Package fpdf implements a PDF document generator with high level support for text, drawing and images. - UTF-8 support - Choice of measurement unit, page format and margins - Page header and footer management - Automatic page breaks, line breaks, and text justification - Inclusion of JPEG, PNG, GIF, TIFF and basic path-only SVG images - Colors, gradients and alpha channel transparency - Outline bookmarks - Internal and external links - TrueType, Type1 and encoding support - Page compression - Lines, Bézier curves, arcs, and ellipses - Rotation, scaling, skewing, translation, and mirroring - Clipping - Document protection - Layers - Templates - Barcodes - Charting facility - Import PDFs as templates go-pdf/fpdf has no dependencies other than the Go standard library. All tests pass on Linux, Mac and Windows platforms. go-pdf/fpdf supports UTF-8 TrueType fonts and “right-to-left” languages. Note that Chinese, Japanese, and Korean characters may not be included in many general purpose fonts. For these languages, a specialized font (for example, NotoSansSC for simplified Chinese) can be used. Also, support is provided to automatically translate UTF-8 runes to code page encodings for languages that have fewer than 256 glyphs. To install the package on your system, run Later, to receive updates, run The following Go code generates a simple PDF file. See the functions in the fpdf_test.go file (shown as examples in this documentation) for more advanced PDF examples. If an error occurs in an Fpdf method, an internal error field is set. After this occurs, Fpdf method calls typically return without performing any operations and the error state is retained. This error management scheme facilitates PDF generation since individual method calls do not need to be examined for failure; it is generally sufficient to wait until after Output() is called. For the same reason, if an error occurs in the calling application during PDF generation, it may be desirable for the application to transfer the error to the Fpdf instance by calling the SetError() method or the SetErrorf() method. At any time during the life cycle of the Fpdf instance, the error state can be determined with a call to Ok() or Err(). The error itself can be retrieved with a call to Error(). This package is a relatively straightforward translation from the original FPDF library written in PHP (despite the caveat in the introduction to Effective Go). The API names have been retained even though the Go idiom would suggest otherwise (for example, pdf.GetX() is used rather than simply pdf.X()). The similarity of the two libraries makes the original FPDF website a good source of information. It includes a forum and FAQ. However, some internal changes have been made. Page content is built up using buffers (of type bytes.Buffer) rather than repeated string concatenation. Errors are handled as explained above rather than panicking. Output is generated through an interface of type io.Writer or io.WriteCloser. A number of the original PHP methods behave differently based on the type of the arguments that are passed to them; in these cases additional methods have been exported to provide similar functionality. Font definition files are produced in JSON rather than PHP. A side effect of running go test ./... is the production of a number of example PDFs. These can be found in the go-pdf/fpdf/pdf directory after the tests complete. Please note that these examples run in the context of a test. In order run an example as a standalone application, you’ll need to examine fpdf_test.go for some helper routines, for example exampleFilename() and summary(). Example PDFs can be compared with reference copies in order to verify that they have been generated as expected. This comparison will be performed if a PDF with the same name as the example PDF is placed in the go-pdf/fpdf/pdf/reference directory and if the third argument to ComparePDFFiles() in internal/example/example.go is true. (By default it is false.) The routine that summarizes an example will look for this file and, if found, will call ComparePDFFiles() to check the example PDF for equality with its reference PDF. If differences exist between the two files they will be printed to standard output and the test will fail. If the reference file is missing, the comparison is considered to succeed. In order to successfully compare two PDFs, the placement of internal resources must be consistent and the internal creation timestamps must be the same. To do this, the methods SetCatalogSort() and SetCreationDate() need to be called for both files. This is done automatically for all examples. Nothing special is required to use the standard PDF fonts (courier, helvetica, times, zapfdingbats) in your documents other than calling SetFont(). You should use AddUTF8Font() or AddUTF8FontFromBytes() to add a TrueType UTF-8 encoded font. Use RTL() and LTR() methods switch between “right-to-left” and “left-to-right” mode. In order to use a different non-UTF-8 TrueType or Type1 font, you will need to generate a font definition file and, if the font will be embedded into PDFs, a compressed version of the font file. This is done by calling the MakeFont function or using the included makefont command line utility. To create the utility, cd into the makefont subdirectory and run “go build”. This will produce a standalone executable named makefont. Select the appropriate encoding file from the font subdirectory and run the command as in the following example. In your PDF generation code, call AddFont() to load the font and, as with the standard fonts, SetFont() to begin using it. Most examples, including the package example, demonstrate this method. Good sources of free, open-source fonts include Google Fonts and DejaVu Fonts. The draw2d package is a two dimensional vector graphics library that can generate output in different forms. It uses gofpdf for its document production mode. gofpdf is a global community effort and you are invited to make it even better. If you have implemented a new feature or corrected a problem, please consider contributing your change to the project. A contribution that does not directly pertain to the core functionality of gofpdf should be placed in its own directory directly beneath the contrib directory. Here are guidelines for making submissions. Your change should - be compatible with the MIT License - be properly documented - be formatted with go fmt - include an example in fpdf_test.go if appropriate - conform to the standards of golint and go vet, that is, golint . and go vet . should not generate any warnings - not diminish test coverage Pull requests are the preferred means of accepting your changes. gofpdf is released under the MIT License. It is copyrighted by Kurt Jung and the contributors acknowledged below. This package’s code and documentation are closely derived from the FPDF library created by Olivier Plathey, and a number of font and image resources are copied directly from it. Bruno Michel has provided valuable assistance with the code. Drawing support is adapted from the FPDF geometric figures script by David Hernández Sanz. Transparency support is adapted from the FPDF transparency script by Martin Hall-May. Support for gradients and clipping is adapted from FPDF scripts by Andreas Würmser. Support for outline bookmarks is adapted from Olivier Plathey by Manuel Cornes. Layer support is adapted from Olivier Plathey. Support for transformations is adapted from the FPDF transformation script by Moritz Wagner and Andreas Würmser. PDF protection is adapted from the work of Klemen Vodopivec for the FPDF product. Lawrence Kesteloot provided code to allow an image’s extent to be determined prior to placement. Support for vertical alignment within a cell was provided by Stefan Schroeder. Ivan Daniluk generalized the font and image loading code to use the Reader interface while maintaining backward compatibility. Anthony Starks provided code for the Polygon function. Robert Lillack provided the Beziergon function and corrected some naming issues with the internal curve function. Claudio Felber provided implementations for dashed line drawing and generalized font loading. Stani Michiels provided support for multi-segment path drawing with smooth line joins, line join styles, enhanced fill modes, and has helped greatly with package presentation and tests. Templating is adapted by Marcus Downing from the FPDF_Tpl library created by Jan Slabon and Setasign. Jelmer Snoeck contributed packages that generate a variety of barcodes and help with registering images on the web. Jelmer Snoek and Guillermo Pascual augmented the basic HTML functionality with aligned text. Kent Quirk implemented backwards-compatible support for reading DPI from images that support it, and for setting DPI manually and then having it properly taken into account when calculating image size. Paulo Coutinho provided support for static embedded fonts. Dan Meyers added support for embedded JavaScript. David Fish added a generic alias-replacement function to enable, among other things, table of contents functionality. Andy Bakun identified and corrected a problem in which the internal catalogs were not sorted stably. Paul Montag added encoding and decoding functionality for templates, including images that are embedded in templates; this allows templates to be stored independently of gofpdf. Paul also added support for page boxes used in printing PDF documents. Wojciech Matusiak added supported for word spacing. Artem Korotkiy added support of UTF-8 fonts. Dave Barnes added support for imported objects and templates. Brigham Thompson added support for rounded rectangles. Joe Westcott added underline functionality and optimized image storage. Benoit KUGLER contributed support for rectangles with corners of unequal radius, modification times, and for file attachments and annotations. - Remove all legacy code page font support; use UTF-8 exclusively - Improve test coverage as reported by the coverage tool. Example demonstrates the generation of a simple PDF document. Note that since only core fonts are used (in this case Arial, a synonym for Helvetica), an empty string can be specified for the font directory in the call to New(). Note also that the example.Filename() and example.SummaryCompare() functions belong to a separate, internal package and are not part of the gofpdf library. If an error occurs at some point during the construction of the document, subsequent method calls exit immediately and the error is finally retrieved with the output call where it can be handled by the application.
This code implements the flow chart that can be found here. http://www.html5rocks.com/static/images/cors_server_flowchart.png A Default Config for example is below:
Package wire implements the Decred wire protocol. For the complete details of the Decred protocol, see the official wiki entry at https://en.bitcoin.it/wiki/Protocol_specification. The following only serves as a quick overview to provide information on how to use the package. At a high level, this package provides support for marshalling and unmarshalling supported Decred messages to and from the wire. This package does not deal with the specifics of message handling such as what to do when a message is received. This provides the caller with a high level of flexibility. The Decred protocol consists of exchanging messages between peers. Each message is preceded by a header which identifies information about it such as which Decred network it is a part of, its type, how big it is, and a checksum to verify validity. All encoding and decoding of message headers is handled by this package. To accomplish this, there is a generic interface for Decred messages named Message which allows messages of any type to be read, written, or passed around through channels, functions, etc. In addition, concrete implementations of most of the currently supported Decred messages are provided. For these supported messages, all of the details of marshalling and unmarshalling to and from the wire using Decred encoding are handled so the caller doesn't have to concern themselves with the specifics. The following provides a quick summary of how the Decred messages are intended to interact with one another. As stated above, these interactions are not directly handled by this package. For more in-depth details about the appropriate interactions, see the official Decred protocol wiki entry at https://en.bitcoin.it/wiki/Protocol_specification. The initial handshake consists of two peers sending each other a version message (MsgVersion) followed by responding with a verack message (MsgVerAck). Both peers use the information in the version message (MsgVersion) to negotiate things such as protocol version and supported services with each other. Once the initial handshake is complete, the following chart indicates message interactions in no particular order. There are several common parameters that arise when using this package to read and write Decred messages. The following sections provide a quick overview of these parameters so the next sections can build on them. The protocol version should be negotiated with the remote peer at a higher level than this package via the version (MsgVersion) message exchange, however, this package provides the wire.ProtocolVersion constant which indicates the latest protocol version this package supports and is typically the value to use for all outbound connections before a potentially lower protocol version is negotiated. The Decred network is a magic number which is used to identify the start of a message and which Decred network the message applies to. This package provides the following constants: As discussed in the Decred message overview section, this package reads and writes Decred messages using a generic interface named Message. In order to determine the actual concrete type of the message, use a type switch or type assertion. An example of a type switch follows: In order to unmarshall Decred messages from the wire, use the ReadMessage function. It accepts any io.Reader, but typically this will be a net.Conn to a remote node running a Decred peer. Example syntax is: In order to marshall Decred messages to the wire, use the WriteMessage function. It accepts any io.Writer, but typically this will be a net.Conn to a remote node running a Decred peer. Example syntax to request addresses from a remote peer is: Errors returned by this package are either the raw errors provided by underlying calls to read/write from streams such as io.EOF, io.ErrUnexpectedEOF, and io.ErrShortWrite, or of type wire.MessageError. This allows the caller to differentiate between general IO errors and malformed messages through type assertions. This package includes spec changes outlined by the following BIPs:
Package cursor contains cross-platform methods to move the terminal cursor in different directions. This package can be used to create interactive CLI tools and games, live charts, algorithm visualizations and other updatable output of any kind. Works niceley with https://github.com/atomicgo/keyboard Special thanks to github.com/k0kubun/go-ansi which this project is based on.
Package cursor contains cross-platform methods to move the terminal cursor in different directions. This package can be used to create interactive CLI tools and games, live charts, algorithm visualizations and other updatable output of any kind. Special thanks to github.com/k0kubun/go-ansi which this project is based on.
Copyright 2016 - 2018 The excelize Authors. All rights reserved. Use of this source code is governed by a BSD-style license that can be found in the LICENSE file. Package excelize providing a set of functions that allow you to write to and read from XLSX files. Support reads and writes XLSX file generated by Microsoft Excel™ 2007 and later. Support save file without losing original charts of XLSX. This library needs Go version 1.8 or later. See https://xuri.me/excelize for more information about this package.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
Package wire implements the Decred wire protocol. For the complete details of the Decred protocol, see the official wiki entry at https://en.bitcoin.it/wiki/Protocol_specification. The following only serves as a quick overview to provide information on how to use the package. At a high level, this package provides support for marshalling and unmarshalling supported Decred messages to and from the wire. This package does not deal with the specifics of message handling such as what to do when a message is received. This provides the caller with a high level of flexibility. The Decred protocol consists of exchanging messages between peers. Each message is preceded by a header which identifies information about it such as which Decred network it is a part of, its type, how big it is, and a checksum to verify validity. All encoding and decoding of message headers is handled by this package. To accomplish this, there is a generic interface for Decred messages named Message which allows messages of any type to be read, written, or passed around through channels, functions, etc. In addition, concrete implementations of most of the currently supported Decred messages are provided. For these supported messages, all of the details of marshalling and unmarshalling to and from the wire using Decred encoding are handled so the caller doesn't have to concern themselves with the specifics. The following provides a quick summary of how the Decred messages are intended to interact with one another. As stated above, these interactions are not directly handled by this package. For more in-depth details about the appropriate interactions, see the official Decred protocol wiki entry at https://en.bitcoin.it/wiki/Protocol_specification. The initial handshake consists of two peers sending each other a version message (MsgVersion) followed by responding with a verack message (MsgVerAck). Both peers use the information in the version message (MsgVersion) to negotiate things such as protocol version and supported services with each other. Once the initial handshake is complete, the following chart indicates message interactions in no particular order. There are several common parameters that arise when using this package to read and write Decred messages. The following sections provide a quick overview of these parameters so the next sections can build on them. The protocol version should be negotiated with the remote peer at a higher level than this package via the version (MsgVersion) message exchange, however, this package provides the wire.ProtocolVersion constant which indicates the latest protocol version this package supports and is typically the value to use for all outbound connections before a potentially lower protocol version is negotiated. The Decred network is a magic number which is used to identify the start of a message and which Decred network the message applies to. This package provides the following constants: As discussed in the Decred message overview section, this package reads and writes Decred messages using a generic interface named Message. In order to determine the actual concrete type of the message, use a type switch or type assertion. An example of a type switch follows: In order to unmarshall Decred messages from the wire, use the ReadMessage function. It accepts any io.Reader, but typically this will be a net.Conn to a remote node running a Decred peer. Example syntax is: In order to marshall Decred messages to the wire, use the WriteMessage function. It accepts any io.Writer, but typically this will be a net.Conn to a remote node running a Decred peer. Example syntax to request addresses from a remote peer is: Errors returned by this package are either the raw errors provided by underlying calls to read/write from streams such as io.EOF, io.ErrUnexpectedEOF, and io.ErrShortWrite, or of type wire.MessageError. This allows the caller to differentiate between general IO errors and malformed messages through type assertions. This package includes spec changes outlined by the following BIPs: