Package tview implements rich widgets for terminal based user interfaces. The widgets provided with this package are useful for data exploration and data entry. The package implements the following widgets: The package also provides Application which is used to poll the event queue and draw widgets on screen. The following is a very basic example showing a box with the title "Hello, world!": First, we create a box primitive with a border and a title. Then we create an application, set the box as its root primitive, and run the event loop. The application exits when the application's Stop() function is called or when Ctrl-C is pressed. If we have a primitive which consumes key presses, we call the application's SetFocus() function to redirect all key presses to that primitive. Most primitives then offer ways to install handlers that allow you to react to any actions performed on them. You will find more demos in the "demos" subdirectory. It also contains a presentation (written using tview) which gives an overview of the different widgets and how they can be used. Throughout this package, colors are specified using the tcell.Color type. Functions such as tcell.GetColor(), tcell.NewHexColor(), and tcell.NewRGBColor() can be used to create colors from W3C color names or RGB values. Almost all strings which are displayed can contain color tags. Color tags are W3C color names or six hexadecimal digits following a hash tag, wrapped in square brackets. Examples: A color tag changes the color of the characters following that color tag. This applies to almost everything from box titles, list text, form item labels, to table cells. In a TextView, this functionality has to be switched on explicitly. See the TextView documentation for more information. Color tags may contain not just the foreground (text) color but also the background color and additional flags. In fact, the full definition of a color tag is as follows: Each of the three fields can be left blank and trailing fields can be omitted. (Empty square brackets "[]", however, are not considered color tags.) Colors that are not specified will be left unchanged. A field with just a dash ("-") means "reset to default". You can specify the following flags (some flags may not be supported by your terminal): Examples: In the rare event that you want to display a string such as "[red]" or "[#00ff1a]" without applying its effect, you need to put an opening square bracket before the closing square bracket. Note that the text inside the brackets will be matched less strictly than region or colors tags. I.e. any character that may be used in color or region tags will be recognized. Examples: You can use the Escape() function to insert brackets automatically where needed. When primitives are instantiated, they are initialized with colors taken from the global Styles variable. You may change this variable to adapt the look and feel of the primitives to your preferred style. This package supports unicode characters including wide characters. Many functions in this package are not thread-safe. For many applications, this may not be an issue: If your code makes changes in response to key events, it will execute in the main goroutine and thus will not cause any race conditions. If you access your primitives from other goroutines, however, you will need to synchronize execution. The easiest way to do this is to call Application.QueueUpdate() or Application.QueueUpdateDraw() (see the function documentation for details): One exception to this is the io.Writer interface implemented by TextView. You can safely write to a TextView from any goroutine. See the TextView documentation for details. You can also call Application.Draw() from any goroutine without having to wrap it in QueueUpdate(). And, as mentioned above, key event callbacks are executed in the main goroutine and thus should not use QueueUpdate() as that may lead to deadlocks. All widgets listed above contain the Box type. All of Box's functions are therefore available for all widgets, too. All widgets also implement the Primitive interface. The tview package is based on https://github.com/gdamore/tcell. It uses types and constants from that package (e.g. colors and keyboard values). This package does not process mouse input (yet).
Package websocket implements the WebSocket protocol defined in RFC 6455. The Conn type represents a WebSocket connection. A server application calls the Upgrader.Upgrade method from an HTTP request handler to get a *Conn: net/http valyala/fasthttp Call the connection's WriteMessage and ReadMessage methods to send and receive messages as a slice of bytes. This snippet of code shows how to echo messages using these methods: In above snippet of code, p is a []byte and messageType is an int with value websocket.BinaryMessage or websocket.TextMessage. An application can also send and receive messages using the io.WriteCloser and io.Reader interfaces. To send a message, call the connection NextWriter method to get an io.WriteCloser, write the message to the writer and close the writer when done. To receive a message, call the connection NextReader method to get an io.Reader and read until io.EOF is returned. This snippet shows how to echo messages using the NextWriter and NextReader methods: The WebSocket protocol distinguishes between text and binary data messages. Text messages are interpreted as UTF-8 encoded text. The interpretation of binary messages is left to the application. This package uses the TextMessage and BinaryMessage integer constants to identify the two data message types. The ReadMessage and NextReader methods return the type of the received message. The messageType argument to the WriteMessage and NextWriter methods specifies the type of a sent message. It is the application's responsibility to ensure that text messages are valid UTF-8 encoded text. The WebSocket protocol defines three types of control messages: close, ping and pong. Call the connection WriteControl, WriteMessage or NextWriter methods to send a control message to the peer. Connections handle received close messages by calling the handler function set with the SetCloseHandler method and by returning a *CloseError from the NextReader, ReadMessage or the message Read method. The default close handler sends a close message to the peer. Connections handle received ping messages by calling the handler function set with the SetPingHandler method. The default ping handler sends a pong message to the peer. Connections handle received pong messages by calling the handler function set with the SetPongHandler method. The default pong handler does nothing. If an application sends ping messages, then the application should set a pong handler to receive the corresponding pong. The control message handler functions are called from the NextReader, ReadMessage and message reader Read methods. The default close and ping handlers can block these methods for a short time when the handler writes to the connection. The application must read the connection to process close, ping and pong messages sent from the peer. If the application is not otherwise interested in messages from the peer, then the application should start a goroutine to read and discard messages from the peer. A simple example is: Connections support one concurrent reader and one concurrent writer. Applications are responsible for ensuring that no more than one goroutine calls the write methods (NextWriter, SetWriteDeadline, WriteMessage, WriteJSON, EnableWriteCompression, SetCompressionLevel) concurrently and that no more than one goroutine calls the read methods (NextReader, SetReadDeadline, ReadMessage, ReadJSON, SetPongHandler, SetPingHandler) concurrently. The Close and WriteControl methods can be called concurrently with all other methods. Web browsers allow Javascript applications to open a WebSocket connection to any host. It's up to the server to enforce an origin policy using the Origin request header sent by the browser. The Upgrader calls the function specified in the CheckOrigin field to check the origin. If the CheckOrigin function returns false, then the Upgrade method fails the WebSocket handshake with HTTP status 403. If the CheckOrigin field is nil, then the Upgrader uses a safe default: fail the handshake if the Origin request header is present and the Origin host is not equal to the Host request header. The deprecated package-level Upgrade function does not perform origin checking. The application is responsible for checking the Origin header before calling the Upgrade function. Per message compression extensions (RFC 7692) are experimentally supported by this package in a limited capacity. Setting the EnableCompression option to true in Dialer or Upgrader will attempt to negotiate per message deflate support. If compression was successfully negotiated with the connection's peer, any message received in compressed form will be automatically decompressed. All Read methods will return uncompressed bytes. Per message compression of messages written to a connection can be enabled or disabled by calling the corresponding Conn method: Currently this package does not support compression with "context takeover". This means that messages must be compressed and decompressed in isolation, without retaining sliding window or dictionary state across messages. For more details refer to RFC 7692. Use of compression is experimental and may result in decreased performance.
Package uniseg implements Unicode Text Segmentation, Unicode Line Breaking, and string width calculation for monospace fonts. Unicode Text Segmentation conforms to Unicode Standard Annex #29 (https://unicode.org/reports/tr29/) and Unicode Line Breaking conforms to Unicode Standard Annex #14 (https://unicode.org/reports/tr14/). In short, using this package, you can split a string into grapheme clusters (what people would usually refer to as a "character"), into words, and into sentences. Or, in its simplest case, this package allows you to count the number of characters in a string, especially when it contains complex characters such as emojis, combining characters, or characters from Asian, Arabic, Hebrew, or other languages. Additionally, you can use it to implement line breaking (or "word wrapping"), that is, to determine where text can be broken over to the next line when the width of the line is not big enough to fit the entire text. Finally, you can use it to calculate the display width of a string for monospace fonts. If you just want to count the number of characters in a string, you can use GraphemeClusterCount. If you want to determine the display width of a string, you can use StringWidth. If you want to iterate over a string, you can use Step, StepString, or the Graphemes class (more convenient but less performant). This will provide you with all information: grapheme clusters, word boundaries, sentence boundaries, line breaks, and monospace character widths. The specialized functions FirstGraphemeCluster, FirstGraphemeClusterInString, FirstWord, FirstWordInString, FirstSentence, and FirstSentenceInString can be used if only one type of information is needed. Consider the rainbow flag emoji: 🏳️🌈. On most modern systems, it appears as one character. But its string representation actually has 14 bytes, so counting bytes (or using len("🏳️🌈")) will not work as expected. Counting runes won't, either: The flag has 4 Unicode code points, thus 4 runes. The stdlib function utf8.RuneCountInString("🏳️🌈") and len([]rune("🏳️🌈")) will both return 4. The GraphemeClusterCount function will return 1 for the rainbow flag emoji. The Graphemes class and a variety of functions in this package will allow you to split strings into its grapheme clusters. Word boundaries are used in a number of different contexts. The most familiar ones are selection (double-click mouse selection), cursor movement ("move to next word" control-arrow keys), and the dialog option "Whole Word Search" for search and replace. This package provides methods for determining word boundaries. Sentence boundaries are often used for triple-click or some other method of selecting or iterating through blocks of text that are larger than single words. They are also used to determine whether words occur within the same sentence in database queries. This package provides methods for determining sentence boundaries. Line breaking, also known as word wrapping, is the process of breaking a section of text into lines such that it will fit in the available width of a page, window or other display area. This package provides methods to determine the positions in a string where a line must be broken, may be broken, or must not be broken. Monospace width, as referred to in this package, is the width of a string in a monospace font. This is commonly used in terminal user interfaces or text displays or editors that don't support proportional fonts. A width of 1 corresponds to a single character cell. The populear C function wcswidth() and its implementation in other programming languages is in widespread use for the same purpose. However, there is no standard for the calculation of such widths, and this package differs from wcswidth() in a number of ways, presumably to generate more visually pleasing results. To start, we assume that every code point has a width of 1, with the following exceptions: For Hangul grapheme clusters composed of conjoining Jamo and for Regional Indicators (flags), all code points except the first one have a width of 0. For grapheme clusters starting with an Extended Pictographic, any additional code point will force a total width of 2, except if the Variation Selector-15 (U+FE0E) is included, in which case the total width is always 1. Grapheme clusters ending with Variation Selector-16 (U+FE0F) have a width of 2. Note that whether these widths appear correct depends on your application's render engine, to which extent it conforms to the Unicode Standard, and its choice of font.
Package pq is a pure Go Postgres driver for the database/sql package. In most cases clients will use the database/sql package instead of using this package directly. For example: You can also connect to a database using a URL. For example: Similarly to libpq, when establishing a connection using pq you are expected to supply a connection string containing zero or more parameters. A subset of the connection parameters supported by libpq are also supported by pq. Additionally, pq also lets you specify run-time parameters (such as search_path or work_mem) directly in the connection string. This is different from libpq, which does not allow run-time parameters in the connection string, instead requiring you to supply them in the options parameter. For compatibility with libpq, the following special connection parameters are supported: Valid values for sslmode are: See http://www.postgresql.org/docs/current/static/libpq-connect.html#LIBPQ-CONNSTRING for more information about connection string parameters. Use single quotes for values that contain whitespace: A backslash will escape the next character in values: Note that the connection parameter client_encoding (which sets the text encoding for the connection) may be set but must be "UTF8", matching with the same rules as Postgres. It is an error to provide any other value. In addition to the parameters listed above, any run-time parameter that can be set at backend start time can be set in the connection string. For more information, see http://www.postgresql.org/docs/current/static/runtime-config.html. Most environment variables as specified at http://www.postgresql.org/docs/current/static/libpq-envars.html supported by libpq are also supported by pq. If any of the environment variables not supported by pq are set, pq will panic during connection establishment. Environment variables have a lower precedence than explicitly provided connection parameters. The pgpass mechanism as described in http://www.postgresql.org/docs/current/static/libpq-pgpass.html is supported, but on Windows PGPASSFILE must be specified explicitly. database/sql does not dictate any specific format for parameter markers in query strings, and pq uses the Postgres-native ordinal markers, as shown above. The same marker can be reused for the same parameter: pq does not support the LastInsertId() method of the Result type in database/sql. To return the identifier of an INSERT (or UPDATE or DELETE), use the Postgres RETURNING clause with a standard Query or QueryRow call: For more details on RETURNING, see the Postgres documentation: For additional instructions on querying see the documentation for the database/sql package. Parameters pass through driver.DefaultParameterConverter before they are handled by this package. When the binary_parameters connection option is enabled, []byte values are sent directly to the backend as data in binary format. This package returns the following types for values from the PostgreSQL backend: All other types are returned directly from the backend as []byte values in text format. pq may return errors of type *pq.Error which can be interrogated for error details: See the pq.Error type for details. You can perform bulk imports by preparing a statement returned by pq.CopyIn (or pq.CopyInSchema) in an explicit transaction (sql.Tx). The returned statement handle can then be repeatedly "executed" to copy data into the target table. After all data has been processed you should call Exec() once with no arguments to flush all buffered data. Any call to Exec() might return an error which should be handled appropriately, but because of the internal buffering an error returned by Exec() might not be related to the data passed in the call that failed. CopyIn uses COPY FROM internally. It is not possible to COPY outside of an explicit transaction in pq. Usage example: PostgreSQL supports a simple publish/subscribe model over database connections. See http://www.postgresql.org/docs/current/static/sql-notify.html for more information about the general mechanism. To start listening for notifications, you first have to open a new connection to the database by calling NewListener. This connection can not be used for anything other than LISTEN / NOTIFY. Calling Listen will open a "notification channel"; once a notification channel is open, a notification generated on that channel will effect a send on the Listener.Notify channel. A notification channel will remain open until Unlisten is called, though connection loss might result in some notifications being lost. To solve this problem, Listener sends a nil pointer over the Notify channel any time the connection is re-established following a connection loss. The application can get information about the state of the underlying connection by setting an event callback in the call to NewListener. A single Listener can safely be used from concurrent goroutines, which means that there is often no need to create more than one Listener in your application. However, a Listener is always connected to a single database, so you will need to create a new Listener instance for every database you want to receive notifications in. The channel name in both Listen and Unlisten is case sensitive, and can contain any characters legal in an identifier (see http://www.postgresql.org/docs/current/static/sql-syntax-lexical.html#SQL-SYNTAX-IDENTIFIERS for more information). Note that the channel name will be truncated to 63 bytes by the PostgreSQL server. You can find a complete, working example of Listener usage at https://godoc.org/github.com/wangdongpei/postgresql/example/listen. If you need support for Kerberos authentication, add the following to your main package: This package is in a separate module so that users who don't need Kerberos don't have to download unnecessary dependencies. When imported, additional connection string parameters are supported:
Package blackfriday is a markdown processor. It translates plain text with simple formatting rules into an AST, which can then be further processed to HTML (provided by Blackfriday itself) or other formats (provided by the community). The simplest way to invoke Blackfriday is to call the Run function. It will take a text input and produce a text output in HTML (or other format). A slightly more sophisticated way to use Blackfriday is to create a Markdown processor and to call Parse, which returns a syntax tree for the input document. You can leverage Blackfriday's parsing for content extraction from markdown documents. You can assign a custom renderer and set various options to the Markdown processor. If you're interested in calling Blackfriday from command line, see https://github.com/russross/blackfriday-tool.
api is a part of dataset Authors R. S. Doiel, <rsdoiel@library.caltech.edu> and Tom Morrel, <tmorrell@library.caltech.edu> Copyright (c) 2022, Caltech All rights not granted herein are expressly reserved by Caltech. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. api_docs.go is a part of dataset Authors R. S. Doiel, <rsdoiel@library.caltech.edu> and Tom Morrel, <tmorrell@library.caltech.edu> Copyright (c) 2022, Caltech All rights not granted herein are expressly reserved by Caltech. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. Package dataset includes the operations needed for processing collections of JSON documents and their attachments. Authors R. S. Doiel, <rsdoiel@library.caltech.edu> and Tom Morrel, <tmorrell@library.caltech.edu> Copyright (c) 2022, Caltech All rights not granted herein are expressly reserved by Caltech. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. Package dataset includes the operations needed for processing collections of JSON documents and their attachments. Authors R. S. Doiel, <rsdoiel@library.caltech.edu> and Tom Morrel, <tmorrell@library.caltech.edu> Copyright (c) 2022, Caltech All rights not granted herein are expressly reserved by Caltech. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. cli is part of dataset Authors R. S. Doiel, <rsdoiel@library.caltech.edu> and Tom Morrel, <tmorrell@library.caltech.edu> Copyright (c) 2022, Caltech All rights not granted herein are expressly reserved by Caltech. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. This is part of the dataset package. Authors R. S. Doiel, <rsdoiel@library.caltech.edu> and Tom Morrel, <tmorrell@library.caltech.edu> Copyright (c) 2022, Caltech All rights not granted herein are expressly reserved by Caltech. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. Package dataset includes the operations needed for processing collections of JSON documents and their attachments. Authors R. S. Doiel, <rsdoiel@library.caltech.edu> and Tom Morrel, <tmorrell@library.caltech.edu> Copyright (c) 2022, Caltech All rights not granted herein are expressly reserved by Caltech. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. Package dataset includes the operations needed for processing collections of JSON documents and their attachments. Authors R. S. Doiel, <rsdoiel@library.caltech.edu> and Tom Morrel, <tmorrell@library.caltech.edu> Copyright (c) 2022, Caltech All rights not granted herein are expressly reserved by Caltech. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * config is a part of dataset Authors R. S. Doiel, <rsdoiel@library.caltech.edu> and Tom Morrel, <tmorrell@library.caltech.edu> Copyright (c) 2022, Caltech All rights not granted herein are expressly reserved by Caltech. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. Package dataset includes the operations needed for processing collections of JSON documents and their attachments. Authors R. S. Doiel, <rsdoiel@library.caltech.edu> and Tom Morrel, <tmorrell@library.caltech.edu> Copyright (c) 2022, Caltech All rights not granted herein are expressly reserved by Caltech. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. Dataset Project =============== The Dataset Project provides tools for working with collections of JSON Object documents stored on the local file system or via a dataset web service. Two tools are provided, a command line interface (dataset) and a web service (datasetd). dataset command line tool ------------------------- _dataset_ is a command line tool for working with collections of JSON objects. Collections are stored on the file system in a pairtree directory structure or can be accessed via dataset's web service. For collections storing data in a pairtree JSON objects are stored in collections as plain UTF-8 text files. This means the objects can be accessed with common Unix text processing tools as well as most programming languages. The _dataset_ command line tool supports common data management operations such as initialization of collections; document creation, reading, updating and deleting; listing keys of JSON objects in the collection; and associating non-JSON documents (attachments) with specific JSON documents in the collection. ### enhanced features include - aggregate objects into data frames - generate sample sets of keys and objects datasetd, dataset as a web service ---------------------------------- _datasetd_ is a web service implementation of the _dataset_ command line program. It features a sub-set of capability found in the command line tool. This allows dataset collections to be integrated safely into web applications or used concurrently by multiple processes. It achieves this by storing the dataset collection in a SQL database using JSON columns. Design choices -------------- _dataset_ and _datasetd_ are intended to be simple tools for managing collections JSON object documents in a predictable structured way. _dataset_ is guided by the idea that you should be able to work with JSON documents as easily as you can any plain text document on the Unix command line. _dataset_ is intended to be simple to use with minimal setup (e.g. `dataset init mycollection.ds` creates a new collection called 'mycollection.ds'). _datatset_ stores JSON object documents in a pairtree _datasetd_ stores JSON object documents in a table named for the collection The choice of plain UTF-8 is intended to help future proof reading dataset collections. Care has been taken to keep _dataset_ simple enough and light weight enough that it will run on a machine as small as a Raspberry Pi Zero while being equally comfortable on a more resource rich server or desktop environment. _dataset_ can be re-implement in any programming language supporting file input and output, common string operations and along with JSON encoding and decoding functions. The current implementation is in the Go language. Features -------- _dataset_ supports - Initialize a new dataset collection - Listing _keys_ in a collection - Object level actions _datasetd_ supports - List collections available from the web service - List or update a collection's metadata - List a collection's keys - Object level actions Both _dataset_ and _datasetd_ maybe useful for general data science applications needing JSON object management or in implementing repository systems in research libraries and archives. Limitations of _dataset_ and _datasetd_ ------------------------------------------- _dataset_ has many limitations, some are listed below _datasetd_ is a simple web service intended to run on "localhost:8485". Authors and history ------------------- - R. S. Doiel - Tommy Morrell Package dataset includes the operations needed for processing collections of JSON documents and their attachments. Authors R. S. Doiel, <rsdoiel@library.caltech.edu> and Tom Morrel, <tmorrell@library.caltech.edu> Copyright (c) 2022, Caltech All rights not granted herein are expressly reserved by Caltech. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * Package dataset includes the operations needed for processing collections of JSON documents and their attachments. Authors R. S. Doiel, <rsdoiel@library.caltech.edu> and Tom Morrel, <tmorrell@library.caltech.edu> Copyright (c) 2022, Caltech All rights not granted herein are expressly reserved by Caltech. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ptstore is a part of the dataset Authors R. S. Doiel, <rsdoiel@library.caltech.edu> and Tom Morrel, <tmorrell@library.caltech.edu> Copyright (c) 2022, Caltech All rights not granted herein are expressly reserved by Caltech. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. Package dataset includes the operations needed for processing collections of JSON documents and their attachments. Authors R. S. Doiel, <rsdoiel@library.caltech.edu> and Tom Morrel, <tmorrell@library.caltech.edu> Copyright (c) 2022, Caltech All rights not granted herein are expressly reserved by Caltech. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. sqlstore is a part of dataset Authors R. S. Doiel, <rsdoiel@library.caltech.edu> and Tom Morrel, <tmorrell@library.caltech.edu> Copyright (c) 2022, Caltech All rights not granted herein are expressly reserved by Caltech. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. Package dataset includes the operations needed for processing collections of JSON documents and their attachments. Authors R. S. Doiel, <rsdoiel@library.caltech.edu> and Tom Morrel, <tmorrell@library.caltech.edu> Copyright (c) 2022, Caltech All rights not granted herein are expressly reserved by Caltech. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. table.go provides some utility functions to move string one and two dimensional slices into/out of one and two dimensional slices. texts is part of dataset Authors R. S. Doiel, <rsdoiel@library.caltech.edu> and Tom Morrel, <tmorrell@library.caltech.edu> Copyright (c) 2022, Caltech All rights not granted herein are expressly reserved by Caltech. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. Package dataset includes the operations needed for processing collections of JSON documents and their attachments. Authors R. S. Doiel, <rsdoiel@library.caltech.edu> and Tom Morrel, <tmorrell@library.caltech.edu> Copyright (c) 2022, Caltech All rights not granted herein are expressly reserved by Caltech. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
Package websocket implements the WebSocket protocol defined in RFC 6455. The Conn type represents a WebSocket connection. A server application calls the Upgrader.Upgrade method from an HTTP request handler to get a *Conn: Call the connection's WriteMessage and ReadMessage methods to send and receive messages as a slice of bytes. This snippet of code shows how to echo messages using these methods: In above snippet of code, p is a []byte and messageType is an int with value websocket.BinaryMessage or websocket.TextMessage. An application can also send and receive messages using the io.WriteCloser and io.Reader interfaces. To send a message, call the connection NextWriter method to get an io.WriteCloser, write the message to the writer and close the writer when done. To receive a message, call the connection NextReader method to get an io.Reader and read until io.EOF is returned. This snippet shows how to echo messages using the NextWriter and NextReader methods: The WebSocket protocol distinguishes between text and binary data messages. Text messages are interpreted as UTF-8 encoded text. The interpretation of binary messages is left to the application. This package uses the TextMessage and BinaryMessage integer constants to identify the two data message types. The ReadMessage and NextReader methods return the type of the received message. The messageType argument to the WriteMessage and NextWriter methods specifies the type of a sent message. It is the application's responsibility to ensure that text messages are valid UTF-8 encoded text. The WebSocket protocol defines three types of control messages: close, ping and pong. Call the connection WriteControl, WriteMessage or NextWriter methods to send a control message to the peer. Connections handle received close messages by calling the handler function set with the SetCloseHandler method and by returning a *CloseError from the NextReader, ReadMessage or the message Read method. The default close handler sends a close message to the peer. Connections handle received ping messages by calling the handler function set with the SetPingHandler method. The default ping handler sends a pong message to the peer. Connections handle received pong messages by calling the handler function set with the SetPongHandler method. The default pong handler does nothing. If an application sends ping messages, then the application should set a pong handler to receive the corresponding pong. The control message handler functions are called from the NextReader, ReadMessage and message reader Read methods. The default close and ping handlers can block these methods for a short time when the handler writes to the connection. The application must read the connection to process close, ping and pong messages sent from the peer. If the application is not otherwise interested in messages from the peer, then the application should start a goroutine to read and discard messages from the peer. A simple example is: Connections support one concurrent reader and one concurrent writer. Applications are responsible for ensuring that no more than one goroutine calls the write methods (NextWriter, SetWriteDeadline, WriteMessage, WriteJSON, EnableWriteCompression, SetCompressionLevel) concurrently and that no more than one goroutine calls the read methods (NextReader, SetReadDeadline, ReadMessage, ReadJSON, SetPongHandler, SetPingHandler) concurrently. The Close and WriteControl methods can be called concurrently with all other methods. Web browsers allow Javascript applications to open a WebSocket connection to any host. It's up to the server to enforce an origin policy using the Origin request header sent by the browser. The Upgrader calls the function specified in the CheckOrigin field to check the origin. If the CheckOrigin function returns false, then the Upgrade method fails the WebSocket handshake with HTTP status 403. If the CheckOrigin field is nil, then the Upgrader uses a safe default: fail the handshake if the Origin request header is present and the Origin host is not equal to the Host request header. The deprecated package-level Upgrade function does not perform origin checking. The application is responsible for checking the Origin header before calling the Upgrade function. Connections buffer network input and output to reduce the number of system calls when reading or writing messages. Write buffers are also used for constructing WebSocket frames. See RFC 6455, Section 5 for a discussion of message framing. A WebSocket frame header is written to the network each time a write buffer is flushed to the network. Decreasing the size of the write buffer can increase the amount of framing overhead on the connection. The buffer sizes in bytes are specified by the ReadBufferSize and WriteBufferSize fields in the Dialer and Upgrader. The Dialer uses a default size of 4096 when a buffer size field is set to zero. The Upgrader reuses buffers created by the HTTP server when a buffer size field is set to zero. The HTTP server buffers have a size of 4096 at the time of this writing. The buffer sizes do not limit the size of a message that can be read or written by a connection. Buffers are held for the lifetime of the connection by default. If the Dialer or Upgrader WriteBufferPool field is set, then a connection holds the write buffer only when writing a message. Applications should tune the buffer sizes to balance memory use and performance. Increasing the buffer size uses more memory, but can reduce the number of system calls to read or write the network. In the case of writing, increasing the buffer size can reduce the number of frame headers written to the network. Some guidelines for setting buffer parameters are: Limit the buffer sizes to the maximum expected message size. Buffers larger than the largest message do not provide any benefit. Depending on the distribution of message sizes, setting the buffer size to a value less than the maximum expected message size can greatly reduce memory use with a small impact on performance. Here's an example: If 99% of the messages are smaller than 256 bytes and the maximum message size is 512 bytes, then a buffer size of 256 bytes will result in 1.01 more system calls than a buffer size of 512 bytes. The memory savings is 50%. A write buffer pool is useful when the application has a modest number writes over a large number of connections. when buffers are pooled, a larger buffer size has a reduced impact on total memory use and has the benefit of reducing system calls and frame overhead. Per message compression extensions (RFC 7692) are experimentally supported by this package in a limited capacity. Setting the EnableCompression option to true in Dialer or Upgrader will attempt to negotiate per message deflate support. If compression was successfully negotiated with the connection's peer, any message received in compressed form will be automatically decompressed. All Read methods will return uncompressed bytes. Per message compression of messages written to a connection can be enabled or disabled by calling the corresponding Conn method: Currently this package does not support compression with "context takeover". This means that messages must be compressed and decompressed in isolation, without retaining sliding window or dictionary state across messages. For more details refer to RFC 7692. Use of compression is experimental and may result in decreased performance.
Package antlr implements the Go version of the ANTLR 4 runtime. ANTLR (ANother Tool for Language Recognition) is a powerful parser generator for reading, processing, executing, or translating structured text or binary files. It's widely used to build languages, tools, and frameworks. From a grammar, ANTLR generates a parser that can build parse trees and also generates a listener interface (or visitor) that makes it easy to respond to the recognition of phrases of interest. At version 4.11.x and prior, the Go runtime was not properly versioned for go modules. After this point, the runtime source code to be imported was held in the `runtime/Go/antlr/v4` directory, and the go.mod file was updated to reflect the version of ANTLR4 that it is compatible with (I.E. uses the /v4 path). However, this was found to be problematic, as it meant that with the runtime embedded so far underneath the root of the repo, the `go get` and related commands could not properly resolve the location of the go runtime source code. This meant that the reference to the runtime in your `go.mod` file would refer to the correct source code, but would not list the release tag such as @4.13.1 - this was confusing, to say the least. As of 4.13.0, the runtime is now available as a go module in its own repo, and can be imported as `github.com/antlr4-go/antlr` (the go get command should also be used with this path). See the main documentation for the ANTLR4 project for more information, which is available at ANTLR docs. The documentation for using the Go runtime is available at Go runtime docs. This means that if you are using the source code without modules, you should also use the source code in the new repo. Though we highly recommend that you use go modules, as they are now idiomatic for Go. I am aware that this change will prove Hyrum's Law, but am prepared to live with it for the common good. Go runtime author: Jim Idle jimi@idle.ws ANTLR supports the generation of code in a number of target languages, and the generated code is supported by a runtime library, written specifically to support the generated code in the target language. This library is the runtime for the Go target. To generate code for the go target, it is generally recommended to place the source grammar files in a package of their own, and use the `.sh` script method of generating code, using the go generate directive. In that same directory it is usual, though not required, to place the antlr tool that should be used to generate the code. That does mean that the antlr tool JAR file will be checked in to your source code control though, so you are, of course, free to use any other way of specifying the version of the ANTLR tool to use, such as aliasing in `.zshrc` or equivalent, or a profile in your IDE, or configuration in your CI system. Checking in the jar does mean that it is easy to reproduce the build as it was at any point in its history. Here is a general/recommended template for an ANTLR based recognizer in Go: Make sure that the package statement in your grammar file(s) reflects the go package the generated code will exist in. The generate.go file then looks like this: And the generate.sh file will look similar to this: depending on whether you want visitors or listeners or any other ANTLR options. Not that another option here is to generate the code into a From the command line at the root of your source package (location of go.mo)d) you can then simply issue the command: Which will generate the code for the parser, and place it in the parsing package. You can then use the generated code by importing the parsing package. There are no hard and fast rules on this. It is just a recommendation. You can generate the code in any way and to anywhere you like. Copyright (c) 2012-2023 The ANTLR Project. All rights reserved. Use of this file is governed by the BSD 3-clause license, which can be found in the LICENSE.txt file in the project root.
Package cmds helps building both standalone and client-server applications. The basic building blocks are requests, commands, emitters and responses. A command consists of a description of the parameters and a function. The function is passed the request as well as an emitter as arguments. It does operations on the inputs and sends the results to the user by emitting them. There are a number of emitters in this package and subpackages, but the user is free to create their own. A command is a struct containing the commands help text, a description of the arguments and options, the command's processing function and a type to let the caller know what type will be emitted. Optionally one of the functions PostRun and Encoder may be defined that consumes the function's emitted values and generates a visual representation for e.g. the terminal. Encoders work on a value-by-value basis, while PostRun operates on the value stream. An emitter has the Emit method, that takes the command's function's output as an argument and passes it to the user. The command's function does not know what kind of emitter it works with, so the same function may run locally or on a server, using an rpc interface. Emitters can also send errors using the SetError method. The user-facing emitter usually is the cli emitter. Values emitter here will be printed to the terminal using either the Encoders or the PostRun function. A response is a value that the user can read emitted values from. Responses have a method Next() that returns the next emitted value and an error value. If the last element has been received, the returned error value is io.EOF. If the application code has sent an error using SetError, the error ErrRcvdError is returned on next, indicating that the caller should call Error(). Depending on the reponse type, other errors may also occur. Pipes are pairs (emitter, response), such that a value emitted on the emitter can be received in the response value. Most builtin emitters are "pipe" emitters. The most prominent examples are the channel pipe and the http pipe. The channel pipe is backed by a channel. The only error value returned by the response is io.EOF, which happens when the channel is closed. The http pipe is backed by an http connection. The response can also return other errors, e.g. if there are errors on the network. To get a better idea of what's going on, take a look at the examples at https://github.com/bluzelle/go-ipfs-cmds/tree/master/examples.
Package lunk provides a set of tools for structured logging in the style of Google's Dapper or Twitter's Zipkin. When we consider a complex event in a distributed system, we're actually considering a partially-ordered tree of events from various services, libraries, and modules. Consider a user-initiated web request. Their browser sends an HTTP request to an edge server, which extracts the credentials (e.g., OAuth token) and authenticates the request by communicating with an internal authentication service, which returns a signed set of internal credentials (e.g., signed user ID). The edge web server then proxies the request to a cluster of web servers, each running a PHP application. The PHP application loads some data from several databases, places the user in a number of treatment groups for running A/B experiments, writes some data to a Dynamo-style distributed database, and returns an HTML response. The edge server receives this response and proxies it to the user's browser. In this scenario we have a number of infrastructure-specific events: This scenario also involves a number of events which have little to do with the infrastructure, but are still critical information for the business the system supports: There are a number of different teams all trying to monitor and improve aspects of this system. Operational staff need to know if a particular host or service is experiencing a latency spike or drop in throughput. Development staff need to know if their application's response times have gone down as a result of a recent deploy. Customer support staff need to know if the system is operating nominally as a whole, and for customers in particular. Product designers and managers need to know the effect of an A/B test on user behavior. But the fact that these teams will be consuming the data in different ways for different purposes does mean that they are working on different systems. In order to instrument the various components of the system, we need a common data model. We adopt Dapper's notion of a tree to mean a partially-ordered tree of events from a distributed system. A tree in Lunk is identified by its root ID, which is the unique ID of its root event. All events in a common tree share a root ID. In our photo example, we would assign a unique root ID as soon as the edge server received the request. Events inside a tree are causally ordered: each event has a unique ID, and an optional parent ID. By passing the IDs across systems, we establish causal ordering between events. In our photo example, the two database queries from the app would share the same parent ID--the ID of the event corresponding to the app handling the request which caused those queries. Each event has a schema of properties, which allow us to record specific pieces of information about each event. For HTTP requests, we can record the method, the request URI, the elapsed time to handle the request, etc. Lunk is agnostic in terms of aggregation technologies, but two use cases seem clear: real-time process monitoring and offline causational analysis. For real-time process monitoring, events can be streamed to a aggregation service like Riemann (http://riemann.io) or Storm (http://storm.incubator.apache.org), which can calculate process statistics (e.g., the 95th percentile latency for the edge server responses) in real-time. This allows for adaptive monitoring of all services, with the option of including example root IDs in the alerts (e.g., 95th percentile latency is over 300ms, mostly as a result of requests like those in tree XXXXX). For offline causational analysis, events can be written in batches to batch processing systems like Hadoop or OLAP databases like Vertica. These aggregates can be queried to answer questions traditionally reserved for A/B testing systems. "Did users who were show the new navbar view more photos?" "Did the new image optimization algorithm we enabled for 1% of views run faster? Did it produce smaller images? Did it have any effect on user engagement?" "Did any services have increased exception rates after any recent deploys?" &tc &tc By capturing the root ID of a particular web request, we can assemble a partially-ordered tree of events which were involved in the handling of that request. All events with a common root ID are in a common tree, which allows for O(M) retrieval for a tree of M events. To send a request with a root ID and a parent ID, use the Event-ID HTTP header: The header value is simply the root ID and event ID, hex-encoded and separated with a slash. If the event has a parent ID, that may be included as an optional third parameter. A server that receives a request with this header can use this to properly parent its own events. Each event has a set of named properties, the keys and values of which are strings. This allows aggregation layers to take advantage of simplifying assumptions and either store events in normalized form (with event data separate from property data) or in denormalized form (essentially pre-materializing an outer join of the normalized relations). Durations are always recorded as fractional milliseconds. Lunk currently provides two formats for log entries: text and JSON. Text-based logs encode each entry as a single line of text, using key="value" formatting for all properties. Event property keys are scoped to avoid collisions. JSON logs encode each entry as a single JSON object.
Package blackfriday is a markdown processor. It translates plain text with simple formatting rules into an AST, which can then be further processed to HTML (provided by Blackfriday itself) or other formats (provided by the community). The simplest way to invoke Blackfriday is to call the Run function. It will take a text input and produce a text output in HTML (or other format). A slightly more sophisticated way to use Blackfriday is to create a Markdown processor and to call Parse, which returns a syntax tree for the input document. You can leverage Blackfriday's parsing for content extraction from markdown documents. You can assign a custom renderer and set various options to the Markdown processor. If you're interested in calling Blackfriday from command line, see https://github.com/russross/blackfriday-tool. Blackfriday includes an algorithm for creating sanitized anchor names corresponding to a given input text. This algorithm is used to create anchors for headings when AutoHeadingIDs extension is enabled. The algorithm is specified below, so that other packages can create compatible anchor names and links to those anchors. The algorithm iterates over the input text, interpreted as UTF-8, one Unicode code point (rune) at a time. All runes that are letters (category L) or numbers (category N) are considered valid characters. They are mapped to lower case, and included in the output. All other runes are considered invalid characters. Invalid characters that precede the first valid character, as well as invalid character that follow the last valid character are dropped completely. All other sequences of invalid characters between two valid characters are replaced with a single dash character '-'. SanitizedAnchorName exposes this functionality, and can be used to create compatible links to the anchor names generated by blackfriday. This algorithm is also implemented in a small standalone package at github.com/shurcooL/sanitized_anchor_name. It can be useful for clients that want a small package and don't need full functionality of blackfriday.
Package gocql implements a fast and robust Cassandra driver for the Go programming language. Pass a list of initial node IP addresses to NewCluster to create a new cluster configuration: Port can be specified as part of the address, the above is equivalent to: It is recommended to use the value set in the Cassandra config for broadcast_address or listen_address, an IP address not a domain name. This is because events from Cassandra will use the configured IP address, which is used to index connected hosts. If the domain name specified resolves to more than 1 IP address then the driver may connect multiple times to the same host, and will not mark the node being down or up from events. Then you can customize more options (see ClusterConfig): The driver tries to automatically detect the protocol version to use if not set, but you might want to set the protocol version explicitly, as it's not defined which version will be used in certain situations (for example during upgrade of the cluster when some of the nodes support different set of protocol versions than other nodes). The driver advertises the module name and version in the STARTUP message, so servers are able to detect the version. If you use replace directive in go.mod, the driver will send information about the replacement module instead. When ready, create a session from the configuration. Don't forget to Close the session once you are done with it: CQL protocol uses a SASL-based authentication mechanism and so consists of an exchange of server challenges and client response pairs. The details of the exchanged messages depend on the authenticator used. To use authentication, set ClusterConfig.Authenticator or ClusterConfig.AuthProvider. PasswordAuthenticator is provided to use for username/password authentication: It is possible to secure traffic between the client and server with TLS. To use TLS, set the ClusterConfig.SslOpts field. SslOptions embeds *tls.Config so you can set that directly. There are also helpers to load keys/certificates from files. Warning: Due to historical reasons, the SslOptions is insecure by default, so you need to set EnableHostVerification to true if no Config is set. Most users should set SslOptions.Config to a *tls.Config. SslOptions and Config.InsecureSkipVerify interact as follows: For example: To route queries to local DC first, use DCAwareRoundRobinPolicy. For example, if the datacenter you want to primarily connect is called dc1 (as configured in the database): The driver can route queries to nodes that hold data replicas based on partition key (preferring local DC). Note that TokenAwareHostPolicy can take options such as gocql.ShuffleReplicas and gocql.NonLocalReplicasFallback. We recommend running with a token aware host policy in production for maximum performance. The driver can only use token-aware routing for queries where all partition key columns are query parameters. For example, instead of use The DCAwareRoundRobinPolicy can be replaced with RackAwareRoundRobinPolicy, which takes two parameters, datacenter and rack. Instead of dividing hosts with two tiers (local datacenter and remote datacenters) it divides hosts into three (the local rack, the rest of the local datacenter, and everything else). RackAwareRoundRobinPolicy can be combined with TokenAwareHostPolicy in the same way as DCAwareRoundRobinPolicy. Create queries with Session.Query. Query values must not be reused between different executions and must not be modified after starting execution of the query. To execute a query without reading results, use Query.Exec: Single row can be read by calling Query.Scan: Multiple rows can be read using Iter.Scanner: See Example for complete example. The driver automatically prepares DML queries (SELECT/INSERT/UPDATE/DELETE/BATCH statements) and maintains a cache of prepared statements. CQL protocol does not support preparing other query types. When using CQL protocol >= 4, it is possible to use gocql.UnsetValue as the bound value of a column. This will cause the database to ignore writing the column. The main advantage is the ability to keep the same prepared statement even when you don't want to update some fields, where before you needed to make another prepared statement. Session is safe to use from multiple goroutines, so to execute multiple concurrent queries, just execute them from several worker goroutines. Gocql provides synchronously-looking API (as recommended for Go APIs) and the queries are executed asynchronously at the protocol level. Null values are are unmarshalled as zero value of the type. If you need to distinguish for example between text column being null and empty string, you can unmarshal into *string variable instead of string. See Example_nulls for full example. The driver reuses backing memory of slices when unmarshalling. This is an optimization so that a buffer does not need to be allocated for every processed row. However, you need to be careful when storing the slices to other memory structures. When you want to save the data for later use, pass a new slice every time. A common pattern is to declare the slice variable within the scanner loop: The driver supports paging of results with automatic prefetch, see ClusterConfig.PageSize, Session.SetPrefetch, Query.PageSize, and Query.Prefetch. It is also possible to control the paging manually with Query.PageState (this disables automatic prefetch). Manual paging is useful if you want to store the page state externally, for example in a URL to allow users browse pages in a result. You might want to sign/encrypt the paging state when exposing it externally since it contains data from primary keys. Paging state is specific to the CQL protocol version and the exact query used. It is meant as opaque state that should not be modified. If you send paging state from different query or protocol version, then the behaviour is not defined (you might get unexpected results or an error from the server). For example, do not send paging state returned by node using protocol version 3 to a node using protocol version 4. Also, when using protocol version 4, paging state between Cassandra 2.2 and 3.0 is incompatible (https://issues.apache.org/jira/browse/CASSANDRA-10880). The driver does not check whether the paging state is from the same protocol version/statement. You might want to validate yourself as this could be a problem if you store paging state externally. For example, if you store paging state in a URL, the URLs might become broken when you upgrade your cluster. Call Query.PageState(nil) to fetch just the first page of the query results. Pass the page state returned by Iter.PageState to Query.PageState of a subsequent query to get the next page. If the length of slice returned by Iter.PageState is zero, there are no more pages available (or an error occurred). Using too low values of PageSize will negatively affect performance, a value below 100 is probably too low. While Cassandra returns exactly PageSize items (except for last page) in a page currently, the protocol authors explicitly reserved the right to return smaller or larger amount of items in a page for performance reasons, so don't rely on the page having the exact count of items. See Example_paging for an example of manual paging. There are certain situations when you don't know the list of columns in advance, mainly when the query is supplied by the user. Iter.Columns, Iter.RowData, Iter.MapScan and Iter.SliceMap can be used to handle this case. See Example_dynamicColumns. The CQL protocol supports sending batches of DML statements (INSERT/UPDATE/DELETE) and so does gocql. Use Session.NewBatch to create a new batch and then fill-in details of individual queries. Then execute the batch with Session.ExecuteBatch. Logged batches ensure atomicity, either all or none of the operations in the batch will succeed, but they have overhead to ensure this property. Unlogged batches don't have the overhead of logged batches, but don't guarantee atomicity. Updates of counters are handled specially by Cassandra so batches of counter updates have to use CounterBatch type. A counter batch can only contain statements to update counters. For unlogged batches it is recommended to send only single-partition batches (i.e. all statements in the batch should involve only a single partition). Multi-partition batch needs to be split by the coordinator node and re-sent to correct nodes. With single-partition batches you can send the batch directly to the node for the partition without incurring the additional network hop. It is also possible to pass entire BEGIN BATCH .. APPLY BATCH statement to Query.Exec. There are differences how those are executed. BEGIN BATCH statement passed to Query.Exec is prepared as a whole in a single statement. Session.ExecuteBatch prepares individual statements in the batch. If you have variable-length batches using the same statement, using Session.ExecuteBatch is more efficient. See Example_batch for an example. Query.ScanCAS or Query.MapScanCAS can be used to execute a single-statement lightweight transaction (an INSERT/UPDATE .. IF statement) and reading its result. See example for Query.MapScanCAS. Multiple-statement lightweight transactions can be executed as a logged batch that contains at least one conditional statement. All the conditions must return true for the batch to be applied. You can use Session.ExecuteBatchCAS and Session.MapExecuteBatchCAS when executing the batch to learn about the result of the LWT. See example for Session.MapExecuteBatchCAS. Queries can be marked as idempotent. Marking the query as idempotent tells the driver that the query can be executed multiple times without affecting its result. Non-idempotent queries are not eligible for retrying nor speculative execution. Idempotent queries are retried in case of errors based on the configured RetryPolicy. If the query is LWT and the configured RetryPolicy additionally implements LWTRetryPolicy interface, then the policy will be cast to LWTRetryPolicy and used this way. Queries can be retried even before they fail by setting a SpeculativeExecutionPolicy. The policy can cause the driver to retry on a different node if the query is taking longer than a specified delay even before the driver receives an error or timeout from the server. When a query is speculatively executed, the original execution is still executing. The two parallel executions of the query race to return a result, the first received result will be returned. UDTs can be mapped (un)marshaled from/to map[string]interface{} a Go struct (or a type implementing UDTUnmarshaler, UDTMarshaler, Unmarshaler or Marshaler interfaces). For structs, cql tag can be used to specify the CQL field name to be mapped to a struct field: See Example_userDefinedTypesMap, Example_userDefinedTypesStruct, ExampleUDTMarshaler, ExampleUDTUnmarshaler. It is possible to provide observer implementations that could be used to gather metrics: CQL protocol also supports tracing of queries. When enabled, the database will write information about internal events that happened during execution of the query. You can use Query.Trace to request tracing and receive the session ID that the database used to store the trace information in system_traces.sessions and system_traces.events tables. NewTraceWriter returns an implementation of Tracer that writes the events to a writer. Gathering trace information might be essential for debugging and optimizing queries, but writing traces has overhead, so this feature should not be used on production systems with very high load unless you know what you are doing. Example_batch demonstrates how to execute a batch of statements. Example_dynamicColumns demonstrates how to handle dynamic column list. Example_marshalerUnmarshaler demonstrates how to implement a Marshaler and Unmarshaler. Example_nulls demonstrates how to distinguish between null and zero value when needed. Null values are unmarshalled as zero value of the type. If you need to distinguish for example between text column being null and empty string, you can unmarshal into *string field. Example_paging demonstrates how to manually fetch pages and use page state. See also package documentation about paging. Example_set demonstrates how to use sets. Example_userDefinedTypesMap demonstrates how to work with user-defined types as maps. See also Example_userDefinedTypesStruct and examples for UDTMarshaler and UDTUnmarshaler if you want to map to structs. Example_userDefinedTypesStruct demonstrates how to work with user-defined types as structs. See also examples for UDTMarshaler and UDTUnmarshaler if you need more control/better performance.
Package gocql implements a fast and robust Cassandra driver for the Go programming language. Pass a list of initial node IP addresses to NewCluster to create a new cluster configuration: Port can be specified as part of the address, the above is equivalent to: It is recommended to use the value set in the Cassandra config for broadcast_address or listen_address, an IP address not a domain name. This is because events from Cassandra will use the configured IP address, which is used to index connected hosts. If the domain name specified resolves to more than 1 IP address then the driver may connect multiple times to the same host, and will not mark the node being down or up from events. Then you can customize more options (see ClusterConfig): The driver tries to automatically detect the protocol version to use if not set, but you might want to set the protocol version explicitly, as it's not defined which version will be used in certain situations (for example during upgrade of the cluster when some of the nodes support different set of protocol versions than other nodes). The driver advertises the module name and version in the STARTUP message, so servers are able to detect the version. If you use replace directive in go.mod, the driver will send information about the replacement module instead. When ready, create a session from the configuration. Don't forget to Close the session once you are done with it: CQL protocol uses a SASL-based authentication mechanism and so consists of an exchange of server challenges and client response pairs. The details of the exchanged messages depend on the authenticator used. To use authentication, set ClusterConfig.Authenticator or ClusterConfig.AuthProvider. PasswordAuthenticator is provided to use for username/password authentication: It is possible to secure traffic between the client and server with TLS. To use TLS, set the ClusterConfig.SslOpts field. SslOptions embeds *tls.Config so you can set that directly. There are also helpers to load keys/certificates from files. Warning: Due to historical reasons, the SslOptions is insecure by default, so you need to set EnableHostVerification to true if no Config is set. Most users should set SslOptions.Config to a *tls.Config. SslOptions and Config.InsecureSkipVerify interact as follows: For example: To route queries to local DC first, use DCAwareRoundRobinPolicy. For example, if the datacenter you want to primarily connect is called dc1 (as configured in the database): The driver can route queries to nodes that hold data replicas based on partition key (preferring local DC). Note that TokenAwareHostPolicy can take options such as gocql.ShuffleReplicas and gocql.NonLocalReplicasFallback. We recommend running with a token aware host policy in production for maximum performance. The driver can only use token-aware routing for queries where all partition key columns are query parameters. For example, instead of use The DCAwareRoundRobinPolicy can be replaced with RackAwareRoundRobinPolicy, which takes two parameters, datacenter and rack. Instead of dividing hosts with two tiers (local datacenter and remote datacenters) it divides hosts into three (the local rack, the rest of the local datacenter, and everything else). RackAwareRoundRobinPolicy can be combined with TokenAwareHostPolicy in the same way as DCAwareRoundRobinPolicy. Create queries with Session.Query. Query values must not be reused between different executions and must not be modified after starting execution of the query. To execute a query without reading results, use Query.Exec: Single row can be read by calling Query.Scan: Multiple rows can be read using Iter.Scanner: See Example for complete example. The driver automatically prepares DML queries (SELECT/INSERT/UPDATE/DELETE/BATCH statements) and maintains a cache of prepared statements. CQL protocol does not support preparing other query types. When using CQL protocol >= 4, it is possible to use gocql.UnsetValue as the bound value of a column. This will cause the database to ignore writing the column. The main advantage is the ability to keep the same prepared statement even when you don't want to update some fields, where before you needed to make another prepared statement. Session is safe to use from multiple goroutines, so to execute multiple concurrent queries, just execute them from several worker goroutines. Gocql provides synchronously-looking API (as recommended for Go APIs) and the queries are executed asynchronously at the protocol level. Null values are are unmarshalled as zero value of the type. If you need to distinguish for example between text column being null and empty string, you can unmarshal into *string variable instead of string. See Example_nulls for full example. The driver reuses backing memory of slices when unmarshalling. This is an optimization so that a buffer does not need to be allocated for every processed row. However, you need to be careful when storing the slices to other memory structures. When you want to save the data for later use, pass a new slice every time. A common pattern is to declare the slice variable within the scanner loop: The driver supports paging of results with automatic prefetch, see ClusterConfig.PageSize, Session.SetPrefetch, Query.PageSize, and Query.Prefetch. It is also possible to control the paging manually with Query.PageState (this disables automatic prefetch). Manual paging is useful if you want to store the page state externally, for example in a URL to allow users browse pages in a result. You might want to sign/encrypt the paging state when exposing it externally since it contains data from primary keys. Paging state is specific to the CQL protocol version and the exact query used. It is meant as opaque state that should not be modified. If you send paging state from different query or protocol version, then the behaviour is not defined (you might get unexpected results or an error from the server). For example, do not send paging state returned by node using protocol version 3 to a node using protocol version 4. Also, when using protocol version 4, paging state between Cassandra 2.2 and 3.0 is incompatible (https://issues.apache.org/jira/browse/CASSANDRA-10880). The driver does not check whether the paging state is from the same protocol version/statement. You might want to validate yourself as this could be a problem if you store paging state externally. For example, if you store paging state in a URL, the URLs might become broken when you upgrade your cluster. Call Query.PageState(nil) to fetch just the first page of the query results. Pass the page state returned by Iter.PageState to Query.PageState of a subsequent query to get the next page. If the length of slice returned by Iter.PageState is zero, there are no more pages available (or an error occurred). Using too low values of PageSize will negatively affect performance, a value below 100 is probably too low. While Cassandra returns exactly PageSize items (except for last page) in a page currently, the protocol authors explicitly reserved the right to return smaller or larger amount of items in a page for performance reasons, so don't rely on the page having the exact count of items. See Example_paging for an example of manual paging. There are certain situations when you don't know the list of columns in advance, mainly when the query is supplied by the user. Iter.Columns, Iter.RowData, Iter.MapScan and Iter.SliceMap can be used to handle this case. See Example_dynamicColumns. The CQL protocol supports sending batches of DML statements (INSERT/UPDATE/DELETE) and so does gocql. Use Session.NewBatch to create a new batch and then fill-in details of individual queries. Then execute the batch with Session.ExecuteBatch. Logged batches ensure atomicity, either all or none of the operations in the batch will succeed, but they have overhead to ensure this property. Unlogged batches don't have the overhead of logged batches, but don't guarantee atomicity. Updates of counters are handled specially by Cassandra so batches of counter updates have to use CounterBatch type. A counter batch can only contain statements to update counters. For unlogged batches it is recommended to send only single-partition batches (i.e. all statements in the batch should involve only a single partition). Multi-partition batch needs to be split by the coordinator node and re-sent to correct nodes. With single-partition batches you can send the batch directly to the node for the partition without incurring the additional network hop. It is also possible to pass entire BEGIN BATCH .. APPLY BATCH statement to Query.Exec. There are differences how those are executed. BEGIN BATCH statement passed to Query.Exec is prepared as a whole in a single statement. Session.ExecuteBatch prepares individual statements in the batch. If you have variable-length batches using the same statement, using Session.ExecuteBatch is more efficient. See Example_batch for an example. Query.ScanCAS or Query.MapScanCAS can be used to execute a single-statement lightweight transaction (an INSERT/UPDATE .. IF statement) and reading its result. See example for Query.MapScanCAS. Multiple-statement lightweight transactions can be executed as a logged batch that contains at least one conditional statement. All the conditions must return true for the batch to be applied. You can use Session.ExecuteBatchCAS and Session.MapExecuteBatchCAS when executing the batch to learn about the result of the LWT. See example for Session.MapExecuteBatchCAS. Queries can be marked as idempotent. Marking the query as idempotent tells the driver that the query can be executed multiple times without affecting its result. Non-idempotent queries are not eligible for retrying nor speculative execution. Idempotent queries are retried in case of errors based on the configured RetryPolicy. If the query is LWT and the configured RetryPolicy additionally implements LWTRetryPolicy interface, then the policy will be cast to LWTRetryPolicy and used this way. Queries can be retried even before they fail by setting a SpeculativeExecutionPolicy. The policy can cause the driver to retry on a different node if the query is taking longer than a specified delay even before the driver receives an error or timeout from the server. When a query is speculatively executed, the original execution is still executing. The two parallel executions of the query race to return a result, the first received result will be returned. UDTs can be mapped (un)marshaled from/to map[string]interface{} a Go struct (or a type implementing UDTUnmarshaler, UDTMarshaler, Unmarshaler or Marshaler interfaces). For structs, cql tag can be used to specify the CQL field name to be mapped to a struct field: See Example_userDefinedTypesMap, Example_userDefinedTypesStruct, ExampleUDTMarshaler, ExampleUDTUnmarshaler. It is possible to provide observer implementations that could be used to gather metrics: CQL protocol also supports tracing of queries. When enabled, the database will write information about internal events that happened during execution of the query. You can use Query.Trace to request tracing and receive the session ID that the database used to store the trace information in system_traces.sessions and system_traces.events tables. NewTraceWriter returns an implementation of Tracer that writes the events to a writer. Gathering trace information might be essential for debugging and optimizing queries, but writing traces has overhead, so this feature should not be used on production systems with very high load unless you know what you are doing. Example_batch demonstrates how to execute a batch of statements. Example_dynamicColumns demonstrates how to handle dynamic column list. Example_marshalerUnmarshaler demonstrates how to implement a Marshaler and Unmarshaler. Example_nulls demonstrates how to distinguish between null and zero value when needed. Null values are unmarshalled as zero value of the type. If you need to distinguish for example between text column being null and empty string, you can unmarshal into *string field. Example_paging demonstrates how to manually fetch pages and use page state. See also package documentation about paging. Example_set demonstrates how to use sets. Example_userDefinedTypesMap demonstrates how to work with user-defined types as maps. See also Example_userDefinedTypesStruct and examples for UDTMarshaler and UDTUnmarshaler if you want to map to structs. Example_userDefinedTypesStruct demonstrates how to work with user-defined types as structs. See also examples for UDTMarshaler and UDTUnmarshaler if you need more control/better performance.
Package gocql implements a fast and robust Cassandra driver for the Go programming language. Pass a list of initial node IP addresses to NewCluster to create a new cluster configuration: Port can be specified as part of the address, the above is equivalent to: It is recommended to use the value set in the Cassandra config for broadcast_address or listen_address, an IP address not a domain name. This is because events from Cassandra will use the configured IP address, which is used to index connected hosts. If the domain name specified resolves to more than 1 IP address then the driver may connect multiple times to the same host, and will not mark the node being down or up from events. Then you can customize more options (see ClusterConfig): The driver tries to automatically detect the protocol version to use if not set, but you might want to set the protocol version explicitly, as it's not defined which version will be used in certain situations (for example during upgrade of the cluster when some of the nodes support different set of protocol versions than other nodes). The driver advertises the module name and version in the STARTUP message, so servers are able to detect the version. If you use replace directive in go.mod, the driver will send information about the replacement module instead. When ready, create a session from the configuration. Don't forget to Close the session once you are done with it: CQL protocol uses a SASL-based authentication mechanism and so consists of an exchange of server challenges and client response pairs. The details of the exchanged messages depend on the authenticator used. To use authentication, set ClusterConfig.Authenticator or ClusterConfig.AuthProvider. PasswordAuthenticator is provided to use for username/password authentication: It is possible to secure traffic between the client and server with TLS. To use TLS, set the ClusterConfig.SslOpts field. SslOptions embeds *tls.Config so you can set that directly. There are also helpers to load keys/certificates from files. Warning: Due to historical reasons, the SslOptions is insecure by default, so you need to set EnableHostVerification to true if no Config is set. Most users should set SslOptions.Config to a *tls.Config. SslOptions and Config.InsecureSkipVerify interact as follows: For example: To route queries to local DC first, use DCAwareRoundRobinPolicy. For example, if the datacenter you want to primarily connect is called dc1 (as configured in the database): The driver can route queries to nodes that hold data replicas based on partition key (preferring local DC). Note that TokenAwareHostPolicy can take options such as gocql.ShuffleReplicas and gocql.NonLocalReplicasFallback. We recommend running with a token aware host policy in production for maximum performance. The driver can only use token-aware routing for queries where all partition key columns are query parameters. For example, instead of use The DCAwareRoundRobinPolicy can be replaced with RackAwareRoundRobinPolicy, which takes two parameters, datacenter and rack. Instead of dividing hosts with two tiers (local datacenter and remote datacenters) it divides hosts into three (the local rack, the rest of the local datacenter, and everything else). RackAwareRoundRobinPolicy can be combined with TokenAwareHostPolicy in the same way as DCAwareRoundRobinPolicy. Create queries with Session.Query. Query values must not be reused between different executions and must not be modified after starting execution of the query. To execute a query without reading results, use Query.Exec: Single row can be read by calling Query.Scan: Multiple rows can be read using Iter.Scanner: See Example for complete example. The driver automatically prepares DML queries (SELECT/INSERT/UPDATE/DELETE/BATCH statements) and maintains a cache of prepared statements. CQL protocol does not support preparing other query types. When using CQL protocol >= 4, it is possible to use gocql.UnsetValue as the bound value of a column. This will cause the database to ignore writing the column. The main advantage is the ability to keep the same prepared statement even when you don't want to update some fields, where before you needed to make another prepared statement. Session is safe to use from multiple goroutines, so to execute multiple concurrent queries, just execute them from several worker goroutines. Gocql provides synchronously-looking API (as recommended for Go APIs) and the queries are executed asynchronously at the protocol level. Null values are are unmarshalled as zero value of the type. If you need to distinguish for example between text column being null and empty string, you can unmarshal into *string variable instead of string. See Example_nulls for full example. The driver reuses backing memory of slices when unmarshalling. This is an optimization so that a buffer does not need to be allocated for every processed row. However, you need to be careful when storing the slices to other memory structures. When you want to save the data for later use, pass a new slice every time. A common pattern is to declare the slice variable within the scanner loop: The driver supports paging of results with automatic prefetch, see ClusterConfig.PageSize, Session.SetPrefetch, Query.PageSize, and Query.Prefetch. It is also possible to control the paging manually with Query.PageState (this disables automatic prefetch). Manual paging is useful if you want to store the page state externally, for example in a URL to allow users browse pages in a result. You might want to sign/encrypt the paging state when exposing it externally since it contains data from primary keys. Paging state is specific to the CQL protocol version and the exact query used. It is meant as opaque state that should not be modified. If you send paging state from different query or protocol version, then the behaviour is not defined (you might get unexpected results or an error from the server). For example, do not send paging state returned by node using protocol version 3 to a node using protocol version 4. Also, when using protocol version 4, paging state between Cassandra 2.2 and 3.0 is incompatible (https://issues.apache.org/jira/browse/CASSANDRA-10880). The driver does not check whether the paging state is from the same protocol version/statement. You might want to validate yourself as this could be a problem if you store paging state externally. For example, if you store paging state in a URL, the URLs might become broken when you upgrade your cluster. Call Query.PageState(nil) to fetch just the first page of the query results. Pass the page state returned by Iter.PageState to Query.PageState of a subsequent query to get the next page. If the length of slice returned by Iter.PageState is zero, there are no more pages available (or an error occurred). Using too low values of PageSize will negatively affect performance, a value below 100 is probably too low. While Cassandra returns exactly PageSize items (except for last page) in a page currently, the protocol authors explicitly reserved the right to return smaller or larger amount of items in a page for performance reasons, so don't rely on the page having the exact count of items. See Example_paging for an example of manual paging. There are certain situations when you don't know the list of columns in advance, mainly when the query is supplied by the user. Iter.Columns, Iter.RowData, Iter.MapScan and Iter.SliceMap can be used to handle this case. See Example_dynamicColumns. The CQL protocol supports sending batches of DML statements (INSERT/UPDATE/DELETE) and so does gocql. Use Session.NewBatch to create a new batch and then fill-in details of individual queries. Then execute the batch with Session.ExecuteBatch. Logged batches ensure atomicity, either all or none of the operations in the batch will succeed, but they have overhead to ensure this property. Unlogged batches don't have the overhead of logged batches, but don't guarantee atomicity. Updates of counters are handled specially by Cassandra so batches of counter updates have to use CounterBatch type. A counter batch can only contain statements to update counters. For unlogged batches it is recommended to send only single-partition batches (i.e. all statements in the batch should involve only a single partition). Multi-partition batch needs to be split by the coordinator node and re-sent to correct nodes. With single-partition batches you can send the batch directly to the node for the partition without incurring the additional network hop. It is also possible to pass entire BEGIN BATCH .. APPLY BATCH statement to Query.Exec. There are differences how those are executed. BEGIN BATCH statement passed to Query.Exec is prepared as a whole in a single statement. Session.ExecuteBatch prepares individual statements in the batch. If you have variable-length batches using the same statement, using Session.ExecuteBatch is more efficient. See Example_batch for an example. Query.ScanCAS or Query.MapScanCAS can be used to execute a single-statement lightweight transaction (an INSERT/UPDATE .. IF statement) and reading its result. See example for Query.MapScanCAS. Multiple-statement lightweight transactions can be executed as a logged batch that contains at least one conditional statement. All the conditions must return true for the batch to be applied. You can use Session.ExecuteBatchCAS and Session.MapExecuteBatchCAS when executing the batch to learn about the result of the LWT. See example for Session.MapExecuteBatchCAS. Queries can be marked as idempotent. Marking the query as idempotent tells the driver that the query can be executed multiple times without affecting its result. Non-idempotent queries are not eligible for retrying nor speculative execution. Idempotent queries are retried in case of errors based on the configured RetryPolicy. If the query is LWT and the configured RetryPolicy additionally implements LWTRetryPolicy interface, then the policy will be cast to LWTRetryPolicy and used this way. Queries can be retried even before they fail by setting a SpeculativeExecutionPolicy. The policy can cause the driver to retry on a different node if the query is taking longer than a specified delay even before the driver receives an error or timeout from the server. When a query is speculatively executed, the original execution is still executing. The two parallel executions of the query race to return a result, the first received result will be returned. UDTs can be mapped (un)marshaled from/to map[string]interface{} a Go struct (or a type implementing UDTUnmarshaler, UDTMarshaler, Unmarshaler or Marshaler interfaces). For structs, cql tag can be used to specify the CQL field name to be mapped to a struct field: See Example_userDefinedTypesMap, Example_userDefinedTypesStruct, ExampleUDTMarshaler, ExampleUDTUnmarshaler. It is possible to provide observer implementations that could be used to gather metrics: CQL protocol also supports tracing of queries. When enabled, the database will write information about internal events that happened during execution of the query. You can use Query.Trace to request tracing and receive the session ID that the database used to store the trace information in system_traces.sessions and system_traces.events tables. NewTraceWriter returns an implementation of Tracer that writes the events to a writer. Gathering trace information might be essential for debugging and optimizing queries, but writing traces has overhead, so this feature should not be used on production systems with very high load unless you know what you are doing. Example_batch demonstrates how to execute a batch of statements. Example_dynamicColumns demonstrates how to handle dynamic column list. Example_marshalerUnmarshaler demonstrates how to implement a Marshaler and Unmarshaler. Example_nulls demonstrates how to distinguish between null and zero value when needed. Null values are unmarshalled as zero value of the type. If you need to distinguish for example between text column being null and empty string, you can unmarshal into *string field. Example_paging demonstrates how to manually fetch pages and use page state. See also package documentation about paging. Example_set demonstrates how to use sets. Example_userDefinedTypesMap demonstrates how to work with user-defined types as maps. See also Example_userDefinedTypesStruct and examples for UDTMarshaler and UDTUnmarshaler if you want to map to structs. Example_userDefinedTypesStruct demonstrates how to work with user-defined types as structs. See also examples for UDTMarshaler and UDTUnmarshaler if you need more control/better performance.
Package gocql implements a fast and robust Cassandra driver for the Go programming language. Pass a list of initial node IP addresses to NewCluster to create a new cluster configuration: Port can be specified as part of the address, the above is equivalent to: It is recommended to use the value set in the Cassandra config for broadcast_address or listen_address, an IP address not a domain name. This is because events from Cassandra will use the configured IP address, which is used to index connected hosts. If the domain name specified resolves to more than 1 IP address then the driver may connect multiple times to the same host, and will not mark the node being down or up from events. Then you can customize more options (see ClusterConfig): The driver tries to automatically detect the protocol version to use if not set, but you might want to set the protocol version explicitly, as it's not defined which version will be used in certain situations (for example during upgrade of the cluster when some of the nodes support different set of protocol versions than other nodes). The driver advertises the module name and version in the STARTUP message, so servers are able to detect the version. If you use replace directive in go.mod, the driver will send information about the replacement module instead. When ready, create a session from the configuration. Don't forget to Close the session once you are done with it: CQL protocol uses a SASL-based authentication mechanism and so consists of an exchange of server challenges and client response pairs. The details of the exchanged messages depend on the authenticator used. To use authentication, set ClusterConfig.Authenticator or ClusterConfig.AuthProvider. PasswordAuthenticator is provided to use for username/password authentication: It is possible to secure traffic between the client and server with TLS. To use TLS, set the ClusterConfig.SslOpts field. SslOptions embeds *tls.Config so you can set that directly. There are also helpers to load keys/certificates from files. Warning: Due to historical reasons, the SslOptions is insecure by default, so you need to set EnableHostVerification to true if no Config is set. Most users should set SslOptions.Config to a *tls.Config. SslOptions and Config.InsecureSkipVerify interact as follows: For example: To route queries to local DC first, use DCAwareRoundRobinPolicy. For example, if the datacenter you want to primarily connect is called dc1 (as configured in the database): The driver can route queries to nodes that hold data replicas based on partition key (preferring local DC). Note that TokenAwareHostPolicy can take options such as gocql.ShuffleReplicas and gocql.NonLocalReplicasFallback. We recommend running with a token aware host policy in production for maximum performance. The driver can only use token-aware routing for queries where all partition key columns are query parameters. For example, instead of use The DCAwareRoundRobinPolicy can be replaced with RackAwareRoundRobinPolicy, which takes two parameters, datacenter and rack. Instead of dividing hosts with two tiers (local datacenter and remote datacenters) it divides hosts into three (the local rack, the rest of the local datacenter, and everything else). RackAwareRoundRobinPolicy can be combined with TokenAwareHostPolicy in the same way as DCAwareRoundRobinPolicy. Create queries with Session.Query. Query values must not be reused between different executions and must not be modified after starting execution of the query. To execute a query without reading results, use Query.Exec: Single row can be read by calling Query.Scan: Multiple rows can be read using Iter.Scanner: See Example for complete example. The driver automatically prepares DML queries (SELECT/INSERT/UPDATE/DELETE/BATCH statements) and maintains a cache of prepared statements. CQL protocol does not support preparing other query types. When using CQL protocol >= 4, it is possible to use gocql.UnsetValue as the bound value of a column. This will cause the database to ignore writing the column. The main advantage is the ability to keep the same prepared statement even when you don't want to update some fields, where before you needed to make another prepared statement. Session is safe to use from multiple goroutines, so to execute multiple concurrent queries, just execute them from several worker goroutines. Gocql provides synchronously-looking API (as recommended for Go APIs) and the queries are executed asynchronously at the protocol level. Null values are are unmarshalled as zero value of the type. If you need to distinguish for example between text column being null and empty string, you can unmarshal into *string variable instead of string. See Example_nulls for full example. The driver reuses backing memory of slices when unmarshalling. This is an optimization so that a buffer does not need to be allocated for every processed row. However, you need to be careful when storing the slices to other memory structures. When you want to save the data for later use, pass a new slice every time. A common pattern is to declare the slice variable within the scanner loop: The driver supports paging of results with automatic prefetch, see ClusterConfig.PageSize, Session.SetPrefetch, Query.PageSize, and Query.Prefetch. It is also possible to control the paging manually with Query.PageState (this disables automatic prefetch). Manual paging is useful if you want to store the page state externally, for example in a URL to allow users browse pages in a result. You might want to sign/encrypt the paging state when exposing it externally since it contains data from primary keys. Paging state is specific to the CQL protocol version and the exact query used. It is meant as opaque state that should not be modified. If you send paging state from different query or protocol version, then the behaviour is not defined (you might get unexpected results or an error from the server). For example, do not send paging state returned by node using protocol version 3 to a node using protocol version 4. Also, when using protocol version 4, paging state between Cassandra 2.2 and 3.0 is incompatible (https://issues.apache.org/jira/browse/CASSANDRA-10880). The driver does not check whether the paging state is from the same protocol version/statement. You might want to validate yourself as this could be a problem if you store paging state externally. For example, if you store paging state in a URL, the URLs might become broken when you upgrade your cluster. Call Query.PageState(nil) to fetch just the first page of the query results. Pass the page state returned by Iter.PageState to Query.PageState of a subsequent query to get the next page. If the length of slice returned by Iter.PageState is zero, there are no more pages available (or an error occurred). Using too low values of PageSize will negatively affect performance, a value below 100 is probably too low. While Cassandra returns exactly PageSize items (except for last page) in a page currently, the protocol authors explicitly reserved the right to return smaller or larger amount of items in a page for performance reasons, so don't rely on the page having the exact count of items. See Example_paging for an example of manual paging. There are certain situations when you don't know the list of columns in advance, mainly when the query is supplied by the user. Iter.Columns, Iter.RowData, Iter.MapScan and Iter.SliceMap can be used to handle this case. See Example_dynamicColumns. The CQL protocol supports sending batches of DML statements (INSERT/UPDATE/DELETE) and so does gocql. Use Session.NewBatch to create a new batch and then fill-in details of individual queries. Then execute the batch with Session.ExecuteBatch. Logged batches ensure atomicity, either all or none of the operations in the batch will succeed, but they have overhead to ensure this property. Unlogged batches don't have the overhead of logged batches, but don't guarantee atomicity. Updates of counters are handled specially by Cassandra so batches of counter updates have to use CounterBatch type. A counter batch can only contain statements to update counters. For unlogged batches it is recommended to send only single-partition batches (i.e. all statements in the batch should involve only a single partition). Multi-partition batch needs to be split by the coordinator node and re-sent to correct nodes. With single-partition batches you can send the batch directly to the node for the partition without incurring the additional network hop. It is also possible to pass entire BEGIN BATCH .. APPLY BATCH statement to Query.Exec. There are differences how those are executed. BEGIN BATCH statement passed to Query.Exec is prepared as a whole in a single statement. Session.ExecuteBatch prepares individual statements in the batch. If you have variable-length batches using the same statement, using Session.ExecuteBatch is more efficient. See Example_batch for an example. Query.ScanCAS or Query.MapScanCAS can be used to execute a single-statement lightweight transaction (an INSERT/UPDATE .. IF statement) and reading its result. See example for Query.MapScanCAS. Multiple-statement lightweight transactions can be executed as a logged batch that contains at least one conditional statement. All the conditions must return true for the batch to be applied. You can use Session.ExecuteBatchCAS and Session.MapExecuteBatchCAS when executing the batch to learn about the result of the LWT. See example for Session.MapExecuteBatchCAS. Queries can be marked as idempotent. Marking the query as idempotent tells the driver that the query can be executed multiple times without affecting its result. Non-idempotent queries are not eligible for retrying nor speculative execution. Idempotent queries are retried in case of errors based on the configured RetryPolicy. If the query is LWT and the configured RetryPolicy additionally implements LWTRetryPolicy interface, then the policy will be cast to LWTRetryPolicy and used this way. Queries can be retried even before they fail by setting a SpeculativeExecutionPolicy. The policy can cause the driver to retry on a different node if the query is taking longer than a specified delay even before the driver receives an error or timeout from the server. When a query is speculatively executed, the original execution is still executing. The two parallel executions of the query race to return a result, the first received result will be returned. UDTs can be mapped (un)marshaled from/to map[string]interface{} a Go struct (or a type implementing UDTUnmarshaler, UDTMarshaler, Unmarshaler or Marshaler interfaces). For structs, cql tag can be used to specify the CQL field name to be mapped to a struct field: See Example_userDefinedTypesMap, Example_userDefinedTypesStruct, ExampleUDTMarshaler, ExampleUDTUnmarshaler. It is possible to provide observer implementations that could be used to gather metrics: CQL protocol also supports tracing of queries. When enabled, the database will write information about internal events that happened during execution of the query. You can use Query.Trace to request tracing and receive the session ID that the database used to store the trace information in system_traces.sessions and system_traces.events tables. NewTraceWriter returns an implementation of Tracer that writes the events to a writer. Gathering trace information might be essential for debugging and optimizing queries, but writing traces has overhead, so this feature should not be used on production systems with very high load unless you know what you are doing. Example_batch demonstrates how to execute a batch of statements. Example_dynamicColumns demonstrates how to handle dynamic column list. Example_marshalerUnmarshaler demonstrates how to implement a Marshaler and Unmarshaler. Example_nulls demonstrates how to distinguish between null and zero value when needed. Null values are unmarshalled as zero value of the type. If you need to distinguish for example between text column being null and empty string, you can unmarshal into *string field. Example_paging demonstrates how to manually fetch pages and use page state. See also package documentation about paging. Example_set demonstrates how to use sets. Example_userDefinedTypesMap demonstrates how to work with user-defined types as maps. See also Example_userDefinedTypesStruct and examples for UDTMarshaler and UDTUnmarshaler if you want to map to structs. Example_userDefinedTypesStruct demonstrates how to work with user-defined types as structs. See also examples for UDTMarshaler and UDTUnmarshaler if you need more control/better performance.
Package websocket implements the WebSocket protocol defined in RFC 6455. The Conn type represents a WebSocket connection. A server application uses the Upgrade function from an Upgrader object with a HTTP request handler to get a pointer to a Conn: Call the connection WriteMessage and ReadMessages methods to send and receive messages as a slice of bytes. This snippet of code shows how to echo messages using these methods: In above snippet of code, p is a []byte and messageType is an int with value websocket.BinaryMessage or websocket.TextMessage. An application can also send and receive messages using the io.WriteCloser and io.Reader interfaces. To send a message, call the connection NextWriter method to get an io.WriteCloser, write the message to the writer and close the writer when done. To receive a message, call the connection NextReader method to get an io.Reader and read until io.EOF is returned. This snippet snippet shows how to echo messages using the NextWriter and NextReader methods: The WebSocket protocol distinguishes between text and binary data messages. Text messages are interpreted as UTF-8 encoded text. The interpretation of binary messages is left to the application. This package uses the TextMessage and BinaryMessage integer constants to identify the two data message types. The ReadMessage and NextReader methods return the type of the received message. The messageType argument to the WriteMessage and NextWriter methods specifies the type of a sent message. It is the application's responsibility to ensure that text messages are valid UTF-8 encoded text. The WebSocket protocol defines three types of control messages: close, ping and pong. Call the connection WriteControl, WriteMessage or NextWriter methods to send a control message to the peer. Connections handle received ping and pong messages by invoking a callback function set with SetPingHandler and SetPongHandler methods. These callback functions can be invoked from the ReadMessage method, the NextReader method or from a call to the data message reader returned from NextReader. Connections handle received close messages by returning an error from the ReadMessage method, the NextReader method or from a call to the data message reader returned from NextReader. Connections do not support concurrent calls to the write methods (NextWriter, SetWriteDeadline, WriteMessage) or concurrent calls to the read methods methods (NextReader, SetReadDeadline, ReadMessage). Connections do support a concurrent reader and writer. The Close and WriteControl methods can be called concurrently with all other methods. The application must read the connection to process ping and close messages sent from the peer. If the application is not otherwise interested in messages from the peer, then the application should start a goroutine to read and discard messages from the peer. A simple example is: Web browsers allow Javascript applications to open a WebSocket connection to any host. It's up to the server to enforce an origin policy using the Origin request header sent by the browser. The Upgrader calls the function specified in the CheckOrigin field to check the origin. If the CheckOrigin function returns false, then the Upgrade method fails the WebSocket handshake with HTTP status 403. If the CheckOrigin field is nil, then the Upgrader uses a safe default: fail the handshake if the Origin request header is present and not equal to the Host request header. An application can allow connections from any origin by specifying a function that always returns true: The deprecated Upgrade function does not enforce an origin policy. It's the application's responsibility to check the Origin header before calling Upgrade.
Package types implements concrete types for marshalling to and from the dcrd JSON-RPC commands, return values, and notifications. When communicating via the JSON-RPC protocol, all requests and responses must be marshalled to and from the wire in the appropriate format. This package provides data structures and primitives that are registered with dcrjson to ease this process. An overview specific to this package is provided here, however it is also instructive to read the documentation for the dcrjson package (https://pkg.go.dev/github.com/Decred-Next/dcrnd/dcrjson/v3). The types in this package map to the required parts of the protocol as discussed in the dcrjson documentation To simplify the marshalling of the requests and responses, the dcrjson.MarshalCmd and dcrjson.MarshalResponse functions may be used. They return the raw bytes ready to be sent across the wire. Unmarshalling a received Request object is a two step process: This approach is used since it provides the caller with access to the additional fields in the request that are not part of the command such as the ID. Unmarshalling a received Response object is also a two step process: As above, this approach is used since it provides the caller with access to the fields in the response such as the ID and Error. This package provides two approaches for creating a new command. This first, and preferred, method is to use one of the New<Foo>Cmd functions. This allows static compile-time checking to help ensure the parameters stay in sync with the struct definitions. The second approach is the dcrjson.NewCmd function which takes a method (command) name and variable arguments. Since this package registers all of its types with dcrjson, the function will recognize them and includes full checking to ensure the parameters are accurate according to provided method, however these checks are, obviously, run-time which means any mistakes won't be found until the code is actually executed. However, it is quite useful for user-supplied commands that are intentionally dynamic. To facilitate providing consistent help to users of the RPC server, the dcrjson package exposes the GenerateHelp and function which uses reflection on commands and notifications registered by this package, as well as the provided expected result types, to generate the final help text. In addition, the dcrjson.MethodUsageText function may be used to generate consistent one-line usage for registered commands and notifications using reflection.
Package dcrjson provides infrastructure for working with Decred JSON-RPC APIs. When communicating via the JSON-RPC protocol, all requests and responses must be marshalled to and from the wire in the appropriate format. This package provides infrastructure and primitives to ease this process. This information is not necessary in order to use this package, but it does provide some intuition into what the marshalling and unmarshalling that is discussed below is doing under the hood. As defined by the JSON-RPC spec, there are effectively two forms of messages on the wire: Request Objects {"jsonrpc":"1.0","id":"SOMEID","method":"SOMEMETHOD","params":[SOMEPARAMS]} NOTE: Notifications are the same format except the id field is null. Response Objects {"result":SOMETHING,"error":null,"id":"SOMEID"} {"result":null,"error":{"code":SOMEINT,"message":SOMESTRING},"id":"SOMEID"} For requests, the params field can vary in what it contains depending on the method (a.k.a. command) being sent. Each parameter can be as simple as an int or a complex structure containing many nested fields. The id field is used to identify a request and will be included in the associated response. When working with streamed RPC transports, such as websockets, spontaneous notifications are also possible. As indicated, they are the same as a request object, except they have the id field set to null. Therefore, servers will ignore requests with the id field set to null, while clients can choose to consume or ignore them. Unfortunately, the original Bitcoin JSON-RPC API (and hence anything compatible with it) doesn't always follow the spec and will sometimes return an error string in the result field with a null error for certain commands. However, for the most part, the error field will be set as described on failure. To simplify the marshalling of the requests and responses, the MarshalCmd and MarshalResponse functions are provided. They return the raw bytes ready to be sent across the wire. Unmarshalling a received Request object is a two step process: This approach is used since it provides the caller with access to the additional fields in the request that are not part of the command such as the ID. Unmarshalling a received Response object is also a two step process: As above, this approach is used since it provides the caller with access to the fields in the response such as the ID and Error. This package provides the NewCmd function which takes a method (command) name and variable arguments. The function includes full checking to ensure the parameters are accurate according to provided method, however these checks are, obviously, run-time which means any mistakes won't be found until the code is actually executed. However, it is quite useful for user-supplied commands that are intentionally dynamic. External packages can and should implement types implementing Command for use with MarshalCmd/ParseParams. The command handling of this package is built around the concept of registered commands. This is true for the wide variety of commands already provided by the package, but it also means caller can easily provide custom commands with all of the same functionality as the built-in commands. Use the RegisterCmd function for this purpose. A list of all registered methods can be obtained with the RegisteredCmdMethods function. All registered commands are registered with flags that identify information such as whether the command applies to a chain server, wallet server, or is a notification along with the method name to use. These flags can be obtained with the MethodUsageFlags flags, and the method can be obtained with the CmdMethod function. To facilitate providing consistent help to users of the RPC server, this package exposes the GenerateHelp and function which uses reflection on registered commands or notifications to generate the final help text. In addition, the MethodUsageText function is provided to generate consistent one-line usage for registered commands and notifications using reflection. There are 2 distinct type of errors supported by this package: The first category of errors (type Error) typically indicates a programmer error and can be avoided by properly using the API. Errors of this type will be returned from the various functions available in this package. They identify issues such as unsupported field types, attempts to register malformed commands, and attempting to create a new command with an improper number of parameters. The specific reason for the error can be detected by type asserting it to a *dcrjson.Error and accessing the ErrorKind field. The second category of errors (type RPCError), on the other hand, are useful for returning errors to RPC clients. Consequently, they are used in the previously described Response type. This example demonstrates how to unmarshal a JSON-RPC response and then unmarshal the result field in the response to a concrete type.
Package types implements concrete types for marshalling to and from the dcrd JSON-RPC commands, return values, and notifications. When communicating via the JSON-RPC protocol, all requests and responses must be marshalled to and from the wire in the appropriate format. This package provides data structures and primitives that are registered with dcrjson to ease this process. An overview specific to this package is provided here, however it is also instructive to read the documentation for the dcrjson package (https://pkg.go.dev/github.com/EXCCoin/exccd/dcrjson/v4). The types in this package map to the required parts of the protocol as discussed in the dcrjson documentation To simplify the marshalling of the requests and responses, the dcrjson.MarshalCmd and dcrjson.MarshalResponse functions may be used. They return the raw bytes ready to be sent across the wire. Unmarshalling a received Request object is a two step process: This approach is used since it provides the caller with access to the additional fields in the request that are not part of the command such as the ID. Unmarshalling a received Response object is also a two step process: As above, this approach is used since it provides the caller with access to the fields in the response such as the ID and Error. This package provides two approaches for creating a new command. This first, and preferred, method is to use one of the New<Foo>Cmd functions. This allows static compile-time checking to help ensure the parameters stay in sync with the struct definitions. The second approach is the dcrjson.NewCmd function which takes a method (command) name and variable arguments. Since this package registers all of its types with dcrjson, the function will recognize them and includes full checking to ensure the parameters are accurate according to provided method, however these checks are, obviously, run-time which means any mistakes won't be found until the code is actually executed. However, it is quite useful for user-supplied commands that are intentionally dynamic. To facilitate providing consistent help to users of the RPC server, the dcrjson package exposes the GenerateHelp and function which uses reflection on commands and notifications registered by this package, as well as the provided expected result types, to generate the final help text. In addition, the dcrjson.MethodUsageText function may be used to generate consistent one-line usage for registered commands and notifications using reflection.
Package headline provides functionality to extract the first non-empty line from a string. This package is useful for processing text data where the first meaningful line needs to be extracted, such as in configuration files, headers, or any text where leading empty lines or whitespace should be ignored. The package contains a single function, Get, which efficiently processes the input string and returns the first line containing non-whitespace characters. The returned string does not include any newline characters. Usage:
Package websocket implements the WebSocket protocol defined in RFC 6455. The Conn type represents a WebSocket connection. A server application calls the Upgrader.Upgrade method from an HTTP request handler to get a *Conn: Call the connection's WriteMessage and ReadMessage methods to send and receive messages as a slice of bytes. This snippet of code shows how to echo messages using these methods: In above snippet of code, p is a []byte and messageType is an int with value websocket.BinaryMessage or websocket.TextMessage. An application can also send and receive messages using the io.WriteCloser and io.Reader interfaces. To send a message, call the connection NextWriter method to get an io.WriteCloser, write the message to the writer and close the writer when done. To receive a message, call the connection NextReader method to get an io.Reader and read until io.EOF is returned. This snippet shows how to echo messages using the NextWriter and NextReader methods: The WebSocket protocol distinguishes between text and binary data messages. Text messages are interpreted as UTF-8 encoded text. The interpretation of binary messages is left to the application. This package uses the TextMessage and BinaryMessage integer constants to identify the two data message types. The ReadMessage and NextReader methods return the type of the received message. The messageType argument to the WriteMessage and NextWriter methods specifies the type of a sent message. It is the application's responsibility to ensure that text messages are valid UTF-8 encoded text. The WebSocket protocol defines three types of control messages: close, ping and pong. Call the connection WriteControl, WriteMessage or NextWriter methods to send a control message to the peer. Connections handle received close messages by calling the handler function set with the SetCloseHandler method and by returning a *CloseError from the NextReader, ReadMessage or the message Read method. The default close handler sends a close message to the peer. Connections handle received ping messages by calling the handler function set with the SetPingHandler method. The default ping handler sends a pong message to the peer. Connections handle received pong messages by calling the handler function set with the SetPongHandler method. The default pong handler does nothing. If an application sends ping messages, then the application should set a pong handler to receive the corresponding pong. The control message handler functions are called from the NextReader, ReadMessage and message reader Read methods. The default close and ping handlers can block these methods for a short time when the handler writes to the connection. The application must read the connection to process close, ping and pong messages sent from the peer. If the application is not otherwise interested in messages from the peer, then the application should start a goroutine to read and discard messages from the peer. A simple example is: Connections support one concurrent reader and one concurrent writer. Applications are responsible for ensuring that no more than one goroutine calls the write methods (NextWriter, SetWriteDeadline, WriteMessage, WriteJSON, EnableWriteCompression, SetCompressionLevel) concurrently and that no more than one goroutine calls the read methods (NextReader, SetReadDeadline, ReadMessage, ReadJSON, SetPongHandler, SetPingHandler) concurrently. The Close and WriteControl methods can be called concurrently with all other methods. Web browsers allow Javascript applications to open a WebSocket connection to any host. It's up to the server to enforce an origin policy using the Origin request header sent by the browser. The Upgrader calls the function specified in the CheckOrigin field to check the origin. If the CheckOrigin function returns false, then the Upgrade method fails the WebSocket handshake with HTTP status 403. If the CheckOrigin field is nil, then the Upgrader uses a safe default: fail the handshake if the Origin request header is present and the Origin host is not equal to the Host request header. The deprecated package-level Upgrade function does not perform origin checking. The application is responsible for checking the Origin header before calling the Upgrade function. Per message compression extensions (RFC 7692) are experimentally supported by this package in a limited capacity. Setting the EnableCompression option to true in Dialer or Upgrader will attempt to negotiate per message deflate support. If compression was successfully negotiated with the connection's peer, any message received in compressed form will be automatically decompressed. All Read methods will return uncompressed bytes. Per message compression of messages written to a connection can be enabled or disabled by calling the corresponding Conn method: Currently this package does not support compression with "context takeover". This means that messages must be compressed and decompressed in isolation, without retaining sliding window or dictionary state across messages. For more details refer to RFC 7692. Use of compression is experimental and may result in decreased performance.
Gaby is an experimental new bot running in the Go issue tracker as @gabyhelp, to try to help automate various mundane things that a machine can do reasonably well, as well as to try to discover new things that a machine can do reasonably well. The name gaby is short for “Go AI Bot”, because one of the purposes of the experiment is to learn what LLMs can be used for effectively, including identifying what they should not be used for. Some of the gaby functionality will involve LLMs; other functionality will not. The guiding principle is to create something that helps maintainers and that maintainers like, which means to use LLMs when they make sense and help but not when they don't. In the long term, the intention is for this code base or a successor version to take over the current functionality of “gopherbot” and become @gopherbot, at which point the @gabyhelp account will be retired. At the moment we are not accepting new code contributions or PRs. We hope to move this code to somewhere more official soon, at which point we will accept contributions. The GitHub Discussion is a good place to leave feedback about @gabyhelp. The bot functionality is implemented in internal packages in subdirectories. This comment gives a brief tour of the structure. An explicit goal for the Gaby code base is that it run well in many different environments, ranging from a maintainer's home server or even Raspberry Pi all the way up to a hosted cloud. (At the moment, Gaby runs on a Linux server in my basement.) Due to this emphasis on portability, Gaby defines its own interfaces for all the functionality it needs from the surrounding environment and then also defines a variety of implementations of those interfaces. Another explicit goal for the Gaby code base is that it be very well tested. (See my [Go Testing talk] for more about why this is so important.) Abstracting the various external functionality into interfaces also helps make testing easier, and some packages also provide explicit testing support. The result of both these goals is that Gaby defines some basic functionality like time-ordered indexing for itself instead of relying on some specific other implementation. In the grand scheme of things, these are a small amount of code to maintain, and the benefits to both portability and testability are significant. Code interacting with services like GitHub and code running on cloud servers is typically difficult to test and therefore undertested. It is an explicit requirement this repo to test all the code, even (and especially) when testing is difficult. A useful command to have available when working in the code is rsc.io/uncover, which prints the package source lines not covered by a unit test. A useful invocation is: The first “go test” command checks that the test passes. The second repeats the test with coverage enabled. Running the test twice this way makes sure that any syntax or type errors reported by the compiler are reported without coverage, because coverage can mangle the error output. After both tests pass and second writes a coverage profile, running “uncover /tmp/c.out” prints the uncovered lines. In this output, there are three error paths that are untested. In general, error paths should be tested, so tests should be written to cover these lines of code. In limited cases, it may not be practical to test a certain section, such as when code is unreachable but left in case of future changes or mistaken assumptions. That part of the code can be labeled with a comment beginning “// Unreachable” or “// unreachable” (usually with explanatory text following), and then uncover will not report it. If a code section should be tested but the test is being deferred to later, that section can be labeled “// Untested” or “// untested” instead. The rsc.io/gaby/internal/testutil package provides a few other testing helpers. The overview of the code now proceeds from bottom up, starting with storage and working up to the actual bot. Gaby needs to manage a few secret keys used to access services. The rsc.io/gaby/internal/secret package defines the interface for obtaining those secrets. The only implementations at the moment are an in-memory map and a disk-based implementation that reads $HOME/.netrc. Future implementations may include other file formats as well as cloud-based secret storage services. Secret storage is intentionally separated from the main database storage, described below. The main database should hold public data, not secrets. Gaby defines the interface it expects from a large language model. The llm.Embedder interface abstracts an LLM that can take a collection of documents and return their vector embeddings, each of type llm.Vector. The only real implementation to date is rsc.io/gaby/internal/gemini. It would be good to add an offline implementation using Ollama as well. For tests that need an embedder but don't care about the quality of the embeddings, llm.QuoteEmbedder copies a prefix of the text into the vector (preserving vector unit length) in a deterministic way. This is good enough for testing functionality like vector search and simplifies tests by avoiding a dependence on a real LLM. At the moment, only the embedding interface is defined. In the future we expect to add more interfaces around text generation and tool use. As noted above, Gaby defines interfaces for all the functionality it needs from its external environment, to admit a wide variety of implementations for both execution and testing. The lowest level interface is storage, defined in rsc.io/gaby/internal/storage. Gaby requires a key-value store that supports ordered traversal of key ranges and atomic batch writes up to a modest size limit (at least a few megabytes). The basic interface is storage.DB. storage.MemDB returns an in-memory implementation useful for testing. Other implementations can be put through their paces using storage.TestDB. The only real storage.DB implementation is rsc.io/gaby/internal/pebble, which is a LevelDB-derived on-disk key-value store developed and used as part of CockroachDB. It is a production-quality local storage implementation and maintains the database as a directory of files. In the future we plan to add an implementation using Google Cloud Firestore, which provides a production-quality key-value lookup as a Cloud service without fixed baseline server costs. (Firestore is the successor to Google Cloud Datastore.) The storage.DB makes the simplifying assumption that storage never fails, or rather that if storage has failed then you'd rather crash your program than try to proceed through typically untested code paths. As such, methods like Get and Set do not return errors. They panic on failure, and clients of a DB can call the DB's Panic method to invoke the same kind of panic if they notice any corruption. It remains to be seen whether this decision is kept. In addition to the usual methods like Get, Set, and Delete, storage.DB defines Lock and Unlock methods that acquire and release named mutexes managed by the database layer. The purpose of these methods is to enable coordination when multiple instances of a Gaby program are running on a serverless cloud execution platform. So far Gaby has only run on an underground basement server (the opposite of cloud), so these have not been exercised much and the APIs may change. In addition to the regular database, package storage also defines storage.VectorDB, a vector database for use with LLM embeddings. The basic operations are Set, Get, and Search. storage.MemVectorDB returns an in-memory implementation that stores the actual vectors in a storage.DB for persistence but also keeps a copy in memory and searches by comparing against all the vectors. When backed by a storage.MemDB, this implementation is useful for testing, but when backed by a persistent database, the implementation suffices for small-scale production use (say, up to a million documents, which would require 3 GB of vectors). It is possible that the package ordering here is wrong and that VectorDB should be defined in the llm package, built on top of storage, and not the current “storage builds on llm”. Because Gaby makes minimal demands of its storage layer, any structure we want to impose must be implemented on top of it. Gaby uses the rsc.io/ordered encoding format to produce database keys that order in useful ways. For example, ordered.Encode("issue", 123) < ordered.Encode("issue", 1001), so that keys of this form can be used to scan through issues in numeric order. In contrast, using something like fmt.Sprintf("issue%d", n) would visit issue 1001 before issue 123 because "1001" < "123". Using this kind of encoding is common when using NoSQL key-value storage. See the rsc.io/ordered package for the details of the specific encoding. One of the implied jobs Gaby has is to collect all the relevant information about an open source project: its issues, its code changes, its documentation, and so on. Those sources are always changing, so derived operations like adding embeddings for documents need to be able to identify what is new and what has been processed already. To enable this, Gaby implements time-stamped—or just “timed”—storage, in which a collection of key-value pairs also has a “by time” index of ((timestamp, key), no-value) pairs to make it possible to scan only the key-value pairs modified after the previous scan. This kind of incremental scan only has to remember the last timestamp processed and then start an ordered key range scan just after that timestamp. This convention is implemented by rsc.io/gaby/internal/timed, along with a [timed.Watcher] that formalizes the incremental scan pattern. Various package take care of downloading state from issue trackers and the like, but then all that state needs to be unified into a common document format that can be indexed and searched. That document format is defined by rsc.io/gaby/internal/docs. A document consists of an ID (conventionally a URL), a document title, and document text. Documents are stored using timed storage, enabling incremental processing of newly added documents . The next stop for any new document is embedding it into a vector and storing that vector in a vector database. The rsc.io/gaby/internal/embeddocs package does this, and there is very little to it, given the abstractions of a document store with incremental scanning, an LLM embedder, and a vector database, all of which are provided by other packages. None of the packages mentioned so far involve network operations, but the next few do. It is important to test those but also equally important not to depend on external network services in the tests. Instead, the package rsc.io/gaby/internal/httprr provides an HTTP record/replay system specifically designed to help testing. It can be run once in a mode that does use external network servers and records the HTTP exchanges, but by default tests look up the expected responses in the previously recorded log, replaying those responses. The result is that code making HTTP request can be tested with real server traffic once and then re-tested with recordings of that traffic afterward. This avoids having to write entire fakes of services but also avoids needing the services to stay available in order for tests to pass. It also typically makes the tests much faster than using the real servers. Gaby uses GitHub in two main ways. First, it downloads an entire copy of the issue tracker state, with incremental updates, into timed storage. Second, it performs actions in the issue tracker, like editing issues or comments, applying labels, or posting new comments. These operations are provided by rsc.io/gaby/internal/github. Gaby downloads the issue tracker state using GitHub's REST API, which makes incremental updating very easy but does not provide access to a few newer features such as project boards and discussions, which are only available in the GraphQL API. Sync'ing using the GraphQL API is left for future work: there is enough data available from the REST API that for now we can focus on what to do with that data and not that a few newer GitHub features are missing. The github package provides two important aids for testing. For issue tracker state, it also allows loading issue data from a simple text-based issue description, avoiding any actual GitHub use at all and making it easier to modify the test data. For issue tracker actions, the github package defaults in tests to not actually making changes, instead diverting edits into an in-memory log. Tests can then check the log to see whether the right edits were requested. The rsc.io/gaby/internal/githubdocs package takes care of adding content from the downloaded GitHub state into the general document store. Currently the only GitHub-derived documents are one document per issue, consisting of the issue title and body. It may be worth experimenting with incorporating issue comments in some way, although they bring with them a significant amount of potential noise. Gaby will need to download and store Gerrit state into the database and then derive documents from it. That code has not yet been written, although rsc.io/gerrit/reviewdb provides a basic version that can be adapted. Gaby will also need to download and store project documentation into the database and derive documents from it corresponding to cutting the page at each heading. That code has been written but is not yet tested well enough to commit. It will be added later. The simplest job Gaby has is to go around fixing new comments, including issue descriptions (which look like comments but are a different kind of GitHub data). The rsc.io/gaby/internal/commentfix package implements this, watching GitHub state incrementally and applying a few kinds of rewrite rules to each new comment or issue body. The commentfix package allows automatically editing text, automatically editing URLs, and automatically hyperlinking text. The next job Gaby has is to respond to new issues with related issues and documents. The rsc.io/gaby/internal/related package implements this, watching GitHub state incrementally for new issues, filtering out ones that should be ignored, and then finding related issues and documents and posting a list. This package was originally intended to identify and automatically close duplicates, but the difference between a duplicate and a very similar or not-quite-fixed issue is too difficult a judgement to make for an LLM. Even so, the act of bringing forward related context that may have been forgotten or never known by the people reading the issue has turned out to be incredibly helpful. All of these pieces are put together in the main program, this package, rsc.io/gaby. The actual main package has no tests yet but is also incredibly straightforward. It does need tests, but we also need to identify ways that the hard-coded policies in the package can be lifted out into data that a natural language interface can manipulate. For example the current policy choices in package main amount to: These could be stored somewhere as data and manipulated and added to by the LLM in response to prompts from maintainers. And other features could be added and configured in a similar way. Exactly how to do this is an important thing to learn in future experimentation. As mentioned above, the two jobs Gaby does already are both fairly simple and straightforward. It seems like a general approach that should work well is well-written, well-tested deterministic traditional functionality such as the comment fixer and related-docs poster, configured by LLMs in response to specific directions or eventually higher-level goals specified by project maintainers. Other functionality that is worth exploring is rules for automatically labeling issues, rules for identifying issues or CLs that need to be pinged, rules for identifying CLs that need maintainer attention or that need submitting, and so on. Another stretch goal might be to identify when an issue needs more information and ask for that information. Of course, it would be very important not to ask for information that is already present or irrelevant, so getting that right would be a very high bar. There is no guarantee that today's LLMs work well enough to build a useful version of that. Another important area of future work will be running Gaby on top of cloud databases and then moving Gaby's own execution into the cloud. Getting it a server with a URL will enable GitHub callbacks instead of the current 2-minute polling loop, which will enable interactive conversations with Gaby. Overall, we believe that there are a few good ideas for ways that LLM-based bots can help make project maintainers' jobs easier and less monotonous, and they are waiting to be found. There are also many bad ideas, and they must be filtered out. Understanding the difference will take significant care, thought, and experimentation. We have work to do.
Package MarkdownToHtml is a markdown processor. It translates plain text with simple formatting rules into an AST, which can then be further processed to HTML (provided by Blackfriday itself) or other formats (provided by the community). The simplest way to invoke Blackfriday is to call the Run function. It will take a text input and produce a text output in HTML (or other format). A slightly more sophisticated way to use Blackfriday is to create a Markdown processor and to call Parse, which returns a syntax tree for the input document. You can leverage Blackfriday's parsing for content extraction from markdown documents. You can assign a custom renderer and set various options to the Markdown processor. If you're interested in calling Blackfriday from command line, see https://github.com/heketong/MarkdownToHtml-tool. Blackfriday includes an algorithm for creating sanitized anchor names corresponding to a given input text. This algorithm is used to create anchors for headings when AutoHeadingIDs extension is enabled. The algorithm is specified below, so that other packages can create compatible anchor names and links to those anchors. The algorithm iterates over the input text, interpreted as UTF-8, one Unicode code point (rune) at a time. All runes that are letters (category L) or numbers (category N) are considered valid characters. They are mapped to lower case, and included in the output. All other runes are considered invalid characters. Invalid characters that precede the first valid character, as well as invalid character that follow the last valid character are dropped completely. All other sequences of invalid characters between two valid characters are replaced with a single dash character '-'. SanitizedAnchorName exposes this functionality, and can be used to create compatible links to the anchor names generated by MarkdownToHtml. This algorithm is also implemented in a small standalone package at github.com/shurcooL/sanitized_anchor_name. It can be useful for clients that want a small package and don't need full functionality of MarkdownToHtml.
crane is a command line tool for service providers/administrators. It provides some commands that allow the service administrator to register himself/herself, manage teams, apps and services. Usage: The currently available commands are (grouped by subject): Use "crane help <command>" for more information about a command. Usage: The target is the crane server to which all operations will be directed to. With this set of commands you are be able to check the current target, add a new labeled target, set a target for usage, list the added targets and remove a target, respectively. Usage: This command returns the current version of crane command. Usage: user-create creates a user within crane remote server. It will ask for the password before issue the request. Usage: user-remove will remove currently authenticated user from remote tsuru server. since there cannot exist any orphan teams, tsuru will refuse to remove a user that is the last member of some team. if this is your case, make sure you remove the team using "team-remove" before removing the user. Usage: Login will ask for the password and check if the user is successfully authenticated. If so, the token generated by the crane server will be stored in ${HOME}/.crane_token. All crane actions require the user to be authenticated (except login and user-create, obviously). Usage: Logout will delete the token file and terminate the session within crane server. Usage: change-password will change the password of the logged in user. It will ask for the current password, the new and the confirmation. Usage: reset-password will redefine the user password. This process is composed by two steps: In order to generate the token, users should run this command without the --token flag. The token will be mailed to the user. With the token in hand, the user can finally reset the password using the --token flag. The new password will also be mailed to the user.`, Usage: team-create will create a team for the user. crane requires a user to be a member of at least one team in order to create a service. When you create a team, you're automatically member of this team. Usage: team-remove will remove a team from tsuru server. You're able to remove teams that you're member of. A team that has access to any app cannot be removed. Before removing a team, make sure it does not have access to any app (see "app-grant" and "app-revoke" commands for details). Usage: team-list will list all teams that you are member of. Usage: team-user-add adds a user to a team. You need to be a member of the team to be able to add another user to it. Usage: team-user-remove removes a user from a team. You need to be a member of the team to be able to remove a user from it. A team can never have 0 users. If you are the last member of a team, you can't remove yourself from it. Usage: Template will create a file named "manifest.yaml" with the following content: Change it at will to configure your service. Id is the id of your service, it must be unique. You must provide a production endpoint that will be invoked by tsuru when application developers ask for new instances and are binding their apps to their instances. For more details, see the text "Services API Workflow": http://tsuru.rtfd.org/services-api-workflow. Usage: Create will create a new service with information present in the manifest file. Here is an example of usage: You can use "crane template" to generate a template. Both id and production endpoint are required fields. When creating a new service, crane will add all user's teams as administrator teams of the service. Usage: Update will update a service using a manifest file. Currently, it's only possible to edit an endpoint, or add new endpoints. You need to be an administrator of the team to perform an update. Usage: Remove will remove a service from crane server. You need to be an administrator of the team to remove it. Usage: List will list all services that you administrate, and the instances of each service, created by application developers. Usage: doc-add will update service's doc. Example of usage: You need to be an administrator of the service to update its docs. Usage: doc-get will retrieve the current documentation of the service.
Package Authaus is an authentication and authorization system. Authaus brings together the following pluggable components: Any of these five components can be swapped out, and in fact the fourth, and fifth ones (Role Groups and User Store) are entirely optional. A typical setup is to use LDAP as an Authenticator, and Postgres as a Session, Permit, and Role Groups database. Your session database does not need to be particularly performant, since Authaus maintains an in-process cache of session keys and their associated tokens. Authaus was NOT designed to be a "Facebook Scale" system. The target audience is a system of perhaps 100,000 users. There is nothing fundamentally limiting about the API of Authaus, but the internals certainly have not been built with millions of users in mind. The intended usage model is this: Authaus is intended to be embedded inside your security system, and run as a standalone HTTP service (aka a REST service). This HTTP service CAN be open to the wide world, but it's also completely OK to let it listen only to servers inside your DMZ. Authaus only gives you the skeleton and some examples of HTTP responders. It's up to you to flesh out the details of your authentication HTTP interface, and whether you'd like that to face the world, or whether it should only be accessible via other services that you control. At startup, your services open an HTTP connection to the Authaus service. This connection will typically live for the duration of the service. For every incoming request, you peel off whatever authentication information is associated with that request. This is either a session key, or a username/password combination. Let's call it the authorization information. You then ask Authaus to tell you WHO this authorization information belongs to, as well as WHAT this authorization information allows the requester to do (ie Authentication and Authorization). Authaus responds either with a 401 (Unauthorized), 403 (Forbidden), or a 200 (OK) and a JSON object that tells you the identity of the agent submitting this request, as well the permissions that this agent posesses. It's up to your individual services to decide what to do with that information. It should be very easy to expose Authaus over a protocol other than HTTP, since Authaus is intended to be easy to embed. The HTTP API is merely an illustrative example. A `Session Key` is the long random number that is typically stored as a cookie. A `Permit` is a set of roles that has been granted to a user. Authaus knows nothing about the contents of a permit. It simply treats it as a binary blob, and when writing it to an SQL database, encodes it as base64. The interpretation of the permit is application dependent. Typically, a Permit will hold information such as "Allowed to view billing information", or "Allowed to paint your bathroom yellow". Authaus does have a built-in module called RoleGroupDB, which has its own interpretation of what a Permit is, but you do not need to use this. A `Token` is the result of a successful authentication. It stores the identity of a user, an expiry date, and a Permit. A token will usually be retrieved by a session key. However, you can also perform a once-off authentication, which also yields you a token, which you will typically throw away when you are finished with it. All public methods of the `Central` object are callable from multiple threads. Reader-Writer locks are used in all of the caching systems. The number of concurrent connections is limited only by the limits of the Go runtime, and the performance limits that are inherent to the simple reader-writer locks used to protect shared state. Authaus must be deployed as a single process (which implies running on a single logical machine). The sole reason why it must run on only one process and not more, is because of the state that lives inside the various Authaus caches. Were it not for these caches, then there would be nothing preventing you from running Authaus on as many machines as necessary. The cached state stored inside the Authaus server is: If you wanted to make Authaus runnable across multiple processes, then you would need to implement a cache invalidation system for these caches. Authaus makes no attempt to mitigate DOS attacks. The most sane approach in this domain seems to be this (http://security.stackexchange.com/questions/12101/prevent-denial-of-service-attacks-against-slow-hashing-functions). The password database (created via NewAuthenticationDB_SQL) stores password hashes using the scrypt key derivation system (http://www.tarsnap.com/scrypt.html). Internally, we store our hash in a format that can later be extended, should we wish to double-hash the passwords, etc. The hash is 65 bytes and looks like this: The first byte of the hash is a version number of the hash. The remaining 64 bytes are the salt and the hash itself. At present, only one version is supported, which is version 1. It consists of 32 bytes of salt, and 32 bytes of scrypt'ed hash, with scrypt parameters N=256 r=8 p=1. Note that the parameter N=256 is quite low, meaning that it is possible to compute this in approximately 1 millisecond (1,000,000 nanoseconds) on a 2009-era Intel Core i7. This is a deliberate tradeoff. On the same CPU, a SHA256 hash takes about 500 nanoseconds to compute, so we are still making it 2000 times harder to brute force the passwords than an equivalent system storing only a SHA256 salted hash. This discussion is only of relevance in the event that the password table is compromised. No cookie signing mechanism is implemented. Cookies are not presently transmitted with Secure:true. This must change. The LDAP Authenticator is extremely simple, and provides only one function: Authenticate a user against an LDAP system (often this means Active Directory, AKA a Windows Domain). It calls the LDAP "Bind" method, and if that succeeds for the given identity/password, then the user is considered authenticated. We take care not to allow an "anonymous bind", which many LDAP servers allow when the password is blank. The Session Database runs on Postgres. It stores a table of sessions, where each row contains the following information: When a permit is altered with Authaus, then all existing sessions have their permits altered transparently. For example, imagine User X is logged in, and his administrator grants him a new permission. User X does not need to log out and log back in again in order for his new permissions to be reflected. His new permissions will be available immediately. Similarly, if a password is changed with Authaus, then all sessions are invalidated. Do take note though, that if a password is changed through an external mechanism (such as with LDAP), then Authaus will have no way of knowing this, and will continue to serve up sessions that were authenticated with the old password. This is a problem that needs addressing. You can limit the number of concurrent sessions per user to 1, by setting MaxActiveSessions.ConfigSessionDB to 1. This setting may only be zero or one. Zero, which is the default, means an unlimited number of concurrent sessions per user. Authaus will always place your Session Database behind its own Session Cache. This session cache is a very simple single-process in-memory cache of recent sessions. The limit on the number of entries in this cache is hard-coded, and that should probably change. The Permit database runs on Postgres. It stores a table of permits, which is simply a 1:1 mapping from Identity -> Permit. The Permit is just an array of bytes, which we store base64 encoded, inside a text field. This part of the system doesn't care how you interpret that blob. The Role Group Database is an entirely optional component of Authaus. The other components of Authaus (Authenticator, PermitDB, SessionDB) do not understand your Permits. To them, a Permit is simply an arbitrary array of bytes. The Role Group Database is a component that adds a specific meaning to a permit blob. Let's see what that specific meaning looks like... The built-in Role Group Database interprets a permit blob as a string of 32-bit integer IDs: These 32-bit integer IDs refer to "role groups" inside a database table. The "role groups" table might look like this: The Role Group IDs use 32-bit indices, because we assume that you are not going to create more than 2^32 different role groups. The worst case we assume here is that of an automated system that creates 100,000 roles per day. Such a system would run for more than 100 years, given a 32-bit ID. These constraints are extraordinary, suggesting that we do not even need 32 bits, but could even get away with just a 16-bit group ID. However, we expect the number of groups to be relatively small. Our aim here, arbitrary though it may be, is to fit the permit and identity into a single ethernet packet, which one can reasonably peg at 1500 bytes. 1500 / 4 = 375. We assume that no sane human administrator will assign 375 security groups to any individual. We expect the number of groups assigned to any individual to be in the range of 1 to 20. This makes 375 a gigantic buffer. OAuth support in Authaus is limited to a very simple scenario: * You wish to allow your users to login using an OAuth service - thereby outsourcing the Authentication to that external service, and using it to populate the email address of your users. OAuth was developed in order to work with Microsoft Azure Active Directory, however it should be fairly easy to extend the code to be able to handle other OAuth providers. Inside the database are two tables related to OAuth: oauthchallenge: The challenge table holds OAuth sessions which have been started, and which are expected to either succeed or fail within the next few minutes. The default timeout for a challenge is 5 minutes. A challenge record is usually created the moment the user clicks on the "Sign in with Microsoft" button on your site, and it tracks that authentication attempt. oauthsession: The session table holds OAuth sessions which have successfully authenticated, and also the token that was retrieved by a successful authorization. If a token has expired, then it is refreshed and updated in-place, inside the oauthsession table. An OAuth login follows this sequence of events: 1. User clicks on a "Signin with X" button on your login page 2. A record is created in the oauthchallenge table, with a unique ID. This ID is a secret known only to the authaus server and the OAuth server. It is used as the `state` parameter in the OAuth login mechanism. 3. The HTTP call which prompts #2 return a redirect URL (eg via an HTTP 302 response), which redirects the user's browser to the OAuth website, so that the user can either grant or refuse access. If the user refuses, or fails to login, then the login sequence ends here. 4. Upon successful authorization with the OAuth system, the OAuth website redirects the user back to your website, to a URL such as example.com/auth/oauth/finish, and you'll typically want Authaus to handle this request directly (via HttpHandlerOAuthFinish). Authaus will extract the secrets from the URL, perform any validations necessary, and then move the record from the oauthchallenge table, into the oauthsession table. While 'moving' the record over, it will also add any additional information that was provided by the successful authentication, such as the token provided by the OAuth provider. 5. Authaus makes an API call to the OAuth system, to retrieve the email address and name of the person that just logged in, using the token just received. 6. If that email address does not exist inside authuserstore, then create a new user record for this identity. 7. Log the user into Authaus, by creating a record inside authsession, for the relevant identity. Inside the authsession table, store a link to the oauthsession record, so that there is a 1:1 link from the authsession table, to the oauthsession table (ie Authaus Session to OAuth Token). 8. Return an Authaus session cookie to the browser, thereby completing the login. Although we only use our OAuth token a single time, during login, to retrieve the user's email address and name, we retain the OAuth token, and so we maintain the ability to make other API calls on behalf of that user. This hasn't proven necessary yet, but it seems like a reasonable bit of future-proofing. See the guidelines at the top of all_test.go for testing instructions.
Package gocql implements a fast and robust Cassandra driver for the Go programming language. Pass a list of initial node IP addresses to NewCluster to create a new cluster configuration: Port can be specified as part of the address, the above is equivalent to: It is recommended to use the value set in the Cassandra config for broadcast_address or listen_address, an IP address not a domain name. This is because events from Cassandra will use the configured IP address, which is used to index connected hosts. If the domain name specified resolves to more than 1 IP address then the driver may connect multiple times to the same host, and will not mark the node being down or up from events. Then you can customize more options (see ClusterConfig): The driver tries to automatically detect the protocol version to use if not set, but you might want to set the protocol version explicitly, as it's not defined which version will be used in certain situations (for example during upgrade of the cluster when some of the nodes support different set of protocol versions than other nodes). The driver advertises the module name and version in the STARTUP message, so servers are able to detect the version. If you use replace directive in go.mod, the driver will send information about the replacement module instead. When ready, create a session from the configuration. Don't forget to Close the session once you are done with it: CQL protocol uses a SASL-based authentication mechanism and so consists of an exchange of server challenges and client response pairs. The details of the exchanged messages depend on the authenticator used. To use authentication, set ClusterConfig.Authenticator or ClusterConfig.AuthProvider. PasswordAuthenticator is provided to use for username/password authentication: It is possible to secure traffic between the client and server with TLS. To use TLS, set the ClusterConfig.SslOpts field. SslOptions embeds *tls.Config so you can set that directly. There are also helpers to load keys/certificates from files. Warning: Due to historical reasons, the SslOptions is insecure by default, so you need to set EnableHostVerification to true if no Config is set. Most users should set SslOptions.Config to a *tls.Config. SslOptions and Config.InsecureSkipVerify interact as follows: For example: To route queries to local DC first, use DCAwareRoundRobinPolicy. For example, if the datacenter you want to primarily connect is called dc1 (as configured in the database): The driver can route queries to nodes that hold data replicas based on partition key (preferring local DC). Note that TokenAwareHostPolicy can take options such as gocql.ShuffleReplicas and gocql.NonLocalReplicasFallback. We recommend running with a token aware host policy in production for maximum performance. The driver can only use token-aware routing for queries where all partition key columns are query parameters. For example, instead of use The DCAwareRoundRobinPolicy can be replaced with RackAwareRoundRobinPolicy, which takes two parameters, datacenter and rack. Instead of dividing hosts with two tiers (local datacenter and remote datacenters) it divides hosts into three (the local rack, the rest of the local datacenter, and everything else). RackAwareRoundRobinPolicy can be combined with TokenAwareHostPolicy in the same way as DCAwareRoundRobinPolicy. Create queries with Session.Query. Query values must not be reused between different executions and must not be modified after starting execution of the query. To execute a query without reading results, use Query.Exec: Single row can be read by calling Query.Scan: Multiple rows can be read using Iter.Scanner: See Example for complete example. The driver automatically prepares DML queries (SELECT/INSERT/UPDATE/DELETE/BATCH statements) and maintains a cache of prepared statements. CQL protocol does not support preparing other query types. When using CQL protocol >= 4, it is possible to use gocql.UnsetValue as the bound value of a column. This will cause the database to ignore writing the column. The main advantage is the ability to keep the same prepared statement even when you don't want to update some fields, where before you needed to make another prepared statement. Session is safe to use from multiple goroutines, so to execute multiple concurrent queries, just execute them from several worker goroutines. Gocql provides synchronously-looking API (as recommended for Go APIs) and the queries are executed asynchronously at the protocol level. Null values are are unmarshalled as zero value of the type. If you need to distinguish for example between text column being null and empty string, you can unmarshal into *string variable instead of string. See Example_nulls for full example. The driver reuses backing memory of slices when unmarshalling. This is an optimization so that a buffer does not need to be allocated for every processed row. However, you need to be careful when storing the slices to other memory structures. When you want to save the data for later use, pass a new slice every time. A common pattern is to declare the slice variable within the scanner loop: The driver supports paging of results with automatic prefetch, see ClusterConfig.PageSize, Session.SetPrefetch, Query.PageSize, and Query.Prefetch. It is also possible to control the paging manually with Query.PageState (this disables automatic prefetch). Manual paging is useful if you want to store the page state externally, for example in a URL to allow users browse pages in a result. You might want to sign/encrypt the paging state when exposing it externally since it contains data from primary keys. Paging state is specific to the CQL protocol version and the exact query used. It is meant as opaque state that should not be modified. If you send paging state from different query or protocol version, then the behaviour is not defined (you might get unexpected results or an error from the server). For example, do not send paging state returned by node using protocol version 3 to a node using protocol version 4. Also, when using protocol version 4, paging state between Cassandra 2.2 and 3.0 is incompatible (https://issues.apache.org/jira/browse/CASSANDRA-10880). The driver does not check whether the paging state is from the same protocol version/statement. You might want to validate yourself as this could be a problem if you store paging state externally. For example, if you store paging state in a URL, the URLs might become broken when you upgrade your cluster. Call Query.PageState(nil) to fetch just the first page of the query results. Pass the page state returned by Iter.PageState to Query.PageState of a subsequent query to get the next page. If the length of slice returned by Iter.PageState is zero, there are no more pages available (or an error occurred). Using too low values of PageSize will negatively affect performance, a value below 100 is probably too low. While Cassandra returns exactly PageSize items (except for last page) in a page currently, the protocol authors explicitly reserved the right to return smaller or larger amount of items in a page for performance reasons, so don't rely on the page having the exact count of items. See Example_paging for an example of manual paging. There are certain situations when you don't know the list of columns in advance, mainly when the query is supplied by the user. Iter.Columns, Iter.RowData, Iter.MapScan and Iter.SliceMap can be used to handle this case. See Example_dynamicColumns. The CQL protocol supports sending batches of DML statements (INSERT/UPDATE/DELETE) and so does gocql. Use Session.NewBatch to create a new batch and then fill-in details of individual queries. Then execute the batch with Session.ExecuteBatch. Logged batches ensure atomicity, either all or none of the operations in the batch will succeed, but they have overhead to ensure this property. Unlogged batches don't have the overhead of logged batches, but don't guarantee atomicity. Updates of counters are handled specially by Cassandra so batches of counter updates have to use CounterBatch type. A counter batch can only contain statements to update counters. For unlogged batches it is recommended to send only single-partition batches (i.e. all statements in the batch should involve only a single partition). Multi-partition batch needs to be split by the coordinator node and re-sent to correct nodes. With single-partition batches you can send the batch directly to the node for the partition without incurring the additional network hop. It is also possible to pass entire BEGIN BATCH .. APPLY BATCH statement to Query.Exec. There are differences how those are executed. BEGIN BATCH statement passed to Query.Exec is prepared as a whole in a single statement. Session.ExecuteBatch prepares individual statements in the batch. If you have variable-length batches using the same statement, using Session.ExecuteBatch is more efficient. See Example_batch for an example. Query.ScanCAS or Query.MapScanCAS can be used to execute a single-statement lightweight transaction (an INSERT/UPDATE .. IF statement) and reading its result. See example for Query.MapScanCAS. Multiple-statement lightweight transactions can be executed as a logged batch that contains at least one conditional statement. All the conditions must return true for the batch to be applied. You can use Session.ExecuteBatchCAS and Session.MapExecuteBatchCAS when executing the batch to learn about the result of the LWT. See example for Session.MapExecuteBatchCAS. Queries can be marked as idempotent. Marking the query as idempotent tells the driver that the query can be executed multiple times without affecting its result. Non-idempotent queries are not eligible for retrying nor speculative execution. Idempotent queries are retried in case of errors based on the configured RetryPolicy. If the query is LWT and the configured RetryPolicy additionally implements LWTRetryPolicy interface, then the policy will be cast to LWTRetryPolicy and used this way. Queries can be retried even before they fail by setting a SpeculativeExecutionPolicy. The policy can cause the driver to retry on a different node if the query is taking longer than a specified delay even before the driver receives an error or timeout from the server. When a query is speculatively executed, the original execution is still executing. The two parallel executions of the query race to return a result, the first received result will be returned. UDTs can be mapped (un)marshaled from/to map[string]interface{} a Go struct (or a type implementing UDTUnmarshaler, UDTMarshaler, Unmarshaler or Marshaler interfaces). For structs, cql tag can be used to specify the CQL field name to be mapped to a struct field: See Example_userDefinedTypesMap, Example_userDefinedTypesStruct, ExampleUDTMarshaler, ExampleUDTUnmarshaler. It is possible to provide observer implementations that could be used to gather metrics: CQL protocol also supports tracing of queries. When enabled, the database will write information about internal events that happened during execution of the query. You can use Query.Trace to request tracing and receive the session ID that the database used to store the trace information in system_traces.sessions and system_traces.events tables. NewTraceWriter returns an implementation of Tracer that writes the events to a writer. Gathering trace information might be essential for debugging and optimizing queries, but writing traces has overhead, so this feature should not be used on production systems with very high load unless you know what you are doing. Example_batch demonstrates how to execute a batch of statements. Example_dynamicColumns demonstrates how to handle dynamic column list. Example_marshalerUnmarshaler demonstrates how to implement a Marshaler and Unmarshaler. Example_nulls demonstrates how to distinguish between null and zero value when needed. Null values are unmarshalled as zero value of the type. If you need to distinguish for example between text column being null and empty string, you can unmarshal into *string field. Example_paging demonstrates how to manually fetch pages and use page state. See also package documentation about paging. Example_set demonstrates how to use sets. Example_userDefinedTypesMap demonstrates how to work with user-defined types as maps. See also Example_userDefinedTypesStruct and examples for UDTMarshaler and UDTUnmarshaler if you want to map to structs. Example_userDefinedTypesStruct demonstrates how to work with user-defined types as structs. See also examples for UDTMarshaler and UDTUnmarshaler if you need more control/better performance.
Package prose is a repository of packages related to text processing, including tokenization, part-of-speech tagging, and named-entity extraction.
Package dcrjson provides infrastructure for working with Decred JSON-RPC APIs. When communicating via the JSON-RPC protocol, all requests and responses must be marshalled to and from the wire in the appropriate format. This package provides infrastructure and primitives to ease this process. This information is not necessary in order to use this package, but it does provide some intuition into what the marshalling and unmarshalling that is discussed below is doing under the hood. As defined by the JSON-RPC spec, there are effectively two forms of messages on the wire: Request Objects {"jsonrpc":"1.0","id":"SOMEID","method":"SOMEMETHOD","params":[SOMEPARAMS]} NOTE: Notifications are the same format except the id field is null. Response Objects {"result":SOMETHING,"error":null,"id":"SOMEID"} {"result":null,"error":{"code":SOMEINT,"message":SOMESTRING},"id":"SOMEID"} For requests, the params field can vary in what it contains depending on the method (a.k.a. command) being sent. Each parameter can be as simple as an int or a complex structure containing many nested fields. The id field is used to identify a request and will be included in the associated response. When working with streamed RPC transports, such as websockets, spontaneous notifications are also possible. As indicated, they are the same as a request object, except they have the id field set to null. Therefore, servers will ignore requests with the id field set to null, while clients can choose to consume or ignore them. Unfortunately, the original Bitcoin JSON-RPC API (and hence anything compatible with it) doesn't always follow the spec and will sometimes return an error string in the result field with a null error for certain commands. However, for the most part, the error field will be set as described on failure. To simplify the marshalling of the requests and responses, the MarshalCmd and MarshalResponse functions are provided. They return the raw bytes ready to be sent across the wire. Unmarshalling a received Request object is a two step process: This approach is used since it provides the caller with access to the additional fields in the request that are not part of the command such as the ID. Unmarshalling a received Response object is also a two step process: As above, this approach is used since it provides the caller with access to the fields in the response such as the ID and Error. This package provides the NewCmd function which takes a method (command) name and variable arguments. The function includes full checking to ensure the parameters are accurate according to provided method, however these checks are, obviously, run-time which means any mistakes won't be found until the code is actually executed. However, it is quite useful for user-supplied commands that are intentionally dynamic. External packages can and should implement types implementing Command for use with MarshalCmd/ParseParams. The command handling of this package is built around the concept of registered commands. This is true for the wide variety of commands already provided by the package, but it also means caller can easily provide custom commands with all of the same functionality as the built-in commands. Use the RegisterCmd function for this purpose. A list of all registered methods can be obtained with the RegisteredCmdMethods function. All registered commands are registered with flags that identify information such as whether the command applies to a chain server, wallet server, or is a notification along with the method name to use. These flags can be obtained with the MethodUsageFlags flags, and the method can be obtained with the CmdMethod function. To facilitate providing consistent help to users of the RPC server, this package exposes the GenerateHelp and function which uses reflection on registered commands or notifications to generate the final help text. In addition, the MethodUsageText function is provided to generate consistent one-line usage for registered commands and notifications using reflection. There are 2 distinct type of errors supported by this package: The first category of errors (type Error) typically indicates a programmer error and can be avoided by properly using the API. Errors of this type will be returned from the various functions available in this package. They identify issues such as unsupported field types, attempts to register malformed commands, and attempting to create a new command with an improper number of parameters. The specific reason for the error can be detected by type asserting it to a *dcrjson.Error and accessing the ErrorKind field. The second category of errors (type RPCError), on the other hand, are useful for returning errors to RPC clients. Consequently, they are used in the previously described Response type. This example demonstrates how to unmarshal a JSON-RPC response and then unmarshal the result field in the response to a concrete type.
Package servefiles provides a static asset handler for serving files such as images, stylesheets and javascript code. This version is deprecated: please use v3 for new use cases. This asset handler is an enhancement to the standard net/http ServeFiles, which is used internally. Care is taken to set headers such that the assets will be efficiently cached by browsers and proxies. Assets is an http.Handler and can be used alongside your other handlers. The Assets handler serves gzipped content when the browser indicates it can accept it. But it does not gzip anything on-the-fly. Nor does it create any gzipped files for you. During the preparation of your web assets, all text files (CSS, JS etc) should be accompanied by their gzipped equivalent; your build process will need to do this. The Assets handler will first look for the gzipped file, which it will serve if present. Otherwise it will serve the 'normal' file. This has many benefits: fewer bytes are read from the disk, a smaller memory footprint is needed in the server, less data copying happens, fewer bytes are sent across the network, etc. You should not attempt to gzip already-compressed files, such as PNG, JPEG, SVGZ, etc. Very small files (e.g. less than 1kb) gain little from compression because they may be small enough to fit within a single TCP packet, so don't bother with them. (They might even grow in size when gzipped.) The Assets handler sets 'Etag' headers for the responses of the assets it finds. Modern browsers need this: they are then able to send conditional requests that very often shrink responses to a simple 304 Not Modified. This improves the experience for users and leaves your server free to do more of other things. The Etag value is calculated from the file size and modification timestamp, a commonly used approach. Strong or weak tags are used for plain or gzipped files respectively (the reason is that a given file can be compressed with different levels of compression, a weak Etag indicates there is not a strict match for the file's content). To go even further, the 'far-future' technique can and should often be used. Set a long expiry time, e.g. ten years via `time.Hour * 24 * 365 * 10`. Browsers will cache such assets and not make requests for them for the next ten years (or whatever). Not even conditional requests are made. There is clearly a big benefit in page load times after the first visit. No in-memory caching is performed server-side. This is needed less due to far-future caching being supported, but might be added in future. The Assets handler can optionally strip some path segments from the URL before selecting the asset to be served. This means, for example, that the URL can map to the asset files without the /e3b1cf/ segment. The benefit of this is that you can use a unique number or hash in that segment (chosen for example each time your server starts). Each time that number changes, browsers will see the asset files as being new, and they will later drop old versions from their cache regardless of their ten-year lifespan. So you get the far-future lifespan combined with being able to push out changed assets as often as you need to. To serve files with a ten-year expiry, this creates a suitably-configured handler: The first parameter names the local directory that holds the asset files. It can be absolute or relative to the directory in which the server process is started. Notice here the StripOff parameter is 1, so the first segment of the URL path gets discarded. A larger number is permitted. The WithMaxAge parameter is the maximum age to be specified in the cache-control headers. It can be any duration from zero upwards.
Package metrics is a telemetry client designed for Uber's software networking team. It prioritizes performance on the hot path and integration with both push- and pull-based collection systems. Like Prometheus and Tally, it supports metrics tagged with arbitrary key-value pairs. Like Prometheus, but unlike Tally, metric names should be relatively long and descriptive - generally speaking, metrics from the same process shouldn't share names. (See the documentation for the Root struct below for a longer explanation of the uniqueness rules.) For example, prefer "grpc_successes_by_procedure" over "successes", since "successes" is common and vague. Where relevant, metric names should indicate their unit of measurement (e.g., "grpc_success_latency_ms"). Counters represent monotonically increasing values, like a car's odometer. Gauges represent point-in-time readings, like a car's speedometer. Both counters and gauges expose not only write operations (set, add, increment, etc.), but also atomic reads. This makes them easy to integrate directly into your business logic: you can use them anywhere you'd otherwise use a 64-bit atomic integer. This package doesn't support analogs of Tally's timer or Prometheus's summary, because they can't be accurately aggregated at query time. Instead, it approximates distributions of values with histograms. These require more up-front work to set up, but are typically more accurate and flexible when queried. See https://prometheus.io/docs/practices/histograms/ for a more detailed discussion of the trade-offs involved. Plain counters, gauges, and histograms have a fixed set of tags. However, it's common to encounter situations where a subset of a metric's tags vary constantly. For example, you might want to track the latency of your database queries by table: you know the database cluster, application name, and hostname at process startup, but you need to specify the table name with each query. To model these situations, this package uses vectors. Each vector is a local cache of metrics, so accessing them is quite fast. Within a vector, all metrics share a common set of constant tags and a list of variable tags. In our database query example, the constant tags are cluster, application, and hostname, and the only variable tag is table name. Usage examples are included in the documentation for each vector type. This package integrates with StatsD- and M3-based collection systems by periodically pushing differential updates. (Users can integrate with other push-based systems by implementing the push.Target interface.) It integrates with pull-based collectors by exposing an HTTP handler that supports Prometheus's text and protocol buffer exposition formats. Examples of both push and pull integration are included in the documentation for the root struct's Push and ServeHTTP methods. If you're unfamiliar with Tally and Prometheus, you may want to consult their documentation:
Package xcore is a set of basic objects for programation (XCache for caches, XDataset for data sets, XLanguage for languages and XTemplate for templates). For GO, the actual existing code includes: - XCache: Application Memory Caches for any purpose, with time control and quantity control of object in the cache and also check changes against original source. It is a thread safe cache. - XDataset: Basic nested data structures for any purpose (template injection, configuration files, database records, etc). - XLanguage: language dependent text tables for internationalization of code. The sources can be text or XML file definitions. - XTemplate: template system with meta language to create complex documents (compatible with any text language, HTML, CSS, JS, PDF, XML, etc), heavily used on CMS systems and others. It is already used on sites that serve more than 60 million pages a month (500 pages per second on pike hour) and can be used on multithreading environment safely. XCache is a library to cache all the data you want into current application memory for a very fast access to the data. The access to the data support multithreading and concurrency. For the same reason, this type of cache is not persistent (if you exit the application) and cannot grow too much (as memory is the limit). However, you can control a timeout of each cache piece, and eventually a comparison function against a source (file, database, etc) to invalid the cache. 1. Declare a new XCache with NewXCache() function: 2. Fill in the cache: Once you have declared the cache, you can fill it with anything you want. The main cache object is an interface{} so you can put here anything you need, from simple variables to complex structures. You need to use the Set function: Note the ID is always a string, so convert a database key to string if needed. 3. To use the cache, just ask for your entry with Get function: 4. To maintain the cache: You may need Del function, to delete a specific entry (maybe because you deleted the record in database). You may also need Clean function to deletes a percentage of the cache, or Flush to deletes it all. The Verify function is used to check cache entries against their sources through the Validator function. Be very careful, if the cache is big or the Validator function is complex (maybe ask for a remote server information), the verification may be VERY slow and huge CPU use. The Count function gives some stats about the cache. 5. How to use Verify Function: This function is recommended when the source is local and fast to check (for instance a language file or a template file). When the source is distant (other cluster database, any rpc source on another network, integration of many parts, etc), it is more recommended to create a function that will delete the cache when needed (on demand cache change). The validator function is a func(id, time.Time) bool function. The first parameter is the ID entry in the cache, the second parameter the time of the entry was created. The validator function returns true is the cache is still valid, or false if it needs to be invalidated. The XCache is thread safe. The cache can be limited in quantity of entries and timeout for data. The cache is automanaged (for invalid expired data) and can be cleaned partially or totally manually. The XLanguage table of text entries can be loaded from XML file, XML string or normal text file or string. It is used to keep a table of id=value set of entries in any languages you need, so it is easy to switch between XLanguage instance based on the required language needed. Obviously, any XLanguage you load in any language should have the same id entries translated, for the same use. The XLanguage object is thread safe 1. loading: You can load any file or XML string directly into the object. 1.1 The XML Format is: NAMEOFTABLE is the name of your table entry, for example "loginform", "user_report", etc. LG is the ISO-3369 2 letters language ID, for example "es" for spanish, "en" for english, "fr" for french, etc. ENTRYNAME is the ID of the entry, for example "greating", "yourname", "submitbutton". ENTRYVALUE is the text for your entry, for example "Hello", "You are:", "Save" if your table is in english. STATUSVALUE is the status of the entry- You may put any value to control your translation over time and processes. 1.2 The flat text format is: ENTRYNAME is the ID of the entry, for example "greating", "yourname", "submitbutton". ENTRYVALUE is the text for your entry, for example "Hello", "You are:", "Save" if your table is in english. There is no name of table or language in this format (you "know" what you are loading). The advantage to use XML format is to have more control over your language, and eventyally add attributes into your entries, for instance you may add attributes translated="yes/no", verified="yes/no", and any other data that your system could insert. The XLanguage will ignore those attributes loading the table. 2. creation: To create a new XLanguage empty structure: There are 4 functions to create the language from a file or string, flat text or XML text: Then you can use the set of basic access functions: SetName/SetLanguage functions are used to set the table name and language of the object (generally to build an object from scratch). GetName/GetLanguage functions are used to get the table name and language of the object (generally when you load it from some source). Set/Get/Del functions are used to add or modify a new entry, read an entry, or deletes an entry in the object. SetStatus/GetStatus functions are used to add or get a status for the entry in the object. To create am XML file from the objet, you can use the GetXML() function 1. Overview: The XDataSet is a set of interfaces and basic classes ready-to-use to build a standard set of data optionally nested and hierarchical, that can be used for any purpose: - Keep complex data in memory. - Create JSON structures. - Inject data into templates. - Interchange database data (records set and record). You can store into it generic supported data, as well as any complex interface structures: - Int - Float - String - Time - Bool - []Int - []Float - []Time - []Bool - XDataSetDef (anything extended with this interface) - []String - Anything else ( interface{} ) - XDataSetCollectionDef (anything extended with this interface) The generic supported data comes with a set of functions to get/set those data directly into the XDataset. Example: Note that all references to XDataset and XDatasetCollection are pointers, always (to be able to modify the values of them). 2. XDatasetDef interface: It is the interface to describe a simple set of data mapped as "name": value, where value can be of any type. The interface implements a good amount of basic methods to get the value on various format such as GetString("name"), GetInt("name"), etc (see below). If the value is another type as asked, the method should contert it if possible. For instance "key":123 required through GetString("key") should return "123". The XDataset type is a simple map[string]interface{} with all the implemented methods and should be enough to use for almost all required cases. However, you can build any complex structure that extends the interface and implements all the required functions to stay compatible with the XDatasetDef. 3. XDatasetCollectionDef Interface: This is the interface used to extend any type of data as a Collection, i-e an array of XDatasetDef. This is a slice of any XDatasetDef compatible data. The interface implements some methods to work on array structure such as Push, Pop, Shift, Unshift and some methods to search data into the array. The XDatasetCollection type is a simple []DatasetDef with all the implemented methods and should be enough to use for almost all required cases. 1. Overview: The XDataSetTS is a DatasetDef structure, thread safe. It is build on the XDataset with the same properties, but is thread safe to protect Read/Write accesses from different thread. Example: You may also build a XDatasetTS to encapsulate a XDatasetDef that is not thread safe, to use it safely Note that all references to XDatasetTS are pointers, always (to be able to modify the values of them). The DatasetTS meet the XDatasetDef interface 1. Overview: This is a class to compile and keep a Template that can be injected with an XDataSet structure of data, with a metalanguage to inject the data. The metalanguage is extremely simple and is made to be useful and **really** separate programation from template code (not like other many generic template systems that just mix code and data). A template is a set of HTML/XML (or any other language) string with a meta language to inject variables and build a final string. The XCore XTemplate system is based on the injection of parameters, language translation strings and data fields directly into the HTML (Or any other language you need) template. The HTML itself (or any other language) is a text code not directly used by the template system, but used to dress the data you want to represent in your preferred language. The variables to inject must be into a XDataSet structure or into a structure extended from XDataSetDef interface. The injection of data is based on a XDataSet structure of values that can be nested into another XDataSet and XDataSetConnection and so on. The template compiler recognize nested arrays to automatically make loops on the information. Templates are made to store reusable HTML code, and overall easily changeable by people that do not know how to write programs. A template can be as simple as a single character (no variables to inject) to a very complex nested, conditional and loops sub-templates. Yes. this is a template, but a very simple one without need to inject any data. Let's go more complex: Having an array of data, we want to paint it beautifull: We can create a template to inject this data into it: 2. Create and use XTemplateData: In sight to create and use templates, you have all those possible options to use: Creates the XTemplate from a string or a file or any other source: Clone the XTemplate: 3. Metalanguage Reference: 3.1 Comments: %-- and --% You may use comments into your template. The comments will be discarded immediately at the compilation of the template and do not interfere with the rest of your code. Example: 3.2 Nested Templates: [[...]] and [[]] You can define new nested templates into your main template A nested template is defined by: The templteid is any combination of lowers letters only (a-z), numbers (0-9), and 3 special chars: . (point) - (dash) and _ (underline). The template is closed with [[]]. There is no limits into nesting templates. Any nested template will inheritate all the father elements and can use father elements too. To call a sub-template, you need to use &&templateid&& syntax (described below in this document). Example: You may use more than one id into the same template to avoid repetition of the same code. The different id's are separated with a pipe | Important note: A template will be visible only on the same level of its declaration. For example, if you put a subtemplate "b" into a subtemplate "a", it will not be visible by &&b&& from the top level, but only into the subtemplate "a". 3.3 Simple Elements: ##...## and {{...}} There are 2 types of simple elements. Language elements and Data injector elements (also called field elements). We "logically" define the 2 type of elements. The separation is only for human logic and template filling, however the language information can perfectly fit into the data to inject (and not use ## entries). 3.3.1 Languages elements: ##entry## All the languages elements should have the format: ##entry##. A language entry is generally anything written into your code or page that does not come from a database, and should adapt to the language of the client visiting your site. Using the languages elements may depend on the internationalization of your page. If your page is going to be in a single language forever, you really dont need to use languages entries. The language elements generally carry titles, menu options, tables headers etc. The language entries are set into the "#" entry of the main template XDataset to inject, and is a XLanguage table. Example: With data to inject: 3.3.2 Field elements: {{fieldname}} Fields values should have the format: {{fieldname}}. Your fields source can be a database or any other preferred repository data source. Example: You can access an element with its path into the data set to inject separating each field level with a > (greater than). This will take the name of the second hobby in the dataset defined upper. (collections are 0 indexed). The 1 denotes the second record of the hobbies XDatasetCollection. If the field is not found, it will be replaced with an empty string. Tecnically your field names can be any string in the dataset. However do not use { } or > into the names of your fields or the XTemplate may not use them correctly. We recommend to use lowercase names with numbers and ._- Accents and UTF8 symbols are also welcome. 3.3.3 Scope: When you use an id to point a value, the template will first search into the available ids of the local level. If no id is found, the it will search into the upper levers if any, and so on. Example: At the level of 'data2', using {{appname}} will get back 'DomCore'. At the level of 'key1', using {{appname}} will get back 'Nested App'. At the level of 'key2', using {{appname}} will get back 'DomCore'. At the level of root, 'data1' or 'detail', using {{appname}} will get back an empty string. 3.3.4 Path access: id>id>id>id At any level into the data array, you can access any entry into the subset array. For instance, taking the previous array of data to inject, let's suppose we are into a nested meta elements at the 'data1' level. You may want to access directly the 'Juan' entry. The path will be: The José's status value from the root will be: 3.4 Meta Elements They consist into an injection of a XDataset, called the "data to inject", into the template. The meta language is directly applied on the structure of the data array. The data to inject is a nested set of variables and values with the structure you want (there is no specific construction rules). You can inject nearly anything into a template meta elements. Example of a data array to inject: You can access directly any data into the array with its relative path (relative to the level you are when the metaelements are applied, see below). There are 4 structured meta elements in the XTemplate templates to use the data to inject: Reference, Loops, Condition and Debug. The structure of the meta elements in the template must follow the structure of the data to inject. 3.4.1 References to another template: &&order&& 3.4.1.1 When order is a single id (characters a-z0-9.-_), it will make a call to a sub template with the same set of data and replace the &&...&& with the result. The level in the data set is not changed. Example based on previous array of Fred's data: 3.4.1.2 When order contains 2 parameters separated by a semicolumn :, then second parameter is used to change the level of the data of array, with the subset with this id. The level in the data set is changed to this sub set. Example based on previous array of Fred's data: 3.4.1.3 When order contains 3 parameters separated by a semicolumn :, the second and third parameters are used to search the name of the new template based on the data fields to inject. This is an indirect access to the template. The name of the subtemplate is build with parameter3 as prefix and the content of parameter2 value. The third parameter must be empty. 3.4.2 Loops: @@order@@ 3.4.2.1 Overview This meta element will loop over each itterance of the set of data and concatenate each created template in the same order. You need to declare a sub template for this element. You may aso declare derivated sub templates for the different possible cases of the loop: For instance, If your main subtemplate for your look is called "hobby", you may need a different template for the first element, last element, Nth element, Element with a value "no" in the sport field, etc. The supported postfixes are: When the array to iterate is empty: - .none (for example "There is no hobby") When the array contains elements, it will search in order, the following template and use the first found: - templateid.key.[value] value is the key of the vector line. If the collection has a named key (string) or is a direct array (0, 1, 2...) - templateid.first if it is the first element of the array set (new from v1.01.11) - templateid.last if it is the first element of the array set (new from v1.01.11) - templateid.even if the line number is even - templateid in all other cases (odd is contained here if even is defined) Since v2.1.7, you can also use the pseudo field {{.counter}} into the loop subtemplate, to get the number of the counter of the loop, it is 1-based (first loop is 1, not 0) 3.4.2.2 When order is a single id (characters a-z0-9.-_), it will make a call to the sub template id with the same subset of data with the same id and replace the @@...@@ for each itterance of the data with the result. Example based on previous array of Fred's data: 3.4.2.3 When order contains 2 parameters separated by a semicolumn :, then first parameter is used to change the level of the data of array, with the subset with this id, and the second one for the template to use. Example based on previous array of Fred's data: 3.4.3 Conditional: ??order?? Makes a call to a subtemplate only if the field exists and have a value. This is very userfull to call a sub template for instance when an image or a video is set. When the condition is not met, it will search for the [id].none template. The conditional element does not change the level in the data set. 3.4.3.1 When order is a single id (characters a-z0-9.-_), it will make a call to the sub template id with the same field in the data and replace the ??...?? with the corresponding template Example based on previous array of Fred's data: 3.4.3.2 When order contains 2 parameters separated by a semicolumn :, then second parameter is used to change the level of the data of array, with the subset with this id. Example based on previous array of Fred's data: If the asked field is a catalog, true/false, numbered, you may also use .[value] subtemplates 3.5 Debug Tools: !!order!! There are two keywords to dump the content of the data set. This is very useful when you dont know the code that calls the template, don't remember some values, or for debug facilities. 3.5.1 !!dump!! Will show the totality of the data set, with ids and values. 3.5.1 !!list!! Will show only the tree of parameters, values are not shown.
Package servefiles provides a static asset handler for serving files such as images, stylesheets and javascript code. This is an enhancement to the standard net/http ServeFiles, which is used internally. Care is taken to set headers such that the assets will be efficiently cached by browsers and proxies. Assets is an http.Handler and can be used alongside your other handlers. The Assets handler serves gzipped content when the browser indicates it can accept it. But it does not gzip anything on-the-fly. Nor does it create any gzipped files for you. During the preparation of your web assets, all text files (CSS, JS etc) should be accompanied by their gzipped equivalent; your build process will need to do this. The Assets handler will first look for the gzipped file, which it will serve if present. Otherwise it will serve the 'normal' file. This has many benefits: fewer bytes are read from the disk, a smaller memory footprint is needed in the server, less data copying happens, fewer bytes are sent across the network, etc. You should not attempt to gzip already-compressed files, such as PNG, JPEG, SVGZ, etc. Very small files (e.g. less than 1kb) gain little from compression because they may be small enough to fit within a single TCP packet, so don't bother with them. (They might even grow in size when gzipped.) The Assets handler sets 'Etag' headers for the responses of the assets it finds. Modern browsers need this: they are then able to send conditional requests that very often shrink responses to a simple 304 Not Modified. This improves the experience for users and leaves your server free to do more of other things. The Etag value is calculated from the file size and modification timestamp, a commonly used approach. Strong or weak tags are used for plain or gzipped files respectively (the reason is that a given file can be compressed with different levels of compression, a weak Etag indicates there is not a strict match for the file's content). For further information see RFC9110 https://tools.ietf.org/html/rfc9110. To go even further, the 'far-future' technique can and should often be used. Set a long expiry time, e.g. ten years via `time.Hour * 24 * 365 * 10`. Browsers will cache such assets and not make requests for them for the next ten years (or whatever). Not even conditional requests are made. There is clearly a big benefit in page load times after the first visit. No in-memory caching is performed server-side. This is needed less due to far-future caching being supported, but might be added in future. For further information see RFC9111 https://tools.ietf.org/html/rfc9111. The Assets handler can optionally strip some path segments from the URL before selecting the asset to be served. This means, for example, that the URL can map to the asset files without the /e3b1cf/ segment. The benefit of this is that you can use a unique number or hash in that segment (chosen for example each time your server starts). Each time that number changes, browsers will see the asset files as being new, and they will later drop old versions from their cache regardless of their ten-year lifespan. So you get the far-future lifespan combined with being able to push out changed assets as often as you need to. To serve files with a ten-year expiry, this creates a suitably-configured handler: The first parameter names the local directory that holds the asset files. It can be absolute or relative to the directory in which the server process is started. Notice here the StripOff parameter is 1, so the first segment of the URL path gets discarded. A larger number is permitted. The WithMaxAge parameter is the maximum age to be specified in the cache-control headers. It can be any duration from zero upwards.
Package cmds helps building both standalone and client-server applications. The basic building blocks are requests, commands, emitters and responses. A command consists of a description of the parameters and a function. The function is passed the request as well as an emitter as arguments. It does operations on the inputs and sends the results to the user by emitting them. There are a number of emitters in this package and subpackages, but the user is free to create their own. A command is a struct containing the commands help text, a description of the arguments and options, the command's processing function and a type to let the caller know what type will be emitted. Optionally one of the functions PostRun and Encoder may be defined that consumes the function's emitted values and generates a visual representation for e.g. the terminal. Encoders work on a value-by-value basis, while PostRun operates on the value stream. An emitter has the Emit method, that takes the command's function's output as an argument and passes it to the user. The command's function does not know what kind of emitter it works with, so the same function may run locally or on a server, using an rpc interface. Emitters can also send errors using the SetError method. The user-facing emitter usually is the cli emitter. Values emitter here will be printed to the terminal using either the Encoders or the PostRun function. A response is a value that the user can read emitted values from. Responses have a method Next() that returns the next emitted value and an error value. If the last element has been received, the returned error value is io.EOF. If the application code has sent an error using SetError, the error ErrRcvdError is returned on next, indicating that the caller should call Error(). Depending on the reponse type, other errors may also occur. Pipes are pairs (emitter, response), such that a value emitted on the emitter can be received in the response value. Most builtin emitters are "pipe" emitters. The most prominent examples are the channel pipe and the http pipe. The channel pipe is backed by a channel. The only error value returned by the response is io.EOF, which happens when the channel is closed. The http pipe is backed by an http connection. The response can also return other errors, e.g. if there are errors on the network. To get a better idea of what's going on, take a look at the examples at https://gitlab.dms3.io/dms3/go-dms3-cmds/tree/master/examples.
CDK - Curses Development Kit The Curses Development Kit is the low-level compliment to the higher-level Curses Tool Kit. CDK is based primarily upon the TCell codebase, however, it is a hard-fork with many API-breaking changes. Some of the more salient changes are as follows: All CDK applications require some form of `Window` implementation in order to function. One can use the build-in `cdk.CWindow` type to construct a basic `Window` object and tie into it's signals in order to render to the canvas and handle events. For this example however, a more formal approach is taken. Starting out with a very slim definition of our custom `Window`, all that's necessary is the embed the concrete `cdk.CWindow` type and proceed with overriding various methods. The `Init` method is not necessary to overload, however, this is a good spot to do any UI initializations or the like. For this demo, the boilerplate minimum is given as an example to start from. The next method implemented is the `Draw` method. This method receives a pre-configured Canvas object, set to the available size of the `Display`. Within this method, the application needs to process as little "work" as possible and focus primarily on just rendering the content upon the canvas. Let's walk through each line of the `Draw` method. This line uses the built-in logging facilities to log an "info" message that the `Draw` method was invoked and let's us know some sort of human-readable description of the canvas (resembles JSON text but isn't really JSON). The advantage to using these built-in logging facilities is that the log entry itself will be prefixed with some extra metadata identifying the particular object instance with a bit of text in the format of "typeName-ID" where typeName is the object's CDK-type and the ID is an integer (marking the unique instance). Within CDK, there is a concept of `Theme`, which really is just a collection of useful purpose-driven `Style`s. One can set the default theme for the running CDK system, however the stock state is either a monochrome base theme or a colorized variant. Some of the rendering functions require `Style`s or `Theme`s passed as arguments and so we're getting that here for later use. Simply getting a `Rectangle` primitive with it's `W`idth and `H`eight values set according to the size of the canvas' internal buffer. `Rectangle` is a CDK primitive which has just two fields: `W` and `H`. Most places where spacial bounds are necessary, these primitives are used (such as the concept of a box `size` for painting upon a canvas). This is the first actual draw command. In this case, the `Box` method is configured to draw a box on the screen, starting at a position of 0,0 (top left corner), taking up the full volume of the canvas, with a border (first boolean `true` argument), ensuring to fill the entire area with the filler rune and style within a given theme, which is the last argument to the `Box` method. On a color-supporting terminal, this will paint a navy-blue box over the entire terminal screen. These few lines of code are merely concatenating a string of `Tango` markup that includes use of `<b></b>`, `<u></u>`, `<i></i>`, and `<span></span>` tags. All colors have fallback versions and are typically safe even for monochrome terminal sessions. This sets up a variable holding a `Point2I` instance configured for 1/4 of the width into the screen (from the left) and halfway minus one of the height into the screen (from the top). `Point2I` is a CDK primitive which has just two fields: `X` and `Y`. Most places where coordinates are necessary, these primitives are used (such as the concept of an `origin` point for painting upon a canvas). This sets up a variable holding a `Rectangle` configured to be half the size of the canvas itself. This last command within the `Draw` method paints the textual-content prepared earlier onto the canvas provided, center-justified, wrapping on word boundaries, using the default `Normal` theme, specifying that the content is in fact to be parsed as `Tango` markup and finally the content itself. The result of this drawing process should be a navy-blue screen, with a border, and three lines of text centered neatly. The three lines of text should be marked up with bold, italics, underlines and colorization. The last line of text should be telling the current time and date at the time of rendering. The `ProcessEvent` method is the main event handler. Whenever a new event is received by a CDK `Display`, it is passed on to the active `Window` and in this demonstration, all that's happening is a log entry is being made which mentions the event received. When implementing your own `ProcessEvent` method, if the `Display` should repaint the screen for example, one would make two calls to methods on the `DisplayManager`: CDK is a multi-threaded framework and the various `Request*()` methods on the `DisplayManager` are used to funnel requests along the right channels in order to first render the canvas (via `Draw` calls on the active `Window`) and then follow that up with the running `Display` painting itself from the canvas modified in the `Draw` process. The other complete list of request methods is as follows: This concludes the `CdkDemoWindow` type implementation. Now on to using it! The `main()` function within the `_demos/cdk-demo.go` sources is deceptively simple to implement. The bulk of the code is constructing a new CDK `App` instance. This object is a wrapper around the `github.com/urfave/cli/v2` CLI package, providing a tidy interface to managing CLI arguments, help documentation and so on. In this example, the `App` is configured with a bunch of metadata for: the program's name "cdk-demo", a simply usage summary, the current version number, an internally-used tag, a title for the main window and the display is to use the `/dev/tty` (default) terminal device. Beyond the metadata, the final argument is an initialization function. This function receives a fully instantiated and running `Display` instance and it is expected that the application instantiates it's `Window` and sets it as the active window for the given `Display`. In addition to that is one final call to `AddTimeout`. This call will trigger the given `func() cdk.EventFlag` once, after a second. Because the `func()` implemented here in this demonstration returns the `cdk.EVENT_PASS` flag it will be continually called once per second. For this demonstration, this implementation simply requests a draw and show cycle which will cause the screen to be repainted with the current date and time every second the demo application is running. The final bit of code in this CDK demonstration simply passes the arguments provided by the end-user on the command-line in a call to the `App`'s `Run()` method. This will cause the `DisplayManager`, `Display` and other systems to instantiate and begin processing events and render cycles.
Package websocket implements the WebSocket protocol defined in RFC 6455. The Conn type represents a WebSocket connection. A server application uses the Upgrade function from an Upgrader object with a HTTP request handler to get a pointer to a Conn: Call the connection WriteMessage and ReadMessages methods to send and receive messages as a slice of bytes. This snippet of code shows how to echo messages using these methods: In above snippet of code, p is a []byte and messageType is an int with value websocket.BinaryMessage or websocket.TextMessage. An application can also send and receive messages using the io.WriteCloser and io.Reader interfaces. To send a message, call the connection NextWriter method to get an io.WriteCloser, write the message to the writer and close the writer when done. To receive a message, call the connection NextReader method to get an io.Reader and read until io.EOF is returned. This snippet snippet shows how to echo messages using the NextWriter and NextReader methods: The WebSocket protocol distinguishes between text and binary data messages. Text messages are interpreted as UTF-8 encoded text. The interpretation of binary messages is left to the application. This package uses the TextMessage and BinaryMessage integer constants to identify the two data message types. The ReadMessage and NextReader methods return the type of the received message. The messageType argument to the WriteMessage and NextWriter methods specifies the type of a sent message. It is the application's responsibility to ensure that text messages are valid UTF-8 encoded text. The WebSocket protocol defines three types of control messages: close, ping and pong. Call the connection WriteControl, WriteMessage or NextWriter methods to send a control message to the peer. Connections handle received ping and pong messages by invoking a callback function set with SetPingHandler and SetPongHandler methods. These callback functions can be invoked from the ReadMessage method, the NextReader method or from a call to the data message reader returned from NextReader. Connections handle received close messages by returning an error from the ReadMessage method, the NextReader method or from a call to the data message reader returned from NextReader. Connections do not support concurrent calls to the write methods (NextWriter, SetWriteDeadline, WriteMessage) or concurrent calls to the read methods methods (NextReader, SetReadDeadline, ReadMessage). Connections do support a concurrent reader and writer. The Close and WriteControl methods can be called concurrently with all other methods. The application must read the connection to process ping and close messages sent from the peer. If the application is not otherwise interested in messages from the peer, then the application should start a goroutine to read and discard messages from the peer. A simple example is: Web browsers allow Javascript applications to open a WebSocket connection to any host. It's up to the server to enforce an origin policy using the Origin request header sent by the browser. The Upgrader calls the function specified in the CheckOrigin field to check the origin. If the CheckOrigin function returns false, then the Upgrade method fails the WebSocket handshake with HTTP status 403. If the CheckOrigin field is nil, then the Upgrader uses a safe default: fail the handshake if the Origin request header is present and not equal to the Host request header. An application can allow connections from any origin by specifying a function that always returns true: The deprecated Upgrade function does not enforce an origin policy. It's the application's responsibility to check the Origin header before calling Upgrade.
Package tview implements rich widgets for terminal based user interfaces. The widgets provided with this package are useful for data exploration and data entry. The package implements the following widgets: The package also provides Application which is used to poll the event queue and draw widgets on screen. The following is a very basic example showing a box with the title "Hello, world!": First, we create a box primitive with a border and a title. Then we create an application, set the box as its root primitive, and run the event loop. The application exits when the application's Stop() function is called or when Ctrl-C is pressed. If we have a primitive which consumes key presses, we call the application's SetFocus() function to redirect all key presses to that primitive. Most primitives then offer ways to install handlers that allow you to react to any actions performed on them. You will find more demos in the "demos" subdirectory. It also contains a presentation (written using tview) which gives an overview of the different widgets and how they can be used. Throughout this package, colors are specified using the tcell.Color type. Functions such as tcell.GetColor(), tcell.NewHexColor(), and tcell.NewRGBColor() can be used to create colors from W3C color names or RGB values. Almost all strings which are displayed can contain color tags. Color tags are W3C color names or six hexadecimal digits following a hash tag, wrapped in square brackets. Examples: A color tag changes the color of the characters following that color tag. This applies to almost everything from box titles, list text, form item labels, to table cells. In a TextView, this functionality has to be switched on explicitly. See the TextView documentation for more information. Color tags may contain not just the foreground (text) color but also the background color and additional flags. In fact, the full definition of a color tag is as follows: Each of the three fields can be left blank and trailing fields can be omitted. (Empty square brackets "[]", however, are not considered color tags.) Colors that are not specified will be left unchanged. A field with just a dash ("-") means "reset to default". You can specify the following flags (some flags may not be supported by your terminal): Examples: In the rare event that you want to display a string such as "[red]" or "[#00ff1a]" without applying its effect, you need to put an opening square bracket before the closing square bracket. Note that the text inside the brackets will be matched less strictly than region or colors tags. I.e. any character that may be used in color or region tags will be recognized. Examples: You can use the Escape() function to insert brackets automatically where needed. When primitives are instantiated, they are initialized with colors taken from the global Styles variable. You may change this variable to adapt the look and feel of the primitives to your preferred style. This package supports unicode characters including wide characters. Many functions in this package are not thread-safe. For many applications, this may not be an issue: If your code makes changes in response to key events, it will execute in the main goroutine and thus will not cause any race conditions. If you access your primitives from other goroutines, however, you will need to synchronize execution. The easiest way to do this is to call Application.QueueUpdate() or Application.QueueUpdateDraw() (see the function documentation for details): One exception to this is the io.Writer interface implemented by TextView. You can safely write to a TextView from any goroutine. See the TextView documentation for details. You can also call Application.Draw() from any goroutine without having to wrap it in QueueUpdate(). And, as mentioned above, key event callbacks are executed in the main goroutine and thus should not use QueueUpdate() as that may lead to deadlocks. All widgets listed above contain the Box type. All of Box's functions are therefore available for all widgets, too. All widgets also implement the Primitive interface. There is also the Focusable interface which is used to override functions in subclassing types. The tview package is based on https://maunium.net/go/tcell. It uses types and constants from that package (e.g. colors and keyboard values). This package does not process mouse input (yet).
Package pq is a pure Go Postgres driver for the database/sql package. In most cases clients will use the database/sql package instead of using this package directly. For example: You can also connect to a database using a URL. For example: Similarly to libpq, when establishing a connection using pq you are expected to supply a connection string containing zero or more parameters. A subset of the connection parameters supported by libpq are also supported by pq. Additionally, pq also lets you specify run-time parameters (such as search_path or work_mem) directly in the connection string. This is different from libpq, which does not allow run-time parameters in the connection string, instead requiring you to supply them in the options parameter. For compatibility with libpq, the following special connection parameters are supported: Valid values for sslmode are: See http://www.postgresql.org/docs/current/static/libpq-connect.html#LIBPQ-CONNSTRING for more information about connection string parameters. Use single quotes for values that contain whitespace: A backslash will escape the next character in values: Note that the connection parameter client_encoding (which sets the text encoding for the connection) may be set but must be "UTF8", matching with the same rules as Postgres. It is an error to provide any other value. In addition to the parameters listed above, any run-time parameter that can be set at backend start time can be set in the connection string. For more information, see http://www.postgresql.org/docs/current/static/runtime-config.html. Most environment variables as specified at http://www.postgresql.org/docs/current/static/libpq-envars.html supported by libpq are also supported by pq. If any of the environment variables not supported by pq are set, pq will panic during connection establishment. Environment variables have a lower precedence than explicitly provided connection parameters. The pgpass mechanism as described in http://www.postgresql.org/docs/current/static/libpq-pgpass.html is supported, but on Windows PGPASSFILE must be specified explicitly. database/sql does not dictate any specific format for parameter markers in query strings, and pq uses the Postgres-native ordinal markers, as shown above. The same marker can be reused for the same parameter: pq does not support the LastInsertId() method of the Result type in database/sql. To return the identifier of an INSERT (or UPDATE or DELETE), use the Postgres RETURNING clause with a standard Query or QueryRow call: For more details on RETURNING, see the Postgres documentation: For additional instructions on querying see the documentation for the database/sql package. Parameters pass through driver.DefaultParameterConverter before they are handled by this package. When the binary_parameters connection option is enabled, []byte values are sent directly to the backend as data in binary format. This package returns the following types for values from the PostgreSQL backend: All other types are returned directly from the backend as []byte values in text format. pq may return errors of type *pq.Error which can be interrogated for error details: See the pq.Error type for details. You can perform bulk imports by preparing a statement returned by pq.CopyIn (or pq.CopyInSchema) in an explicit transaction (sql.Tx). The returned statement handle can then be repeatedly "executed" to copy data into the target table. After all data has been processed you should call Exec() once with no arguments to flush all buffered data. Any call to Exec() might return an error which should be handled appropriately, but because of the internal buffering an error returned by Exec() might not be related to the data passed in the call that failed. CopyIn uses COPY FROM internally. It is not possible to COPY outside of an explicit transaction in pq. Usage example: PostgreSQL supports a simple publish/subscribe model over database connections. See http://www.postgresql.org/docs/current/static/sql-notify.html for more information about the general mechanism. To start listening for notifications, you first have to open a new connection to the database by calling NewListener. This connection can not be used for anything other than LISTEN / NOTIFY. Calling Listen will open a "notification channel"; once a notification channel is open, a notification generated on that channel will effect a send on the Listener.Notify channel. A notification channel will remain open until Unlisten is called, though connection loss might result in some notifications being lost. To solve this problem, Listener sends a nil pointer over the Notify channel any time the connection is re-established following a connection loss. The application can get information about the state of the underlying connection by setting an event callback in the call to NewListener. A single Listener can safely be used from concurrent goroutines, which means that there is often no need to create more than one Listener in your application. However, a Listener is always connected to a single database, so you will need to create a new Listener instance for every database you want to receive notifications in. The channel name in both Listen and Unlisten is case sensitive, and can contain any characters legal in an identifier (see http://www.postgresql.org/docs/current/static/sql-syntax-lexical.html#SQL-SYNTAX-IDENTIFIERS for more information). Note that the channel name will be truncated to 63 bytes by the PostgreSQL server. You can find a complete, working example of Listener usage at https://godoc.org/github.com/greatfocus/pq/example/listen. If you need support for Kerberos authentication, add the following to your main package: This package is in a separate module so that users who don't need Kerberos don't have to download unnecessary dependencies. When imported, additional connection string parameters are supported: