of fields in rows of a table. For example Note: The SET clause is optional. If any of the columns of the table were defined using the optional constraints clause or the optional defaults clause then those are processed on a per row basis. The details are discussed in the "Constraints and defaults" chapter below the CREATE TABLE statement documentation. To allow to query for DB meta data, there exist specially named tables, some of them being virtual. Note: Virtual system tables may have fake table-wise unique but meaningless and unstable record IDs. Do not apply the built-in id() to any system table. The table __Table lists all tables in the DB. The schema is The Schema column returns the statement to (re)create table Name. This table is virtual. The table __Colum lists all columns of all tables in the DB. The schema is The Ordinal column defines the 1-based index of the column in the record. This table is virtual. The table __Colum2 lists all columns of all tables in the DB which have the constraint NOT NULL or which have a constraint expression defined or which have a default expression defined. The schema is It's possible to obtain a consolidated recordset for all properties of all DB columns using The Name column is the column name in TableName. The table __Index lists all indices in the DB. The schema is The IsUnique columns reflects if the index was created using the optional UNIQUE clause. This table is virtual. Built-in functions are predeclared. The built-in aggregate function avg returns the average of values of an expression. Avg ignores NULL values, but returns NULL if all values of a column are NULL or if avg is applied to an empty record set. The column values must be of a numeric type. The built-in function coalesce takes at least one argument and returns the first of its arguments which is not NULL. If all arguments are NULL, this function returns NULL. This is useful for providing defaults for NULL values in a select query. The built-in function contains returns true if substr is within s. If any argument to contains is NULL the result is NULL. The built-in aggregate function count returns how many times an expression has a non NULL values or the number of rows in a record set. Note: count() returns 0 for an empty record set. For example Date returns the time corresponding to in the appropriate zone for that time in the given location. The month, day, hour, min, sec, and nsec values may be outside their usual ranges and will be normalized during the conversion. For example, October 32 converts to November 1. A daylight savings time transition skips or repeats times. For example, in the United States, March 13, 2011 2:15am never occurred, while November 6, 2011 1:15am occurred twice. In such cases, the choice of time zone, and therefore the time, is not well-defined. Date returns a time that is correct in one of the two zones involved in the transition, but it does not guarantee which. A location maps time instants to the zone in use at that time. Typically, the location represents the collection of time offsets in use in a geographical area, such as "CEST" and "CET" for central Europe. "local" represents the system's local time zone. "UTC" represents Universal Coordinated Time (UTC). The month specifies a month of the year (January = 1, ...). If any argument to date is NULL the result is NULL. The built-in function day returns the day of the month specified by t. If the argument to day is NULL the result is NULL. The built-in function formatTime returns a textual representation of the time value formatted according to layout, which defines the format by showing how the reference time, would be displayed if it were the value; it serves as an example of the desired output. The same display rules will then be applied to the time value. If any argument to formatTime is NULL the result is NULL. NOTE: The string value of the time zone, like "CET" or "ACDT", is dependent on the time zone of the machine the function is run on. For example, if the t value is in "CET", but the machine is in "ACDT", instead of "CET" the result is "+0100". This is the same what Go (time.Time).String() returns and in fact formatTime directly calls t.String(). returns on a machine in the CET time zone, but may return on a machine in the ACDT zone. The time value is in both cases the same so its ordering and comparing is correct. Only the display value can differ. The built-in functions formatFloat and formatInt format numbers to strings using go's number format functions in the `strconv` package. For all three functions, only the first argument is mandatory. The default values of the rest are shown in the examples. If the first argument is NULL, the result is NULL. returns returns returns Unlike the `strconv` equivalent, the formatInt function handles all integer types, both signed and unsigned. The built-in function hasPrefix tests whether the string s begins with prefix. If any argument to hasPrefix is NULL the result is NULL. The built-in function hasSuffix tests whether the string s ends with suffix. If any argument to hasSuffix is NULL the result is NULL. The built-in function hour returns the hour within the day specified by t, in the range [0, 23]. If the argument to hour is NULL the result is NULL. The built-in function hours returns the duration as a floating point number of hours. If the argument to hours is NULL the result is NULL. The built-in function id takes zero or one arguments. If no argument is provided, id() returns a table-unique automatically assigned numeric identifier of type int. Ids of deleted records are not reused unless the DB becomes completely empty (has no tables). For example If id() without arguments is called for a row which is not a table record then the result value is NULL. For example If id() has one argument it must be a table name of a table in a cross join. For example The built-in function len takes a string argument and returns the lentgh of the string in bytes. The expression len(s) is constant if s is a string constant. If the argument to len is NULL the result is NULL. The built-in aggregate function max returns the largest value of an expression in a record set. Max ignores NULL values, but returns NULL if all values of a column are NULL or if max is applied to an empty record set. The expression values must be of an ordered type. For example The built-in aggregate function min returns the smallest value of an expression in a record set. Min ignores NULL values, but returns NULL if all values of a column are NULL or if min is applied to an empty record set. For example The column values must be of an ordered type. The built-in function minute returns the minute offset within the hour specified by t, in the range [0, 59]. If the argument to minute is NULL the result is NULL. The built-in function minutes returns the duration as a floating point number of minutes. If the argument to minutes is NULL the result is NULL. The built-in function month returns the month of the year specified by t (January = 1, ...). If the argument to month is NULL the result is NULL. The built-in function nanosecond returns the nanosecond offset within the second specified by t, in the range [0, 999999999]. If the argument to nanosecond is NULL the result is NULL. The built-in function nanoseconds returns the duration as an integer nanosecond count. If the argument to nanoseconds is NULL the result is NULL. The built-in function now returns the current local time. The built-in function parseTime parses a formatted string and returns the time value it represents. The layout defines the format by showing how the reference time, would be interpreted if it were the value; it serves as an example of the input format. The same interpretation will then be made to the input string. Elements omitted from the value are assumed to be zero or, when zero is impossible, one, so parsing "3:04pm" returns the time corresponding to Jan 1, year 0, 15:04:00 UTC (note that because the year is 0, this time is before the zero Time). Years must be in the range 0000..9999. The day of the week is checked for syntax but it is otherwise ignored. In the absence of a time zone indicator, parseTime returns a time in UTC. When parsing a time with a zone offset like -0700, if the offset corresponds to a time zone used by the current location, then parseTime uses that location and zone in the returned time. Otherwise it records the time as being in a fabricated location with time fixed at the given zone offset. When parsing a time with a zone abbreviation like MST, if the zone abbreviation has a defined offset in the current location, then that offset is used. The zone abbreviation "UTC" is recognized as UTC regardless of location. If the zone abbreviation is unknown, Parse records the time as being in a fabricated location with the given zone abbreviation and a zero offset. This choice means that such a time can be parses and reformatted with the same layout losslessly, but the exact instant used in the representation will differ by the actual zone offset. To avoid such problems, prefer time layouts that use a numeric zone offset. If any argument to parseTime is NULL the result is NULL. The built-in function second returns the second offset within the minute specified by t, in the range [0, 59]. If the argument to second is NULL the result is NULL. The built-in function seconds returns the duration as a floating point number of seconds. If the argument to seconds is NULL the result is NULL. The built-in function since returns the time elapsed since t. It is shorthand for now()-t. If the argument to since is NULL the result is NULL. The built-in aggregate function sum returns the sum of values of an expression for all rows of a record set. Sum ignores NULL values, but returns NULL if all values of a column are NULL or if sum is applied to an empty record set. The column values must be of a numeric type. The built-in function timeIn returns t with the location information set to loc. For discussion of the loc argument please see date(). If any argument to timeIn is NULL the result is NULL. The built-in function weekday returns the day of the week specified by t. Sunday == 0, Monday == 1, ... If the argument to weekday is NULL the result is NULL. The built-in function year returns the year in which t occurs. If the argument to year is NULL the result is NULL. The built-in function yearDay returns the day of the year specified by t, in the range [1,365] for non-leap years, and [1,366] in leap years. If the argument to yearDay is NULL the result is NULL. Three functions assemble and disassemble complex numbers. The built-in function complex constructs a complex value from a floating-point real and imaginary part, while real and imag extract the real and imaginary parts of a complex value. The type of the arguments and return value correspond. For complex, the two arguments must be of the same floating-point type and the return type is the complex type with the corresponding floating-point constituents: complex64 for float32, complex128 for float64. The real and imag functions together form the inverse, so for a complex value z, z == complex(real(z), imag(z)). If the operands of these functions are all constants, the return value is a constant. If any argument to any of complex, real, imag functions is NULL the result is NULL. For the numeric types, the following sizes are guaranteed Portions of this specification page are modifications based on work[2] created and shared by Google[3] and used according to terms described in the Creative Commons 3.0 Attribution License[4]. This specification is licensed under the Creative Commons Attribution 3.0 License, and code is licensed under a BSD license[5]. Links from the above documentation This section is not part of the specification. WARNING: The implementation of indices is new and it surely needs more time to become mature. Indices are used currently used only by the WHERE clause. The following expression patterns of 'WHERE expression' are recognized and trigger index use. The relOp is one of the relation operators <, <=, ==, >=, >. For the equality operator both operands must be of comparable types. For all other operators both operands must be of ordered types. The constant expression is a compile time constant expression. Some constant folding is still a TODO. Parameter is a QL parameter ($1 etc.). Consider tables t and u, both with an indexed field f. The WHERE expression doesn't comply with the above simple detected cases. However, such query is now automatically rewritten to which will use both of the indices. The impact of using the indices can be substantial (cf. BenchmarkCrossJoin*) if the resulting rows have low "selectivity", ie. only few rows from both tables are selected by the respective WHERE filtering. Note: Existing QL DBs can be used and indices can be added to them. However, once any indices are present in the DB, the old QL versions cannot work with such DB anymore. Running a benchmark with -v (-test.v) outputs information about the scale used to report records/s and a brief description of the benchmark. For example Running the full suite of benchmarks takes a lot of time. Use the -timeout flag to avoid them being killed after the default time limit (10 minutes).
Package tiled is to to parse Tiled map editor file format (TMX).
Package multipartstreamer helps you encode large files in MIME multipart format without reading the entire content into memory. It uses io.MultiReader to combine an inner multipart.Reader with a file handle.
bindata converts any file into managable Go source code. Useful for embedding binary data into a go program. The file data is optionally gzip compressed before being converted to a raw byte slice. The following paragraphs cover some of the customization options which can be specified in the Config struct, which must be passed into the Translate() call. When used with the `Debug` option, the generated code does not actually include the asset data. Instead, it generates function stubs which load the data from the original file on disk. The asset API remains identical between debug and release builds, so your code will not have to change. This is useful during development when you expect the assets to change often. The host application using these assets uses the same API in both cases and will not have to care where the actual data comes from. An example is a Go webserver with some embedded, static web content like HTML, JS and CSS files. While developing it, you do not want to rebuild the whole server and restart it every time you make a change to a bit of javascript. You just want to build and launch the server once. Then just press refresh in the browser to see those changes. Embedding the assets with the `debug` flag allows you to do just that. When you are finished developing and ready for deployment, just re-invoke `go-bindata` without the `-debug` flag. It will now embed the latest version of the assets. The `NoMemCopy` option will alter the way the output file is generated. It will employ a hack that allows us to read the file data directly from the compiled program's `.rodata` section. This ensures that when we call call our generated function, we omit unnecessary memcopies. The downside of this, is that it requires dependencies on the `reflect` and `unsafe` packages. These may be restricted on platforms like AppEngine and thus prevent you from using this mode. Another disadvantage is that the byte slice we create, is strictly read-only. For most use-cases this is not a problem, but if you ever try to alter the returned byte slice, a runtime panic is thrown. Use this mode only on target platforms where memory constraints are an issue. The default behaviour is to use the old code generation method. This prevents the two previously mentioned issues, but will employ at least one extra memcopy and thus increase memory requirements. For instance, consider the following two examples: This would be the default mode, using an extra memcopy but gives a safe implementation without dependencies on `reflect` and `unsafe`: Here is the same functionality, but uses the `.rodata` hack. The byte slice returned from this example can not be written to without generating a runtime error. The NoCompress option indicates that the supplied assets are *not* GZIP compressed before being turned into Go code. The data should still be accessed through a function call, so nothing changes in the API. This feature is useful if you do not care for compression, or the supplied resource is already compressed. Doing it again would not add any value and may even increase the size of the data. The default behaviour of the program is to use compression. The keys used in the `_bindata` map are the same as the input file name passed to `go-bindata`. This includes the path. In most cases, this is not desireable, as it puts potentially sensitive information in your code base. For this purpose, the tool supplies another command line flag `-prefix`. This accepts a portion of a path name, which should be stripped off from the map keys and function names. For example, running without the `-prefix` flag, we get: Running with the `-prefix` flag, we get: With the optional Tags field, you can specify any go build tags that must be fulfilled for the output file to be included in a build. This is useful when including binary data in multiple formats, where the desired format is specified at build time with the appropriate tags. The tags are appended to a `// +build` line in the beginning of the output file and must follow the build tags syntax specified by the go tool.
Package mbox parses and formats the mbox file format. As the mbox file format is not standardized this package expects the least common denominator, the so called mboxo format.
Package klog implements logging analogous to the Google-internal C++ INFO/ERROR/V setup. It provides functions Info, Warning, Error, Fatal, plus formatting variants such as Infof. It also provides V-style logging controlled by the -v and -vmodule=file=2 flags. Basic examples: See the documentation for the V function for an explanation of these examples: Log output is buffered and written periodically using Flush. Programs should call Flush before exiting to guarantee all log output is written. By default, all log statements write to standard error. This package provides several flags that modify this behavior. As a result, flag.Parse must be called before any logging is done.
Package configparser provides a simple parser for reading/writing configuration (INI) files. Supports reading/writing the INI file format in addition to: Read and modify a configuration file
Package ccgo translates C to Go source code. This v3 package is obsolete. Please use current ccgo/v4: Invocation 2021-12-23: v3.13.0 add clang support. To compile the resulting Go programs the package modernc.org/libc has to be installed. CCGO_CPP selects which command is used by the C front end to obtain target configuration. Defaults to `cpp`. Ignored when --load-config <path> is used. TARGET_GOARCH selects the GOARCH of the resulting Go code. Defaults to $GOARCH or runtime.GOARCH if $GOARCH is not set. Ignored when --load-config <path> is used. TARGET_GOOS selects the GOOS of the resulting Go code. Defaults to $GOOS or runtime.GOOS if $GOOS is not set. Ignored when --load-config <path> is used. To compile for the host invoke something like To cross compile set TARGET_GOARCH and/or TARGET_GOOS, not GOARCH/GOOS. Cross compile depends on availability of C stdlib headers for the target platform as well on the set of predefined macros for the target platform. For example, to cross compile on a Linux host, targeting windows/amd64, it's necessary to have mingw64 installed in $PATH. Then invoke something like Only files with extension .c, .h or .json are recognized as input files. A .json file is interpreted as a compile database. All other command line arguments following the .json file are interpreted as items that should be found in the database and included in the output file. Each item should be on object file (.o) or static archive (.a) or a command (no extension). Command line options requiring an argument. -Dfoo Equals `#define foo 1`. -Dfoo=bar Equals `#define foo bar`. -Ipath Add path to the list of include files search path. The option is a capital letter I (India), not a lowercase letter l (Lima). -limport-path The package at <import-path> must have been produced without using the -nocapi option, ie. the package must have a proper capi_$GOOS_$GOARCH.go file. The option is a lowercase letter l (Lima), not a capital letter I (India). -Ufoo Equals `#undef foo`. -compiledb name When this option appears anywhere, most preceding options are ignored and all following command line arguments are interpreted as a command with arguments that will be executed to produce the compilation database. For example: This will execute `make -DFOO -w` and attempts to extract the compile and archive commands. Only POSIX operating systems are supported. The supported build system must output information about entering directories that is compatible with GNU make. The only compilers supported are `gcc` and `clang`. The only archiver supported is `ar`. Format specification: https://clang.llvm.org/docs/JSONCompilationDatabase.html Note: This option produces also information about libraries created with `ar cr` and include it in the json file, which is above the specification. -crt-import-path path Unless disabled by the -nostdlib option, every produced Go file imports the C runtime library. Default is `modernc.org/libc`. -export-defines "" Export C numeric/string defines as Go constants by capitalizing the first letter of the define's name. -export-defines prefix Export C numeric/string defines as Go constants by prefixing the define's name with `prefix`. Name conflicts are resolved by adding a numeric suffix. -export-enums "" Export C enum constants as Go constants by capitalizing the first letter of the enum constant name. -export-enums prefix Export C enum constants as Go constants by prefixing the enum constant name with `prefix`. Name conflicts are resolved by adding a numeric suffix. -export-externs "" Export C extern definitions as Go definitions by capitalizing the first letter of the definition name. -export-externs prefix Export C extern definitions as Go definitions by prefixing the definition name with `prefix`. Name conflicts are resolved by adding a numeric suffix. -export-fields "" Export C struct fields as Go fields by capitalizing the first letter of the field name. -export-fields prefix Export C struct fields as Go fields by prefixing the field name with `prefix`. Name conflicts are resolved by adding a numeric suffix. -export-structs "" Export tagged C struct/union types as Go types by capitalizing the first letter of the tag name. -export-structs prefix Export tagged C struct/union types as Go types by prefixing the tag name with `prefix`. Name conflicts are resolved by adding a numeric suffix. -export-typedefs "" Export C typedefs as Go types by capitalizing the first letter of the typedef name. -export-structs prefix Export C typedefs as as Go types by prefixing the typedef name with `prefix`. Name conflicts are resolved by adding a numeric suffix. -static-locals-prefix prefix Prefix C static local declarators names with 'prefix'. -host-config-cmd command This option has the same effect as setting `CCGO_CPP=command`. -host-config-opts comma-separated-list The separated items of the list are added to the invocation of the configuration command. -pkgname name Set the resulting Go package name to 'name'. Defaults to `main`. -script filename Ccgo does not yet have a concept of object files. All C files that are needed for producing the resulting Go file have to be compiled together and "linked" in memory. There are some problems with this approach, one of them is the situation when foo.c has to be compiled using, for example `-Dbar=42` and "linked" with baz.c that needs to be compiled with `-Dbar=314`. Or `bar` must not defined at all for baz.c, etc. A script in a named file is a CSV file. It is opened like this (error handling omitted): The first field of every record in the CSV file is the directory to use. The remaining fields are the arguments of the ccgo command. This way different C files can be translated using different options. The CSV file may look something like: -volatile comma-separated-list The separated items of the list are added to the list of file scope extern variables the will be accessed atomically, like if their C declarator used the 'volatile' type specifier. Currently only C scalar types of size 4 and 8 bytes are supported. Other types/sizes will ignore both the volatile specifier and the -volatile option. -save-config path This option copies every header included during compilation or compile database generation to a file under the path argument. Additionally the host configuration, ie. predefined macros, include search paths, os and architecture is stored in path/config.json. When this option is used, no Go code is generated, meaning no link phase occurs and thus the memory consumption should stay low. Passing an empty string as an argument of -save-config is the same as if the option is not present at all. Possibly useful when the option set is generated in code. This option is ignored when -compiledb <path> is used. --load-config path Note that this option must have the double dash prefix to distinguish it from -lfoo, the [traditional] short form of `-l foo`. This option configures the compiler using path/config.json. The include paths are adjusted to be relative to path. For example: Assume on machine A the default C preprocessor reports a system include search path "/usr/include". Running ccgo on A with -save-config /tmp/foo to compile foo.c that #includes <stdlib.h>, which is found in /usr/include/stdlib.h on the host results in Assume /tmp/foo from machine A will be recursively copied to machine B, that may run a different operating system and/or architecture. Let the copy be for example in /tmp/bar. Using --load-config /tmp/bar will instruct ccgo to configure its preprocessor with a system include path /tmp/bar/usr/include and thus use the original machine A stdlib.h found there. When the --load-config is used, no host configuration from a machine B cross C preprocessor/compiler is needed to transpile the foo.c source on machine B as if the compiler would be running on machine A. The particular usefulness of this mechanism is for transpiling big projects for 32 bit architectures. There the lack if ccgo having an object format and thus linking everything in RAM can need too much memory for the system to handle. The way around this is possibly to run something like on machine A, transfer path/* to machine B and run the link phase there with eg. Note that the C sources for the project must be in the same path on both machines because the compile database stores absolute paths. It might be convenient to put the sources in path/src, the config in path/config, for example, and transfer the [archive of] path/ to the same directory on the second machine. That also solves the issue when ./configure generates files and the result differs per operating system or architecture. Passing an empty string as an argument of -load-config is the same as if the option is not present at all. Possibly useful when the option set is generated in code. These command line options don't take arguments. -E When this option is present the compiler does not produce any Go files and instead prints the preprocessor output to stdout. -all-errors Normally only the first 10 or so errors are shown. With this option the compiler will show all errors. -header Using this option suppresses producing of any function definitions. This is possibly useful for producing Go files from C header files. Including function signatures with -header. -func-sig Add this option to include fucntion signature when compiling headers (using -header). -nostdinc This option disables the default C include search paths. -nostdlib This option disables importing of the runtime library by the resulting Go code. -trace-pinning This option will print the positions and names of local declarators that are being pinned. -version Ignore all other options, print version and exit. -verbose-compiledb Enable verbose output when -compiledb is present. -ignore-undefined This option tells the linker to not insist on finding definitions for declarators that are not implicitly declared and used - but not defined. This might be useful when the intent is to define the missing function in Go functions manually. Name conflict resolution for such declarator names may or may not be applied. -ignore-unsupported-alignment This option tells the compiler to not complain about alignments that Go cannot support. -trace-included-files This option outputs the path names of all included files. This option is ignored when -compiledb <path> is used. There may exist other options not listed above. Those should be considered temporary and/or unsupported and may be removed without notice. Alternatively, they may eventually get promoted to "documented" options.
Package config provide configuration facilities, handling configuration files in yaml format. This package has been optimized for reads, so functions write functions (Set and Unset) are really slow when compared to Get functions.
Package codeowners is a library for working with CODEOWNERS files. CODEOWNERS files map gitignore-style path patterns to sets of owners, which may be GitHub users, GitHub teams, or email addresses. This library parses the CODEOWNERS file format into rulesets, which may then be used to determine the ownership of files. To find the owner of a given file, parse a CODEOWNERS file and call Match() on the resulting ruleset. A command line interface is also available in the cmd/codeowners package. When run, it will walk the directory tree showing the code owners for each file encountered. The help flag lists available options.
Package mjpeg contains an MJPEG video format writer. Let's see an example how to turn the JPEG files 1.jpg, 2.jpg, ..., 10.jpg into a movie file: Example to add an image.Image as a frame to the video:
Package sgr providers formatters to write ANSI escape sequences that can format and colorize text. The exact appearance of text, and whether or not various characteristics are even supported, will depend on the terminal capabilities. In particular, writing to a regular file will suppress all ANSI escapes sequences. Package sgr will default to no-color when there is doubt about whether or not the output stream can support ANSI sequences. There are some convenience methods to print common options, such as bold or red text. To get full control over the color and formatting of some text, first create a Style, and then use Formatter.Style. Calls to functions and methods in this package do not directly result in any io. To get the colorized text, the return values of certain methods must be printed using package fmt. For methods simply taking a string, such as Formatter.Bold, the returned value must be printed using either the verb %v or %s. All of the options for %s are supported, including width, precision, and flags. For methods that take a format string plus arguments, such as Formatter.Boldf, the returned value must still be printed using either %v or %s. However, no options are supported. To control options such as width and precision, use the format string passed to Formatter.Boldf Selection of the correct formatter depends on several environment variables. Primarily, package sgr checks the value of TERM to see if any color space attributes are present. ANSI compatibility is always assumed, but the color depth will be adjusted. However, if TERM is equal to 'dumb', then all formatting will be suppressed. Some terminals use COLORTERM to advertise 24-bit capability. If COLORTERM is equal to 'truecolor' or '24bit', then the formatter will support a 24-bit color depth. Finally, if the environment variable NO_COLOR is present, no matter its value, the color depth will be 1-bit. This does not disable all formatting, so text attributes such as bold and italic are still possible, but all colors will be suppressed.
Package glog implements logging analogous to the Google-internal C++ INFO/ERROR/V setup. It provides functions Info, Warning, Error, Fatal, plus formatting variants such as Infof. It also provides V-style logging controlled by the -v and -vmodule=file=2 flags. Basic examples: See the documentation for the V function for an explanation of these examples: Log output is buffered and written periodically using Flush. Programs should call Flush before exiting to guarantee all log output is written. By default, all log statements write to files in a temporary directory. This package provides several flags that modify this behavior. As a result, flag.Parse must be called before any logging is done.
Package sqlite3 decodes the SQLite-3 file format.
Package npyio provides read/write access to files following the NumPy data file format: npyio supports r/w of scalars, arrays, slices and gonum/mat.Dense. Supported scalars are: Reading from a NumPy data file can be performed like so: npyio can also read data directly into slices, arrays or scalars, provided the on-disk data type and the provided one match. Example: Writing into a NumPy data file can be done like so: Scalars, arrays and slices are also supported:
Package configo is designed to handle configuration more easier. Writing and parsing configuration is very easy with configo, there is not any pain to add more keys in conf because configo can generate the configuration file based on your struct definition. Define struct with tags `cfg` Marshal to configuration Unmarshal from file Dump to file The dumpped content is configuration friendly like this Load from file Update an exist file This is really useful when you add new member of struct and want to preserve the content of your configuration file. Configo comes along with a command tool to help to generate and update configuration file for you. Build a generator with configo-build or use relative package path if you are under configo directory Run the built program(name with format "<package>.<struct>.cfg") Update example.toml when you have updated struct conf.Configo
gvt, a simple go vendoring tool based on gb-vendor. Usage: The commands are: Use "gvt help [command]" for more information about a command. Usage: fetch vendors an upstream import path. Recursive dependencies are fetched (at their master/tip/HEAD revision), unless they or their parent package are already present. If a subpackage of a dependency being fetched is already present, it will be deleted. The import path may include a url scheme. This may be useful when fetching dependencies from private repositories that cannot be probed. Flags: Usage: restore fetches the dependencies listed in the manifest. It's meant for workflows that don't include checking in to VCS the vendored source, for example if .gitignore includes lines like Note that such a setup requires "gvt restore" to build the source, relies on the availability of the dependencies repositories and breaks "go get". Flags: Usage: update replaces the source with the latest available from the head of the fetched branch. Updating from one copy of a dependency to another is ONLY possible when the dependency was fetched by branch, without using -tag or -revision. It will be updated to the HEAD of that branch, switching branches is not supported. To update across branches, or from one tag/revision to another, you must first use delete to remove the dependency, then fetch [ -tag | -revision | -branch ] to replace it. Flags: Usage: list formats the contents of the manifest file. Flags: Usage: delete removes a dependency from the vendor directory and the manifest Flags: