Package mangle is a sanitization / data masking library for Go (golang). This library provides functionality to sanitize text and HTML data. This can be integrated into tools that export or manipulate databases/files so that confidential data is not exposed to staging, development or testing systems. Install mangle: Try the command line tool: For basic usage of mangle as a Go library for strings, see the Example below. For usage using io.Reader/io.Writer for text and html, see the manglefile source code. Secure - every non-punctuation, non-tag word is replaced, with no reuse of source words. Fast - around 350,000 words/sec ("War and Peace" mangled in < 2s). Deterministic - words are selected from a corpus deterministically - subsequent runs will result in the same word replacements as long as the user secret is not changed. This allows automated tests to run against the sanitized data, as well as for efficient rsync's of mangled versions of large slowly changing data sets. Accurate - maintains a high level of resemblance to the source text, to allow for realistic testing of search indexes, page layout etc. Replacement words are all natural words from a user defined corpus. Source text word length, punctuation, title case and all caps, HTML tags and attributes are maintained. Reads a corpus from a file, initializes a Mangle, runs a string through it and prints the output.
Copying All nodes (since they implement the Node interface) also implement the NodeCopier interface which provides the ShallowCopy() function. A shallow copy returns a new node with all the same properties, but no children. On the other hand there is a DeepCopy function which returns a new node with all recursive children also copied. This ensures that the new returned node can be manipulated without affecting the original node or any of its children. Dates in GEDCOM files can be very complex as they can cater for many scenarios: 1. Incomplete, like "Dec 1943" 2. Anchored, like "Aft. 3 Sep 2003" or "Before 1923" 3. Ranges, like "Bet. 4 Apr 1823 and 8 Apr 1823" 4. Phrases, like "(Foo Bar)" This package provides a very rich API for dealing with all kind of dates in a meaningful and sensible way. Some notable features include: 1. All dates, even though that specify an specific day have a minimum and maximum value that are their true bounds. This is especially important for larger date ranges like the whole month of "Jun 1945". 2. Upper and lower bounds of dates can be converted to the native Go time.Time object. 3. There is a Years function that provides a convenient way to normalise a date range into a number for easier distance and comparison measurements. 4. Algorithms for calculating the similarity of dates on a configurable parabola. Decoding a GEDCOM stream: If you are reading from a file you can use NewDocumentFromGEDCOMFile: Package gedcom contains functionality for encoding, decoding, traversing, manipulating and comparing of GEDCOM data. You can download the latest binaries for macOS, Windows and Linux on the Releases page: https://github.com/elliotchance/gedcom/releases This will not require you to install Go or any other dependencies. If you wish to build it from source you must install the dependencies with: On top of the raw document is a powerful API that takes care of the complex traversing of the Document. Here is a simple example: Some of the nodes in a GEDCOM file have been replaced with more function rich types, such as names, dates, families and more. Encoding a Document If you need the GEDCOM data as a string you can simply using fmt.Stringer: The Filter function recursively removes or manipulates nodes with a FilterFunction: Some examples of Filter functions include BlacklistTagFilter, OfficialTagFilter, SimpleNameFilter and WhitelistTagFilter. There are several functions available that handle different kinds of merging: - MergeNodes(left, right Node) Node: returns a new node that merges children from both nodes. - MergeNodeSlices(left, right Nodes, mergeFn MergeFunction) Nodes: merges two slices based on the mergeFn. This allows more advanced merging when dealing with slices of nodes. - MergeDocuments(left, right *Document, mergeFn MergeFunction) *Document: creates a new document with their respective nodes merged. You can use IndividualBySurroundingSimilarityMergeFunction with this to merge individuals, rather than just appending them all. The MergeFunction is a type that can be received in some of the merging functions. The closure determines if two nodes should be merged and what the result would be. Alternatively it can also describe when two nodes should not be merged. You may certainly create your own MergeFunction, but there are some that are already included: - IndividualBySurroundingSimilarityMergeFunction creates a MergeFunction that will merge individuals if their surrounding similarity is at least minimumSimilarity. - EqualityMergeFunction is a MergeFunction that will return a merged node if the node are considered equal (with Equals). Node.Equals performs a shallow comparison between two nodes. The implementation is different depending on the types of nodes being compared. You should see the specific documentation for the Node. Equality is not to be confused with the Is function seen on some of the nodes, such as Date.Is. The Is function is used to compare exact raw values in nodes. DeepEqual tests if left and right are recursively equal. CompareNodes recursively compares two nodes. For example: Produces a *NodeDiff than can be rendered with the String method:
Package purse provides utility functions for string manipulation and slice handling.
Package objx provides utilities for dealing with maps, slices, JSON and other data. Objx provides the `objx.Map` type, which is a `map[string]interface{}` that exposes a powerful `Get` method (among others) that allows you to easily and quickly get access to data within the map, without having to worry too much about type assertions, missing data, default values etc. Objx uses a predictable pattern to make access data from within `map[string]interface{}` easy. Call one of the `objx.` functions to create your `objx.Map` to get going: NOTE: Any methods or functions with the `Must` prefix will panic if something goes wrong, the rest will be optimistic and try to figure things out without panicking. Use `Get` to access the value you're interested in. You can use dot and array notation too: Once you have sought the `Value` you're interested in, you can use the `Is*` methods to determine its type. Or you can just assume the type, and use one of the strong type methods to extract the real value: If there's no value there (or if it's the wrong type) then a default value will be returned, or you can be explicit about the default value. If you're dealing with a slice of data as a value, Objx provides many useful methods for iterating, manipulating and selecting that data. You can find out more by exploring the index below. A simple example of how to use Objx: Since `objx.Map` is a `map[string]interface{}` you can treat it as such. For example, to `range` the data, do what you would expect:
Package walletdb provides a namespaced database interface for btcwallet. A wallet essentially consists of a multitude of stored data such as private and public keys, key derivation bits, pay-to-script-hash scripts, and various metadata. One of the issues with many wallets is they are tightly integrated. Designing a wallet with loosely coupled components that provide specific functionality is ideal, however it presents a challenge in regards to data storage since each component needs to store its own data without knowing the internals of other components or breaking atomicity. This package solves this issue by providing a pluggable driver, namespaced database interface that is intended to be used by the main wallet daemon. This allows the potential for any backend database type with a suitable driver. Each component, which will typically be a package, can then implement various functionality such as address management, voting pools, and colored coin metadata in their own namespace without having to worry about conflicts with other packages even though they are sharing the same database that is managed by the wallet. A quick overview of the features walletdb provides are as follows: The main entry point is the DB interface. It exposes functionality for creating, retrieving, and removing namespaces. It is obtained via the Create and Open functions which take a database type string that identifies the specific database driver (backend) to use as well as arguments specific to the specified driver. The Namespace interface is an abstraction that provides facilities for obtaining transactions (the Tx interface) that are the basis of all database reads and writes. Unlike some database interfaces that support reading and writing without transactions, this interface requires transactions even when only reading or writing a single key. The Begin function provides an unmanaged transaction while the View and Update functions provide a managed transaction. These are described in more detail below. The Tx interface provides facilities for rolling back or commiting changes that took place while the transaction was active. It also provides the root bucket under which all keys, values, and nested buckets are stored. A transaction can either be read-only or read-write and managed or unmanaged. A managed transaction is one where the caller provides a function to execute within the context of the transaction and the commit or rollback is handled automatically depending on whether or not the provided function returns an error. Attempting to manually call Rollback or Commit on the managed transaction will result in a panic. An unmanaged transaction, on the other hand, requires the caller to manually call Commit or Rollback when they are finished with it. Leaving transactions open for long periods of time can have several adverse effects, so it is recommended that managed transactions are used instead. The Bucket interface provides the ability to manipulate key/value pairs and nested buckets as well as iterate through them. The Get, Put, and Delete functions work with key/value pairs, while the Bucket, CreateBucket, CreateBucketIfNotExists, and DeleteBucket functions work with buckets. The ForEach function allows the caller to provide a function to be called with each key/value pair and nested bucket in the current bucket. As discussed above, all of the functions which are used to manipulate key/value pairs and nested buckets exist on the Bucket interface. The root bucket is the upper-most bucket in a namespace under which data is stored and is created at the same time as the namespace. Use the RootBucket function on the Tx interface to retrieve it. The CreateBucket and CreateBucketIfNotExists functions on the Bucket interface provide the ability to create an arbitrary number of nested buckets. It is a good idea to avoid a lot of buckets with little data in them as it could lead to poor page utilization depending on the specific driver in use. This example demonstrates creating a new database, getting a namespace from it, and using a managed read-write transaction against the namespace to store and retrieve data.
Package walletdb provides a namespaced database interface for btcwallet. A wallet essentially consists of a multitude of stored data such as private and public keys, key derivation bits, pay-to-script-hash scripts, and various metadata. One of the issues with many wallets is they are tightly integrated. Designing a wallet with loosely coupled components that provide specific functionality is ideal, however it presents a challenge in regards to data storage since each component needs to store its own data without knowing the internals of other components or breaking atomicity. This package solves this issue by providing a pluggable driver, namespaced database interface that is intended to be used by the main wallet daemon. This allows the potential for any backend database type with a suitable driver. Each component, which will typically be a package, can then implement various functionality such as address management, voting pools, and colored coin metadata in their own namespace without having to worry about conflicts with other packages even though they are sharing the same database that is managed by the wallet. A quick overview of the features walletdb provides are as follows: The main entry point is the DB interface. It exposes functionality for creating, retrieving, and removing namespaces. It is obtained via the Create and Open functions which take a database type string that identifies the specific database driver (backend) to use as well as arguments specific to the specified driver. The Namespace interface is an abstraction that provides facilities for obtaining transactions (the Tx interface) that are the basis of all database reads and writes. Unlike some database interfaces that support reading and writing without transactions, this interface requires transactions even when only reading or writing a single key. The Begin function provides an unmanaged transaction while the View and Update functions provide a managed transaction. These are described in more detail below. The Tx interface provides facilities for rolling back or commiting changes that took place while the transaction was active. It also provides the root bucket under which all keys, values, and nested buckets are stored. A transaction can either be read-only or read-write and managed or unmanaged. A managed transaction is one where the caller provides a function to execute within the context of the transaction and the commit or rollback is handled automatically depending on whether or not the provided function returns an error. Attempting to manually call Rollback or Commit on the managed transaction will result in a panic. An unmanaged transaction, on the other hand, requires the caller to manually call Commit or Rollback when they are finished with it. Leaving transactions open for long periods of time can have several adverse effects, so it is recommended that managed transactions are used instead. The Bucket interface provides the ability to manipulate key/value pairs and nested buckets as well as iterate through them. The Get, Put, and Delete functions work with key/value pairs, while the Bucket, CreateBucket, CreateBucketIfNotExists, and DeleteBucket functions work with buckets. The ForEach function allows the caller to provide a function to be called with each key/value pair and nested bucket in the current bucket. As discussed above, all of the functions which are used to manipulate key/value pairs and nested buckets exist on the Bucket interface. The root bucket is the upper-most bucket in a namespace under which data is stored and is created at the same time as the namespace. Use the RootBucket function on the Tx interface to retrieve it. The CreateBucket and CreateBucketIfNotExists functions on the Bucket interface provide the ability to create an arbitrary number of nested buckets. It is a good idea to avoid a lot of buckets with little data in them as it could lead to poor page utilization depending on the specific driver in use. This example demonstrates creating a new database, getting a namespace from it, and using a managed read-write transaction against the namespace to store and retrieve data.
Objx - Go package for dealing with maps, slices, JSON and other data. Objx provides the `objx.Map` type, which is a `map[string]interface{}` that exposes a powerful `Get` method (among others) that allows you to easily and quickly get access to data within the map, without having to worry too much about type assertions, missing data, default values etc. Objx uses a preditable pattern to make access data from within `map[string]interface{}` easy. Call one of the `objx.` functions to create your `objx.Map` to get going: NOTE: Any methods or functions with the `Must` prefix will panic if something goes wrong, the rest will be optimistic and try to figure things out without panicking. Use `Get` to access the value you're interested in. You can use dot and array notation too: Once you have sought the `Value` you're interested in, you can use the `Is*` methods to determine its type. Or you can just assume the type, and use one of the strong type methods to extract the real value: If there's no value there (or if it's the wrong type) then a default value will be returned, or you can be explicit about the default value. If you're dealing with a slice of data as a value, Objx provides many useful methods for iterating, manipulating and selecting that data. You can find out more by exploring the index below. A simple example of how to use Objx: Since `objx.Map` is a `map[string]interface{}` you can treat it as such. For example, to `range` the data, do what you would expect:
Various operations for string slices for Go Package strarr is a collection of functions to manipulate string arrays/slices. Some functions were adapted from the strings package to work with string slices, other were ported from PHP 'array_*' function equivalents. This example shows basic usage of various functions by manipulating the array 'arr'.
Package database provides a block and metadata storage database. This package provides a database layer to store and retrieve block data and arbitrary metadata in a simple and efficient manner. The default backend, ffldb, has a strong focus on speed, efficiency, and robustness. It makes use leveldb for the metadata, flat files for block storage, and strict checksums in key areas to ensure data integrity. A quick overview of the features database provides are as follows: The main entry point is the DB interface. It exposes functionality for transactional-based access and storage of metadata and block data. It is obtained via the Create and Open functions which take a database type string that identifies the specific database driver (backend) to use as well as arguments specific to the specified driver. The Namespace interface is an abstraction that provides facilities for obtaining transactions (the Tx interface) that are the basis of all database reads and writes. Unlike some database interfaces that support reading and writing without transactions, this interface requires transactions even when only reading or writing a single key. The Begin function provides an unmanaged transaction while the View and Update functions provide a managed transaction. These are described in more detail below. The Tx interface provides facilities for rolling back or committing changes that took place while the transaction was active. It also provides the root metadata bucket under which all keys, values, and nested buckets are stored. A transaction can either be read-only or read-write and managed or unmanaged. A managed transaction is one where the caller provides a function to execute within the context of the transaction and the commit or rollback is handled automatically depending on whether or not the provided function returns an error. Attempting to manually call Rollback or Commit on the managed transaction will result in a panic. An unmanaged transaction, on the other hand, requires the caller to manually call Commit or Rollback when they are finished with it. Leaving transactions open for long periods of time can have several adverse effects, so it is recommended that managed transactions are used instead. The Bucket interface provides the ability to manipulate key/value pairs and nested buckets as well as iterate through them. The Get, Put, and Delete functions work with key/value pairs, while the Bucket, CreateBucket, CreateBucketIfNotExists, and DeleteBucket functions work with buckets. The ForEach function allows the caller to provide a function to be called with each key/value pair and nested bucket in the current bucket. As discussed above, all of the functions which are used to manipulate key/value pairs and nested buckets exist on the Bucket interface. The root metadata bucket is the upper-most bucket in which data is stored and is created at the same time as the database. Use the Metadata function on the Tx interface to retrieve it. The CreateBucket and CreateBucketIfNotExists functions on the Bucket interface provide the ability to create an arbitrary number of nested buckets. It is a good idea to avoid a lot of buckets with little data in them as it could lead to poor page utilization depending on the specific driver in use. This example demonstrates creating a new database and using a managed read-write transaction to store and retrieve metadata. This example demonstrates creating a new database, using a managed read-write transaction to store a block, and using a managed read-only transaction to fetch the block.
Package walletdb provides a namespaced database interface for btcwallet. A wallet essentially consists of a multitude of stored data such as private and public keys, key derivation bits, pay-to-script-hash scripts, and various metadata. One of the issues with many wallets is they are tightly integrated. Designing a wallet with loosely coupled components that provide specific functionality is ideal, however it presents a challenge in regards to data storage since each component needs to store its own data without knowing the internals of other components or breaking atomicity. This package solves this issue by providing a pluggable driver, namespaced database interface that is intended to be used by the main wallet daemon. This allows the potential for any backend database type with a suitable driver. Each component, which will typically be a package, can then implement various functionality such as address management, voting pools, and colored coin metadata in their own namespace without having to worry about conflicts with other packages even though they are sharing the same database that is managed by the wallet. A quick overview of the features walletdb provides are as follows: The main entry point is the DB interface. It exposes functionality for creating, retrieving, and removing namespaces. It is obtained via the Create and Open functions which take a database type string that identifies the specific database driver (backend) to use as well as arguments specific to the specified driver. The Namespace interface is an abstraction that provides facilities for obtaining transactions (the Tx interface) that are the basis of all database reads and writes. Unlike some database interfaces that support reading and writing without transactions, this interface requires transactions even when only reading or writing a single key. The Begin function provides an unmanaged transaction while the View and Update functions provide a managed transaction. These are described in more detail below. The Tx interface provides facilities for rolling back or commiting changes that took place while the transaction was active. It also provides the root bucket under which all keys, values, and nested buckets are stored. A transaction can either be read-only or read-write and managed or unmanaged. A managed transaction is one where the caller provides a function to execute within the context of the transaction and the commit or rollback is handled automatically depending on whether or not the provided function returns an error. Attempting to manually call Rollback or Commit on the managed transaction will result in a panic. An unmanaged transaction, on the other hand, requires the caller to manually call Commit or Rollback when they are finished with it. Leaving transactions open for long periods of time can have several adverse effects, so it is recommended that managed transactions are used instead. The Bucket interface provides the ability to manipulate key/value pairs and nested buckets as well as iterate through them. The Get, Put, and Delete functions work with key/value pairs, while the Bucket, CreateBucket, CreateBucketIfNotExists, and DeleteBucket functions work with buckets. The ForEach function allows the caller to provide a function to be called with each key/value pair and nested bucket in the current bucket. As discussed above, all of the functions which are used to manipulate key/value pairs and nested buckets exist on the Bucket interface. The root bucket is the upper-most bucket in a namespace under which data is stored and is created at the same time as the namespace. Use the RootBucket function on the Tx interface to retrieve it. The CreateBucket and CreateBucketIfNotExists functions on the Bucket interface provide the ability to create an arbitrary number of nested buckets. It is a good idea to avoid a lot of buckets with little data in them as it could lead to poor page utilization depending on the specific driver in use. This example demonstrates creating a new database, getting a namespace from it, and using a managed read-write transaction against the namespace to store and retrieve data.
Package helper: common project provides commonly used helper utility functions, custom utility types, and third party package wrappers. common project helps code reuse, and faster composition of logic without having to delve into commonly recurring code logic and related testings. common project source directories and brief description: + /ascii = helper types and/or functions related to ascii manipulations. + /crypto = helper types and/or functions related to encryption, decryption, hashing, such as rsa, aes, sha, tls etc. + /csv = helper types and/or functions related to csv file manipulations. + /rest = helper types and/or functions related to http rest api GET, POST, PUT, DELETE actions invoked from client side. + /tcp = helper types providing wrapped tcp client and tcp server logic. - /wrapper = wrappers provides a simpler usage path to third party packages, as well as adding additional enhancements. /helper-conv.go = helpers for data conversion operations. /helper-db.go = helpers for database data type operations. /helper-emv.go = helpers for emv chip card related operations. /helper-io.go = helpers for io related operations. /helper-net.go = helpers for network related operations. /helper-num.go = helpers for numeric related operations. /helper-other.go = helpers for misc. uncategorized operations. /helper-reflect.go = helpers for reflection based operations. /helper-regex.go = helpers for regular express related operations. /helper-str.go = helpers for string operations. /helper-struct.go = helpers for struct related operations. /helper-time.go = helpers for time related operations. /helper-uuid.go = helpers for generating globally unique ids.
Package walletdb provides a namespaced database interface for btcwallet. A wallet essentially consists of a multitude of stored data such as private and public keys, key derivation bits, pay-to-script-hash scripts, and various metadata. One of the issues with many wallets is they are tightly integrated. Designing a wallet with loosely coupled components that provide specific functionality is ideal, however it presents a challenge in regards to data storage since each component needs to store its own data without knowing the internals of other components or breaking atomicity. This package solves this issue by providing a pluggable driver, namespaced database interface that is intended to be used by the main wallet daemon. This allows the potential for any backend database type with a suitable driver. Each component, which will typically be a package, can then implement various functionality such as address management, voting pools, and colored coin metadata in their own namespace without having to worry about conflicts with other packages even though they are sharing the same database that is managed by the wallet. A quick overview of the features walletdb provides are as follows: The main entry point is the DB interface. It exposes functionality for creating, retrieving, and removing namespaces. It is obtained via the Create and Open functions which take a database type string that identifies the specific database driver (backend) to use as well as arguments specific to the specified driver. The Namespace interface is an abstraction that provides facilities for obtaining transactions (the Tx interface) that are the basis of all database reads and writes. Unlike some database interfaces that support reading and writing without transactions, this interface requires transactions even when only reading or writing a single key. The Begin function provides an unmanaged transaction while the View and Update functions provide a managed transaction. These are described in more detail below. The Tx interface provides facilities for rolling back or commiting changes that took place while the transaction was active. It also provides the root bucket under which all keys, values, and nested buckets are stored. A transaction can either be read-only or read-write and managed or unmanaged. A managed transaction is one where the caller provides a function to execute within the context of the transaction and the commit or rollback is handled automatically depending on whether or not the provided function returns an error. Attempting to manually call Rollback or Commit on the managed transaction will result in a panic. An unmanaged transaction, on the other hand, requires the caller to manually call Commit or Rollback when they are finished with it. Leaving transactions open for long periods of time can have several adverse effects, so it is recommended that managed transactions are used instead. The Bucket interface provides the ability to manipulate key/value pairs and nested buckets as well as iterate through them. The Get, Put, and Delete functions work with key/value pairs, while the Bucket, CreateBucket, CreateBucketIfNotExists, and DeleteBucket functions work with buckets. The ForEach function allows the caller to provide a function to be called with each key/value pair and nested bucket in the current bucket. As discussed above, all of the functions which are used to manipulate key/value pairs and nested buckets exist on the Bucket interface. The root bucket is the upper-most bucket in a namespace under which data is stored and is created at the same time as the namespace. Use the RootBucket function on the Tx interface to retrieve it. The CreateBucket and CreateBucketIfNotExists functions on the Bucket interface provide the ability to create an arbitrary number of nested buckets. It is a good idea to avoid a lot of buckets with little data in them as it could lead to poor page utilization depending on the specific driver in use. This example demonstrates creating a new database, getting a namespace from it, and using a managed read-write transaction against the namespace to store and retrieve data.
Objx - Go package for dealing with maps, slices, JSON and other data. Objx provides the `objx.Map` type, which is a `map[string]interface{}` that exposes a powerful `Get` method (among others) that allows you to easily and quickly get access to data within the map, without having to worry too much about type assertions, missing data, default values etc. Objx uses a preditable pattern to make access data from within `map[string]interface{}` easy. Call one of the `objx.` functions to create your `objx.Map` to get going: NOTE: Any methods or functions with the `Must` prefix will panic if something goes wrong, the rest will be optimistic and try to figure things out without panicking. Use `Get` to access the value you're interested in. You can use dot and array notation too: Once you have sought the `Value` you're interested in, you can use the `Is*` methods to determine its type. Or you can just assume the type, and use one of the strong type methods to extract the real value: If there's no value there (or if it's the wrong type) then a default value will be returned, or you can be explicit about the default value. If you're dealing with a slice of data as a value, Objx provides many useful methods for iterating, manipulating and selecting that data. You can find out more by exploring the index below. A simple example of how to use Objx: Since `objx.Map` is a `map[string]interface{}` you can treat it as such. For example, to `range` the data, do what you would expect:
Package walletdb provides a namespaced database interface for btcwallet. A wallet essentially consists of a multitude of stored data such as private and public keys, key derivation bits, pay-to-script-hash scripts, and various metadata. One of the issues with many wallets is they are tightly integrated. Designing a wallet with loosely coupled components that provide specific functionality is ideal, however it presents a challenge in regards to data storage since each component needs to store its own data without knowing the internals of other components or breaking atomicity. This package solves this issue by providing a pluggable driver, namespaced database interface that is intended to be used by the main wallet daemon. This allows the potential for any backend database type with a suitable driver. Each component, which will typically be a package, can then implement various functionality such as address management, voting pools, and colored coin metadata in their own namespace without having to worry about conflicts with other packages even though they are sharing the same database that is managed by the wallet. A quick overview of the features walletdb provides are as follows: The main entry point is the DB interface. It exposes functionality for creating, retrieving, and removing namespaces. It is obtained via the Create and Open functions which take a database type string that identifies the specific database driver (backend) to use as well as arguments specific to the specified driver. The Namespace interface is an abstraction that provides facilities for obtaining transactions (the Tx interface) that are the basis of all database reads and writes. Unlike some database interfaces that support reading and writing without transactions, this interface requires transactions even when only reading or writing a single key. The Begin function provides an unmanaged transaction while the View and Update functions provide a managed transaction. These are described in more detail below. The Tx interface provides facilities for rolling back or commiting changes that took place while the transaction was active. It also provides the root bucket under which all keys, values, and nested buckets are stored. A transaction can either be read-only or read-write and managed or unmanaged. A managed transaction is one where the caller provides a function to execute within the context of the transaction and the commit or rollback is handled automatically depending on whether or not the provided function returns an error. Attempting to manually call Rollback or Commit on the managed transaction will result in a panic. An unmanaged transaction, on the other hand, requires the caller to manually call Commit or Rollback when they are finished with it. Leaving transactions open for long periods of time can have several adverse effects, so it is recommended that managed transactions are used instead. The Bucket interface provides the ability to manipulate key/value pairs and nested buckets as well as iterate through them. The Get, Put, and Delete functions work with key/value pairs, while the Bucket, CreateBucket, CreateBucketIfNotExists, and DeleteBucket functions work with buckets. The ForEach function allows the caller to provide a function to be called with each key/value pair and nested bucket in the current bucket. As discussed above, all of the functions which are used to manipulate key/value pairs and nested buckets exist on the Bucket interface. The root bucket is the upper-most bucket in a namespace under which data is stored and is created at the same time as the namespace. Use the RootBucket function on the Tx interface to retrieve it. The CreateBucket and CreateBucketIfNotExists functions on the Bucket interface provide the ability to create an arbitrary number of nested buckets. It is a good idea to avoid a lot of buckets with little data in them as it could lead to poor page utilization depending on the specific driver in use. This example demonstrates creating a new database, getting a namespace from it, and using a managed read-write transaction against the namespace to store and retrieve data.
Package walletdb provides a namespaced database interface for lbcwallet. A wallet essentially consists of a multitude of stored data such as private and public keys, key derivation bits, pay-to-script-hash scripts, and various metadata. One of the issues with many wallets is they are tightly integrated. Designing a wallet with loosely coupled components that provide specific functionality is ideal, however it presents a challenge in regards to data storage since each component needs to store its own data without knowing the internals of other components or breaking atomicity. This package solves this issue by providing a pluggable driver, namespaced database interface that is intended to be used by the main wallet daemon. This allows the potential for any backend database type with a suitable driver. Each component, which will typically be a package, can then implement various functionality such as address management, voting pools, and colored coin metadata in their own namespace without having to worry about conflicts with other packages even though they are sharing the same database that is managed by the wallet. A quick overview of the features walletdb provides are as follows: The main entry point is the DB interface. It exposes functionality for creating, retrieving, and removing namespaces. It is obtained via the Create and Open functions which take a database type string that identifies the specific database driver (backend) to use as well as arguments specific to the specified driver. The Namespace interface is an abstraction that provides facilities for obtaining transactions (the Tx interface) that are the basis of all database reads and writes. Unlike some database interfaces that support reading and writing without transactions, this interface requires transactions even when only reading or writing a single key. The Begin function provides an unmanaged transaction while the View and Update functions provide a managed transaction. These are described in more detail below. The Tx interface provides facilities for rolling back or commiting changes that took place while the transaction was active. It also provides the root bucket under which all keys, values, and nested buckets are stored. A transaction can either be read-only or read-write and managed or unmanaged. A managed transaction is one where the caller provides a function to execute within the context of the transaction and the commit or rollback is handled automatically depending on whether or not the provided function returns an error. Attempting to manually call Rollback or Commit on the managed transaction will result in a panic. An unmanaged transaction, on the other hand, requires the caller to manually call Commit or Rollback when they are finished with it. Leaving transactions open for long periods of time can have several adverse effects, so it is recommended that managed transactions are used instead. The Bucket interface provides the ability to manipulate key/value pairs and nested buckets as well as iterate through them. The Get, Put, and Delete functions work with key/value pairs, while the Bucket, CreateBucket, CreateBucketIfNotExists, and DeleteBucket functions work with buckets. The ForEach function allows the caller to provide a function to be called with each key/value pair and nested bucket in the current bucket. As discussed above, all of the functions which are used to manipulate key/value pairs and nested buckets exist on the Bucket interface. The root bucket is the upper-most bucket in a namespace under which data is stored and is created at the same time as the namespace. Use the RootBucket function on the Tx interface to retrieve it. The CreateBucket and CreateBucketIfNotExists functions on the Bucket interface provide the ability to create an arbitrary number of nested buckets. It is a good idea to avoid a lot of buckets with little data in them as it could lead to poor page utilization depending on the specific driver in use. This example demonstrates creating a new database, getting a namespace from it, and using a managed read-write transaction against the namespace to store and retrieve data.
Package version provides functionality for parsing and comparing version strings. It supports semantic versioning and includes methods for version comparison, manipulation, and formatting.
Various operations for string slices for Go Package strarr is a collection of functions to manipulate string arrays/slices. Some functions were adapted from the strings package to work with string slices, other were ported from PHP 'array_*' function equivalents. This example shows basic usage of various functions by manipulating the array 'arr'.
Copyright Philippe Thomassigny 2004-2023. Use of this source code is governed by a MIT licence. license that can be found in the LICENSE file. XDominion for GO v0 ============================= xdominion is a Go library for creating a database layer that abstracts the underlying database implementation and allows developers to interact with the database using objects rather than SQL statements. It supports multiple database backends, including PostgreSQL, MySQL, SQLite, and Microsoft SQL Server, among others. If you need a not yet supported database, please open a ticket on github.com. The library provides a set of high-level APIs for interacting with databases. It allows developers to map database tables to Go structs, allowing them to interact with the database using objects. The library also provides an intuitive and chainable API for querying the database, similar to the structure of SQL statements, but without requiring developers to write SQL code directly. xdominion uses a set of interfaces to abstract the database operations, making it easy to use different database backends with the same code. The library supports transactions, allowing developers to perform multiple database operations in a single transaction. The xdominion library uses reflection to map Go structs to database tables, and also allows developers to specify custom column names and relationships between tables. Overall, xdominion provides a simple and intuitive way to interact with databases using objects and abstracts the underlying database implementation. It is a well-designed library with a clear API and support for multiple database backends. 1. Overview ------------------------ XDominion is a database abstraction layer, to build and use objects of data instead of building SQL queries. The code is portable between databases with changing the implementation, since you don't use direct incompatible SQL sentences. The library is build over 3 main objects: - XBase: database connector and cursors to build queries and manipulation language - - Other included objects: XCursor - XTable: the table definition, data access function/structures and definition manipulation language - - Other included objects: XField*, XConstraints, XContraint, XOrderby, XConditions, XCondition - XRecord: the results and data to interchange with the database - - Other included objects: XRecords 2. Some example code to start working rapidly: ------------------------ Creates the connector to the database and connect: ``` ``` Executes a direct query: ``` ``` Creates a table definition: ``` t := xdominion.NewXTable("test", "t_") t.AddField(xdominion.XFieldText{Name: "f3"}) t.AddField(xdominion.XFieldDate{Name: "f4"}) t.AddField(xdominion.XFieldDateTime{Name: "f5"}) t.AddField(xdominion.XFieldFloat{Name: "f6"}) t.SetBase(base) ``` Synchronize the table with DB (create it if it does not exist) ``` ``` Some Insert: ``` ``` With an error (f2 is mandatory based on table definition): ``` ``` General query (select ALL): ``` ``` Query by Key: ``` ``` Query by Where: ``` ``` ``` ``` Transactions: ``` tx, err := base.BeginTransaction() res1, err := tb.Insert(XRecord{"f1": 5, "f2": "Data line 1"}, tx) res2, err := tb.Update(2, XRecord{"f1": 5, "f2": "Data line 1"}, tx) res3, err := tb.Delete(3, tx) // Note that the transaction is always passed as a parameter to the insert, update, delete operations tx.Commit() ``` 3. Reference ------------------------ XBase ----- The xbase package in xdominion provides a set of functions for working with relational databases in Go. Here is a reference manual for the package: Constants VERSION: A constant string that represents the version of XDominion. DB_Postgres: A constant string that represents the PostgreSQL database. DB_MySQL: A constant string that represents the MySQL database. DB_Localhost: A constant string that represents the local host. Variables DEBUG: A boolean variable used to enable/disable debug mode. Structs XBase DB: A pointer to an instance of sql.DB, representing the database connection. Logged: A boolean indicating whether the database connection has been established. DBType: A string representing the type of database being used. Username: A string representing the username for the database connection. Password: A string representing the password for the database connection. Database: A string representing the name of the database being connected to. Host: A string representing the host for the database connection. SSL: A boolean indicating whether to use SSL for the database connection. Logger: A pointer to a logger for debugging purposes. XTransaction DB: A pointer to an instance of XBase, representing the database connection. TX: A pointer to an instance of sql.Tx, representing a transaction. Functions Logon() The Logon() function establishes a connection to the database. go Copy code func (b *XBase) Logon() Logoff() The Logoff() function closes the database connection. go Copy code func (b *XBase) Logoff() Exec() The Exec() function executes a SQL query on the database and returns a cursor. go Copy code func (b *XBase) Exec(query string, args ...interface{}) (*sql.Rows, error) Cursor() The Cursor() function returns a new instance of Cursor, which provides methods for working with database records. go Copy code package main import ( ) In this example, we first create a new instance of the xdominion.XBase struct with the connection details to the database we want to connect to. We then call the Logon() method of the XBase struct to establish a connection to the database. Next, we define an SQL query to insert a new user into the users table, and then call the Exec() method of the XBase struct with the query and the values we want to insert. The Exec() function returns a cursor, which we don't need in this example, so we ignore it using the blank identifier (_). If there's an error executing the query, we print an error message to the console. Finally, we close the database connection by calling the Logoff() method of the XBase struct. Note that this is just a simple example, and you should always make sure to properly handle errors and sanitize user input when working with databases. package main import ( ) In this example, we first create a new instance of the xdominion.XBase struct with the connection details to the database we want to connect to. We then call the Logon() method of the XBase struct to establish a connection to the database. Next, we define an SQL query to select a user from the users table with the id equal to 1. We then call the Exec() method of the XBase struct with the query and the value we want to use for the id parameter. The Exec() function returns a cursor that we can iterate over to get the results of the query. We use a for loop to iterate over the rows returned by the Exec() function. Inside the loop, we use the Scan() method of the rows object to read the values of the name and email columns into variables. We then print the values of these variables to the console. If there's an error executing the query or reading a row, we print an error message to the console. Finally, we close the rows object and the database connection by calling the Close() and Logoff() methods of the XBase struct, respectively. Note that this is just a simple example, and you should always make sure to properly handle errors and sanitize user input when working with databases. go Copy code func (b *XBase) Cursor() *Cursor BeginTransaction() The BeginTransaction() function starts a new transaction on the database. go Copy code func (b *XBase) BeginTransaction() (*XTransaction, error) Commit() The Commit() function commits a transaction to the database. go Copy code func (t *XTransaction) Commit() error Rollback() The Rollback() function rolls back a transaction on the database. go Copy code func (t *XTransaction) Rollback() error Notes The Logon() function must be called before using any other functions in the xbase package. The Logoff() function should be called when finished using the database connection. The Exec() function should be used for executing arbitrary SQL queries. The Cursor() function should be used for performing CRUD operations on database records. The BeginTransaction(), Commit(), and Rollback() functions should be used for transactions. Note that this is just a brief overview of the xbase package. For more information and examples, please refer to the documentation in the xdominion GitHub repository: https://github.com/webability-go/xdominion. Create a new instance of the xdominion.XBase struct, which represents a database connection. The XBase struct provides methods for interacting with the database, such as querying, inserting, updating, and deleting records. In this example, &xdominion.XBase{} is the instance of the XBase struct, and the properties of the struct are set to the database connection details. The DBType property specifies the type of database being used, Username and Password specify the username and password for the database connection, Database specifies the name of the database being connected to, Host specifies the host for the database connection, and SSL specifies whether to use SSL for the database connection. Use the Logon() method of the XBase struct to connect to the database. base.Logon() The Logon() method establishes a connection to the database using the details provided in the XBase struct. Note that this is just a simple example, and the XBase library provides many more features for working with databases using objects. You can find more information and examples in the xdominion GitHub repository: https://github.com/webability-go/xdominion. XTable definition ----------------- XTable operations ----------------- XRecord ------- XRecords -------- Conditions ---------- Orderby ------- Fields ------ Limits ------ Groupby ------- Having ------ */
Package stringtool is a colllection of functions to manipulate string
Package goutils provides utility functions to manipulate strings in various ways. The code snippets below show examples of how to use goutils. Some functions return errors while others do not, so usage would vary as a result. Example:
Package goutils provides utility functions to manipulate strings in various ways. The code snippets below show examples of how to use goutils. Some functions return errors while others do not, so usage would vary as a result. Example:
Copying All nodes (since they implement the Node interface) also implement the NodeCopier interface which provides the ShallowCopy() function. A shallow copy returns a new node with all the same properties, but no children. On the other hand there is a DeepCopy function which returns a new node with all recursive children also copied. This ensures that the new returned node can be manipulated without affecting the original node or any of its children. Dates in GEDCOM files can be very complex as they can cater for many scenarios: 1. Incomplete, like "Dec 1943" 2. Anchored, like "Aft. 3 Sep 2003" or "Before 1923" 3. Ranges, like "Bet. 4 Apr 1823 and 8 Apr 1823" 4. Phrases, like "(Foo Bar)" This package provides a very rich API for dealing with all kind of dates in a meaningful and sensible way. Some notable features include: 1. All dates, even though that specify an specific day have a minimum and maximum value that are their true bounds. This is especially important for larger date ranges like the whole month of "Jun 1945". 2. Upper and lower bounds of dates can be converted to the native Go time.Time object. 3. There is a Years function that provides a convenient way to normalise a date range into a number for easier distance and comparison measurements. 4. Algorithms for calculating the similarity of dates on a configurable parabola. Decoding a GEDCOM stream: If you are reading from a file you can use NewDocumentFromGEDCOMFile: Package gedcom contains functionality for encoding, decoding, traversing, manipulating and comparing of GEDCOM data. You can download the latest binaries for macOS, Windows and Linux on the Releases page: https://github.com/elliotchance/gedcom/releases This will not require you to install Go or any other dependencies. If you wish to build it from source you must install the dependencies with: On top of the raw document is a powerful API that takes care of the complex traversing of the Document. Here is a simple example: Some of the nodes in a GEDCOM file have been replaced with more function rich types, such as names, dates, families and more. Encoding a Document If you need the GEDCOM data as a string you can simply using fmt.Stringer: The Filter function recursively removes or manipulates nodes with a FilterFunction: Some examples of Filter functions include BlacklistTagFilter, OfficialTagFilter, SimpleNameFilter and WhitelistTagFilter. There are several functions available that handle different kinds of merging: - MergeNodes(left, right Node) Node: returns a new node that merges children from both nodes. - MergeNodeSlices(left, right Nodes, mergeFn MergeFunction) Nodes: merges two slices based on the mergeFn. This allows more advanced merging when dealing with slices of nodes. - MergeDocuments(left, right *Document, mergeFn MergeFunction) *Document: creates a new document with their respective nodes merged. You can use IndividualBySurroundingSimilarityMergeFunction with this to merge individuals, rather than just appending them all. The MergeFunction is a type that can be received in some of the merging functions. The closure determines if two nodes should be merged and what the result would be. Alternatively it can also describe when two nodes should not be merged. You may certainly create your own MergeFunction, but there are some that are already included: - IndividualBySurroundingSimilarityMergeFunction creates a MergeFunction that will merge individuals if their surrounding similarity is at least minimumSimilarity. - EqualityMergeFunction is a MergeFunction that will return a merged node if the node are considered equal (with Equals). Node.Equals performs a shallow comparison between two nodes. The implementation is different depending on the types of nodes being compared. You should see the specific documentation for the Node. Equality is not to be confused with the Is function seen on some of the nodes, such as Date.Is. The Is function is used to compare exact raw values in nodes. DeepEqual tests if left and right are recursively equal. CompareNodes recursively compares two nodes. For example: Produces a *NodeDiff than can be rendered with the String method:
Package dig provides a map[string]any Mapping type that has ruby-like "dig" functionality. It can be used for example to access and manipulate arbitrary nested YAML/JSON structures.
Package goutils provides utility functions to manipulate strings in various ways. The code snippets below show examples of how to use goutils. Some functions return errors while others do not, so usage would vary as a result. Example:
Package goutils provides utility functions to manipulate strings in various ways. The code snippets below show examples of how to use goutils. Some functions return errors while others do not, so usage would vary as a result. Example:
Package goutils provides utility functions to manipulate strings in various ways. The code snippets below show examples of how to use goutils. Some functions return errors while others do not, so usage would vary as a result. Example:
Package goutils provides utility functions to manipulate strings in various ways. The code snippets below show examples of how to use goutils. Some functions return errors while others do not, so usage would vary as a result. Example:
Package goutils provides utility functions to manipulate strings in various ways. The code snippets below show examples of how to use goutils. Some functions return errors while others do not, so usage would vary as a result. Example:
Package goutils provides utility functions to manipulate strings in various ways. The code snippets below show examples of how to use goutils. Some functions return errors while others do not, so usage would vary as a result. Example:
Package goutils provides utility functions to manipulate strings in various ways. The code snippets below show examples of how to use goutils. Some functions return errors while others do not, so usage would vary as a result. Example:
Package goutils provides utility functions to manipulate strings in various ways. The code snippets below show examples of how to use goutils. Some functions return errors while others do not, so usage would vary as a result. Example:
Package slices ... Package slices is a collection of functions to operate with string slices. Some functions were adapted from the strings package to work with slices, other were ported from PHP 'array_*' function equivalents. This example shows basic usage of various functions by manipulating the slice 'slc'.
Package database provides a block and metadata storage database. This package provides a database layer to store and retrieve block data and arbitrary metadata in a simple and efficient manner. The default backend, ffldb, has a strong focus on speed, efficiency, and robustness. It makes use leveldb for the metadata, flat files for block storage, and strict checksums in key areas to ensure data integrity. A quick overview of the features database provides are as follows: The main entry point is the DB interface. It exposes functionality for transactional-based access and storage of metadata and block data. It is obtained via the Create and Open functions which take a database type string that identifies the specific database driver (backend) to use as well as arguments specific to the specified driver. The Namespace interface is an abstraction that provides facilities for obtaining transactions (the Tx interface) that are the basis of all database reads and writes. Unlike some database interfaces that support reading and writing without transactions, this interface requires transactions even when only reading or writing a single key. The Begin function provides an unmanaged transaction while the View and Update functions provide a managed transaction. These are described in more detail below. The Tx interface provides facilities for rolling back or committing changes that took place while the transaction was active. It also provides the root metadata bucket under which all keys, values, and nested buckets are stored. A transaction can either be read-only or read-write and managed or unmanaged. A managed transaction is one where the caller provides a function to execute within the context of the transaction and the commit or rollback is handled automatically depending on whether or not the provided function returns an error. Attempting to manually call Rollback or Commit on the managed transaction will result in a panic. An unmanaged transaction, on the other hand, requires the caller to manually call Commit or Rollback when they are finished with it. Leaving transactions open for long periods of time can have several adverse effects, so it is recommended that managed transactions are used instead. The Bucket interface provides the ability to manipulate key/value pairs and nested buckets as well as iterate through them. The Get, Put, and Delete functions work with key/value pairs, while the Bucket, CreateBucket, CreateBucketIfNotExists, and DeleteBucket functions work with buckets. The ForEach function allows the caller to provide a function to be called with each key/value pair and nested bucket in the current bucket. As discussed above, all of the functions which are used to manipulate key/value pairs and nested buckets exist on the Bucket interface. The root metadata bucket is the upper-most bucket in which data is stored and is created at the same time as the database. Use the Metadata function on the Tx interface to retrieve it. The CreateBucket and CreateBucketIfNotExists functions on the Bucket interface provide the ability to create an arbitrary number of nested buckets. It is a good idea to avoid a lot of buckets with little data in them as it could lead to poor page utilization depending on the specific driver in use. This example demonstrates creating a new database and using a managed read-write transaction to store and retrieve metadata. This example demonstrates creating a new database, using a managed read-write transaction to store a block, and using a managed read-only transaction to fetch the block.
Package walletdb provides a namespaced database interface for vclwallet. A wallet essentially consists of a multitude of stored data such as private and public keys, key derivation bits, pay-to-script-hash scripts, and various metadata. One of the issues with many wallets is they are tightly integrated. Designing a wallet with loosely coupled components that provide specific functionality is ideal, however it presents a challenge in regards to data storage since each component needs to store its own data without knowing the internals of other components or breaking atomicity. This package solves this issue by providing a pluggable driver, namespaced database interface that is intended to be used by the main wallet daemon. This allows the potential for any backend database type with a suitable driver. Each component, which will typically be a package, can then implement various functionality such as address management, voting pools, and colored coin metadata in their own namespace without having to worry about conflicts with other packages even though they are sharing the same database that is managed by the wallet. A quick overview of the features walletdb provides are as follows: The main entry point is the DB interface. It exposes functionality for creating, retrieving, and removing namespaces. It is obtained via the Create and Open functions which take a database type string that identifies the specific database driver (backend) to use as well as arguments specific to the specified driver. The Namespace interface is an abstraction that provides facilities for obtaining transactions (the Tx interface) that are the basis of all database reads and writes. Unlike some database interfaces that support reading and writing without transactions, this interface requires transactions even when only reading or writing a single key. The Begin function provides an unmanaged transaction while the View and Update functions provide a managed transaction. These are described in more detail below. The Tx interface provides facilities for rolling back or commiting changes that took place while the transaction was active. It also provides the root bucket under which all keys, values, and nested buckets are stored. A transaction can either be read-only or read-write and managed or unmanaged. A managed transaction is one where the caller provides a function to execute within the context of the transaction and the commit or rollback is handled automatically depending on whether or not the provided function returns an error. Attempting to manually call Rollback or Commit on the managed transaction will result in a panic. An unmanaged transaction, on the other hand, requires the caller to manually call Commit or Rollback when they are finished with it. Leaving transactions open for long periods of time can have several adverse effects, so it is recommended that managed transactions are used instead. The Bucket interface provides the ability to manipulate key/value pairs and nested buckets as well as iterate through them. The Get, Put, and Delete functions work with key/value pairs, while the Bucket, CreateBucket, CreateBucketIfNotExists, and DeleteBucket functions work with buckets. The ForEach function allows the caller to provide a function to be called with each key/value pair and nested bucket in the current bucket. As discussed above, all of the functions which are used to manipulate key/value pairs and nested buckets exist on the Bucket interface. The root bucket is the upper-most bucket in a namespace under which data is stored and is created at the same time as the namespace. Use the RootBucket function on the Tx interface to retrieve it. The CreateBucket and CreateBucketIfNotExists functions on the Bucket interface provide the ability to create an arbitrary number of nested buckets. It is a good idea to avoid a lot of buckets with little data in them as it could lead to poor page utilization depending on the specific driver in use. This example demonstrates creating a new database, getting a namespace from it, and using a managed read-write transaction against the namespace to store and retrieve data.