This package is the root package of the govmomi library. The library is structured as follows: The minimal usable functionality is available through the vim25 package. It contains subpackages that contain generated types, managed objects, and all available methods. The vim25 package is entirely independent of the other packages in the govmomi tree -- it has no dependencies on its peers. The vim25 package itself contains a client structure that is passed around throughout the entire library. It abstracts a session and its immutable state. See the vim25 package for more information. The session package contains an abstraction for the session manager that allows a user to login and logout. It also provides access to the current session (i.e. to determine if the user is in fact logged in) The object package contains wrappers for a selection of managed objects. The constructors of these objects all take a *vim25.Client, which they pass along to derived objects, if applicable. The govc package contains the govc CLI. The code in this tree is not intended to be used as a library. Any functionality that govc contains that _could_ be used as a library function but isn't, _should_ live in a root level package. Other packages, such as "event", "guest", or "license", provide wrappers for the respective subsystems. They are typically not needed in normal workflows so are kept outside the object package.
Package hashring implements consistent hashing hashring data structure. In general, consistent hashing is all about mapping of object from a very big set of values (e.g. request id) to object from a quite small set (e.g. server address). The word "consistent" means that it can produce consistent mapping on different machines or processes without additional state exchange and communication. For more theory about the subject please see this great document: https://theory.stanford.edu/~tim/s16/l/l1.pdf There are two goals for this hashring implementation: 1) To be efficient in highly concurrent applications by blocking read operations for the least possible time. 2) To correctly handle very rare but yet possible hash collisions, which may break all your eventually consistent application. To reach the first goal hashring uses immutable AVL tree internally, making read operations (getting item for object) blocked only for a tiny amount of time needed to swap the ring's tree root after some write operation (insertion or deletion). The second goal is reached by using ring of size 2^64-1 points, which dramatically reduces the probability of hash collisions (the greater the number of items on the ring, the higher the probability of collisions) and implementation that covers collisions.
Package gop is a project manangement tool for building your golang applications out of global GOPATH. In fact gop will keep both global GOPATH and every project GOPATH. But that means your project will not go-getable. Of course, GOP itself is go-getable. GOP copy all denpendencies from global GOPATH to your project's src/vendor directory and all application's sources are also in src directory. A normal process using gop is below: 1. GOPATH compatible 2. Multiple build targets support 3. Put your projects out of global GOPATH Please ensure you have installed the go command, GOP will invoke it on building or testing Every project should have a GOPATH directory structure and put a gop.yml int the root directory. This is an example project's directory tree. Gop will recognize a gop project which has gop.yml. The file is also a project configuration file. Below is an example. If you didn't define any target, the default target is src/main and the target name is the project name. 1. init Create the default directory structure tree. 2. ensure Automatically copy dependencies from $GOPATH to local project directory. -g will let you automatically call go get <package> when the package is missing on GOPATH. -u will always go get <package> on all the dependencies and copy them to vendor. 3. status List all dependencies of this project and show the status. 4. add Add one or more packages to this project. 5. update Update one or more packages to this project. All missing dependent packages will also be added. -f will update exists dependent packages. 6. rm Remove one or more packages from this project. 7. build Run go build on the src directory. If you want to execute ensure before build, you can use `-e` flag. 8. run Run go run on the src directory. -w will monitor the go source code changes and automatically build and run again. `-e` will automatically execute `ensure` before every time build. 9. test Run go test on the src directory. If you want to execute ensure before build, you can use `-e` flag. 10. release Run go release on the src directory.
Package Ki provides the base element of GoKi Trees: Ki = Tree in Japanese, and "Key" in English -- powerful tree structures supporting scenegraphs, programs, parsing, etc. The Node struct that implements the Ki interface, which can be used as an embedded type (or a struct field) in other structs to provide core tree functionality, including: Parent / Child Tree structure -- each Node can ONLY have one parent. Node struct's can also have Node fields -- these are functionally like fixed auto-named children. Paths for locating Nodes within the hierarchy -- key for many use-cases, including ability to convert pointers to/from strings for IO and robust deep copy and move functions. The path separator is / for children and . for fields. Apply a function across nodes up or down a tree (natural "me first", breadth-first, depth-first) -- very flexible for tree walking. Generalized I/O -- can Save and Load the Tree as JSON, XML, etc -- including pointers which are saved using paths and automatically cached-out after loading -- enums also bidirectionally convertable to strings using enum type registry in kit package. Robust deep copy, clone, move of nodes, with automatic pointer updating. Signal sending and receiving between Nodes (simlar to Qt Signals / Slots) -- setup connections once and then emit signals to all receivers when relevant event happens. Robust state updating -- wrap updates in UpdateStart / End, and signals are blocked until the final end, at the highest affected level in the tree, at which point a single update signal is sent -- automatically gives the minimal update. Properties (as a string-keyed map) with property inheritance, including type-level properties via kit type registry.
Package merkle A merkle tree is a kind of binary tree where each node is labelled with a hash. Starting from the very bottom, leaves will be paired and hashed together to make their parent inner-node, recursively up to the root a.k.a merkle root. Merkle trees, are commonly used in distributed systems to efficiently compare large data set ensuring validity of such data. Some examples that leverage merkle trees are the : - Git version control - AWS's QLDB - Apache's Cassandra - blockchains There are different flavours of implementations, this package doesn't attempt to build an abstraction for all the possible ones out there, it rather implements a fairly efficient specific one that can be used to experiment with the data structure and concepts. With that said, if you're looking to use this package to validate merkle proofs for existing blockchains you should look elsewhere as their implementation may be different. For example, Bitcoin's merkle, duplicates eventual odd nodes to re-balance the tree and this implementation doesn't, thus producing a different merkle root and proof.
GKES (Go Kafka Event Source) attempts to fill the gaps ub the Go/Kafka library ecosystem. It supplies Exactly Once Semantics (EOS), local state stores and incremental consumer rebalancing to Go Kafka consumers, making it a viable alternative to a traditional Kafka Streams application written in Java. GKES is Go/Kafka library tailored towards the development of Event Sourcing applications, by providing a high-throughput, low-latency Kafka client framework. Using Kafka transactions, it provides for EOS, data integrity and high availability. If you wish to use GKES as straight Kafka consumer, it will fit the bill as well. Though there are plenty of libraries for that, and researching which best fits your use case is time well spent. GKES is not an all-in-one, do-everything black box. Some elements, in particular the StateStore, have been left without comprehensive implementations. A useful and performant local state store rarely has a flat data structure. If your state store does, there are some convenient implementations provided. However, to achieve optimum performance, you will not only need to write a StateStore implementation, but will also need to understand what the proper data structures are for your use case (trees, heaps, maps, disk-based LSM trees or combinations thereof). You can use the provided github.com/aws/go-kafka-event-source/streams/stores.SimpleStore as a starting point. GKES purposefully does not provide a pre-canned way for exposing StateStore data, other than a producing to another Kafka topic. There are as many ways to vend data as there are web applications. Rather than putting effort into inventing yet another one, GKES provides the mechanisms to query StateStores via Interjections. This mechanism can be plugged into whatever request/response mechanism that suits your use-case (gRPC, RESTful HTTP service...any number of web frameworks already in the Go ecosystem). [TODO: provide a simple http example] For this familiar with thw Kafka Streams API, GKES provides for stream `Punctuators“, but we call them `Interjections` (because it sounds cool). Interjections allow you to insert actions into your EventSource at specicifed interval per partition assigned via streams.EventSource.ScheduleInterjection, or at any time via streams.EventSource.Interject. This is useful for bookeeping activities, aggregated metric production or even error handling. Interjections have full access to the StateStore associated with an EventSource and can interact with output topics like any other EventProcessor. One issue that Kafka conumer applications have long suffered from are latency spikes during a consumer rebalance. The cooperative sticky rebalancing introduced by Kafka and implemented by kgo helps resolve this issue. However, once StateStore are thrown into the mix, things get a bit more complicated because initializing the StateStore on a host invloves consuming a compacted TopicPartion from start to end. GKES solves this with the IncrementalRebalancer and takes it one step further. The IncrementalRebalancer rebalances consumer partitions in a controlled fashion, minimizing latency spikes and limiting the blast of a bad deployment. GKES provides conventions for asynchronously processing events on the same Kafka partition while still maintaining data/stream integrity. The AsyncBatcher and AsyncJobScheduler allow you to split a TopicPartition into sub-streams by key, ensuring all events for a partitcular key are processed in order, allowing for parallel processing on a given TopicPartition. For more details, see Async Processing Examples A Kafka transaction is a powerful tool which allows for Exactly Once Semantics (EOS) by linking a consumer offset commit to one or more records that are being produced by your application (a StateStore record for example). The history of Kafka EOS is a long and complicated one with varied degrees of performance and efficiency. Early iterations required one producer transaction per consumer partition, which was very ineffiecient as Topic with 1000 partitions would also require 1000 clients in order to provide EOS. This has since been addressed, but depending on client implementations, there is a high risk of running into "producer fenced" errors as well as reduced throughput. In a traditional Java Kafka Streams application, transactions are committed according to the auto-commit frequency, which defaults to 100ms. This means that your application will only produce readable records every 100ms per partition. The effect of this is that no matter what you do, your tail latency will be at least 100ms and downstream consumers will receive records in bursts rather than a steady stream. For many use cases, this is unaceptable. GKES solves this issue by using a configurable transactional producer pool and a type of "Nagle's algorithm". Uncommitted offsets are added to the transaction pool in sequence. Once a producer has reach its record limit, or enough time has elapsed (10ms by default), the head transaction will wait for any incomplete events to finsh, then flush and commit. While this transaction is committing, GKES continues to process events and optimistically begins a new transaction and produces records on the next producer in pool. Since trasnaction produce in sequence, there is no danger of commit offset overlap or duplicate message processing in the case of a failure. To ensure EOS, your EventSource must use either the IncrementalRebalancer, or kgos cooperative sticky implementation. Though if you're using a StateStore, IncrementalRebalancer should be used to avoid lengthy periods of inactivity during application deployments. Rather than create yet another Kafka driver, GKES is built on top of kgo. This Kafka client was chosen as it (in our testing) has superior throughput and latency profiles compared to other client libraries currently available to Go developers. One other key adavantage is that it provides a migration path to cooperative consumer rebalancing, required for our EOS implementation. Other Go Kafka libraries provide cooperative rebalancing, but do not allow you to migrate froma non-cooperative rebalancing strategy (range, sticky etc.). This is a major roadblock for existing deployemtns as the only migration paths are an entirely new consumer group, or to bring your application completely down and re-deploy with a new rebalance strategy. These migration plans, to put it mildly, are big challenge for zero-downtime/live applications. The kgo package now makes this migration possible with zero downtime. Kgo also has the proper hooks need to implement the IncrementalGroupRebalancer, which is necessary for safe deployments when using a local state store. Kudos to kgo!
Package CloudForest implements ensembles of decision trees for machine learning in pure Go (golang to search engines). It allows for a number of related algorithms for classification, regression, feature selection and structure analysis on heterogeneous numerical/categorical data with missing values. These include: Breiman and Cutler's Random Forest for Classification and Regression Adaptive Boosting (AdaBoost) Classification Gradiant Boosting Tree Regression Entropy and Cost driven classification L1 regression Feature selection with artificial contrasts Proximity and model structure analysis Roughly balanced bagging for unbalanced classification The API hasn't stabilized yet and may change rapidly. Tests and benchmarks have been performed only on embargoed data sets and can not yet be released. Library Documentation is in code and can be viewed with godoc or live at: http://godoc.org/github.com/IlyaLab/CloudForest Documentation of command line utilities and file formats can be found in README.md, which can be viewed fromated on github: http://github.com/IlyaLab/CloudForest Pull requests and bug reports are welcome. CloudForest was created by Ryan Bressler and is being developed in the Shumelivich Lab at the Institute for Systems Biology for use on genomic/biomedical data with partial support from The Cancer Genome Atlas and the Inova Translational Medicine Institute. CloudForest is intended to provide fast, comprehensible building blocks that can be used to implement ensembles of decision trees. CloudForest is written in Go to allow a data scientist to develop and scale new models and analysis quickly instead of having to modify complex legacy code. Data structures and file formats are chosen with use in multi threaded and cluster environments in mind. Go's support for function types is used to provide a interface to run code as data is percolated through a tree. This method is flexible enough that it can extend the tree being analyzed. Growing a decision tree using Breiman and Cutler's method can be done in an anonymous function/closure passed to a tree's root node's Recurse method: This allows a researcher to include whatever additional analysis they need (importance scores, proximity etc) in tree growth. The same Recurse method can also be used to analyze existing forests to tabulate scores or extract structure. Utilities like leafcount and errorrate use this method to tabulate data about the tree in collection objects. Decision tree's are grown with the goal of reducing "Impurity" which is usually defined as Gini Impurity for categorical targets or mean squared error for numerical targets. CloudForest grows trees against the Target interface which allows for alternative definitions of impurity. CloudForest includes several alternative targets: Additional targets can be stacked on top of these target to add boosting functionality: Repeatedly splitting the data and searching for the best split at each node of a decision tree are the most computationally intensive parts of decision tree learning and CloudForest includes optimized code to perform these tasks. Go's slices are used extensively in CloudForest to make it simple to interact with optimized code. Many previous implementations of Random Forest have avoided reallocation by reordering data in place and keeping track of start and end indexes. In go, slices pointing at the same underlying arrays make this sort of optimization transparent. For example a function like: can return left and right slices that point to the same underlying array as the original slice of cases but these slices should not have their values changed. Functions used while searching for the best split also accepts pointers to reusable slices and structs to maximize speed by keeping memory allocations to a minimum. BestSplitAllocs contains pointers to these items and its use can be seen in functions like: For categorical predictors, BestSplit will also attempt to intelligently choose between 4 different implementations depending on user input and the number of categories. These include exhaustive, random, and iterative searches for the best combination of categories implemented with bitwise operations against int and big.Int. See BestCatSplit, BestCatSplitIter, BestCatSplitBig and BestCatSplitIterBig. All numerical predictors are handled by BestNumSplit which relies on go's sorting package. Training a Random forest is an inherently parallel process and CloudForest is designed to allow parallel implementations that can tackle large problems while keeping memory usage low by writing and using data structures directly to/from disk. Trees can be grown in separate go routines. The growforest utility provides an example of this that uses go routines and channels to grow trees in parallel and write trees to disk as the are finished by the "worker" go routines. The few summary statistics like mean impurity decrease per feature (importance) can be calculated using thread safe data structures like RunningMean. Trees can also be grown on separate machines. The .sf stochastic forest format allows several small forests to be combined by concatenation and the ForestReader and ForestWriter structs allow these forests to be accessed tree by tree (or even node by node) from disk. For data sets that are too big to fit in memory on a single machine Tree.Grow and FeatureMatrix.BestSplitter can be reimplemented to load candidate features from disk, distributed database etc. By default cloud forest uses a fast heuristic for missing values. When proposing a split on a feature with missing data the missing cases are removed and the impurity value is corrected to use three way impurity which reduces the bias towards features with lots of missing data: Missing values in the target variable are left out of impurity calculations. This provided generally good results at a fraction of the computational costs of imputing data. Optionally, feature.ImputeMissing or featurematrixImputeMissing can be called before forest growth to impute missing values to the feature mean/mode which Brieman [2] suggests as a fast method for imputing values. This forest could also be analyzed for proximity (using leafcount or tree.GetLeaves) to do the more accurate proximity weighted imputation Brieman describes. Experimental support is provided for 3 way splitting which splits missing cases onto a third branch. [2] This has so far yielded mixed results in testing. At some point in the future support may be added for local imputing of missing values during tree growth as described in [3] [1] http://www.stat.berkeley.edu/~breiman/RandomForests/cc_home.htm#missing1 [2] https://code.google.com/p/rf-ace/ [3] http://projecteuclid.org/DPubS?verb=Display&version=1.0&service=UI&handle=euclid.aoas/1223908043&page=record In CloudForest data is stored using the FeatureMatrix struct which contains Features. The Feature struct implements storage and methods for both categorical and numerical data and calculations of impurity etc and the search for the best split. The Target interface abstracts the methods of Feature that are needed for a feature to be predictable. This allows for the implementation of alternative types of regression and classification. Trees are built from Nodes and Splitters and stored within a Forest. Tree has a Grow implements Brieman and Cutler's method (see extract above) for growing a tree. A GrowForest method is also provided that implements the rest of the method including sampling cases but it may be faster to grow the forest to disk as in the growforest utility. Prediction and Voting is done using Tree.Vote and CatBallotBox and NumBallotBox which implement the VoteTallyer interface.
Package tree implements a tree structure.
Package CloudForest implements ensembles of decision trees for machine learning in pure Go (golang to search engines). It allows for a number of related algorithms for classification, regression, feature selection and structure analysis on heterogeneous numerical/categorical data with missing values. These include: Breiman and Cutler's Random Forest for Classification and Regression Adaptive Boosting (AdaBoost) Classification Gradiant Boosting Tree Regression Entropy and Cost driven classification L1 regression Feature selection with artificial contrasts Proximity and model structure analysis Roughly balanced bagging for unbalanced classification The API hasn't stabilized yet and may change rapidly. Tests and benchmarks have been performed only on embargoed data sets and can not yet be released. Library Documentation is in code and can be viewed with godoc or live at: http://godoc.org/github.com/IlyaLab/CloudForest Documentation of command line utilities and file formats can be found in README.md, which can be viewed fromated on github: http://github.com/IlyaLab/CloudForest Pull requests and bug reports are welcome. CloudForest was created by Ryan Bressler and is being developed in the Shumelivich Lab at the Institute for Systems Biology for use on genomic/biomedical data with partial support from The Cancer Genome Atlas and the Inova Translational Medicine Institute. CloudForest is intended to provide fast, comprehensible building blocks that can be used to implement ensembles of decision trees. CloudForest is written in Go to allow a data scientist to develop and scale new models and analysis quickly instead of having to modify complex legacy code. Data structures and file formats are chosen with use in multi threaded and cluster environments in mind. Go's support for function types is used to provide a interface to run code as data is percolated through a tree. This method is flexible enough that it can extend the tree being analyzed. Growing a decision tree using Breiman and Cutler's method can be done in an anonymous function/closure passed to a tree's root node's Recurse method: This allows a researcher to include whatever additional analysis they need (importance scores, proximity etc) in tree growth. The same Recurse method can also be used to analyze existing forests to tabulate scores or extract structure. Utilities like leafcount and errorrate use this method to tabulate data about the tree in collection objects. Decision tree's are grown with the goal of reducing "Impurity" which is usually defined as Gini Impurity for categorical targets or mean squared error for numerical targets. CloudForest grows trees against the Target interface which allows for alternative definitions of impurity. CloudForest includes several alternative targets: Additional targets can be stacked on top of these target to add boosting functionality: Repeatedly splitting the data and searching for the best split at each node of a decision tree are the most computationally intensive parts of decision tree learning and CloudForest includes optimized code to perform these tasks. Go's slices are used extensively in CloudForest to make it simple to interact with optimized code. Many previous implementations of Random Forest have avoided reallocation by reordering data in place and keeping track of start and end indexes. In go, slices pointing at the same underlying arrays make this sort of optimization transparent. For example a function like: can return left and right slices that point to the same underlying array as the original slice of cases but these slices should not have their values changed. Functions used while searching for the best split also accepts pointers to reusable slices and structs to maximize speed by keeping memory allocations to a minimum. BestSplitAllocs contains pointers to these items and its use can be seen in functions like: For categorical predictors, BestSplit will also attempt to intelligently choose between 4 different implementations depending on user input and the number of categories. These include exhaustive, random, and iterative searches for the best combination of categories implemented with bitwise operations against int and big.Int. See BestCatSplit, BestCatSplitIter, BestCatSplitBig and BestCatSplitIterBig. All numerical predictors are handled by BestNumSplit which relies on go's sorting package. Training a Random forest is an inherently parallel process and CloudForest is designed to allow parallel implementations that can tackle large problems while keeping memory usage low by writing and using data structures directly to/from disk. Trees can be grown in separate go routines. The growforest utility provides an example of this that uses go routines and channels to grow trees in parallel and write trees to disk as the are finished by the "worker" go routines. The few summary statistics like mean impurity decrease per feature (importance) can be calculated using thread safe data structures like RunningMean. Trees can also be grown on separate machines. The .sf stochastic forest format allows several small forests to be combined by concatenation and the ForestReader and ForestWriter structs allow these forests to be accessed tree by tree (or even node by node) from disk. For data sets that are too big to fit in memory on a single machine Tree.Grow and FeatureMatrix.BestSplitter can be reimplemented to load candidate features from disk, distributed database etc. By default cloud forest uses a fast heuristic for missing values. When proposing a split on a feature with missing data the missing cases are removed and the impurity value is corrected to use three way impurity which reduces the bias towards features with lots of missing data: Missing values in the target variable are left out of impurity calculations. This provided generally good results at a fraction of the computational costs of imputing data. Optionally, feature.ImputeMissing or featurematrixImputeMissing can be called before forest growth to impute missing values to the feature mean/mode which Brieman [2] suggests as a fast method for imputing values. This forest could also be analyzed for proximity (using leafcount or tree.GetLeaves) to do the more accurate proximity weighted imputation Brieman describes. Experimental support is provided for 3 way splitting which splits missing cases onto a third branch. [2] This has so far yielded mixed results in testing. At some point in the future support may be added for local imputing of missing values during tree growth as described in [3] [1] http://www.stat.berkeley.edu/~breiman/RandomForests/cc_home.htm#missing1 [2] https://code.google.com/p/rf-ace/ [3] http://projecteuclid.org/DPubS?verb=Display&version=1.0&service=UI&handle=euclid.aoas/1223908043&page=record In CloudForest data is stored using the FeatureMatrix struct which contains Features. The Feature struct implements storage and methods for both categorical and numerical data and calculations of impurity etc and the search for the best split. The Target interface abstracts the methods of Feature that are needed for a feature to be predictable. This allows for the implementation of alternative types of regression and classification. Trees are built from Nodes and Splitters and stored within a Forest. Tree has a Grow implements Brieman and Cutler's method (see extract above) for growing a tree. A GrowForest method is also provided that implements the rest of the method including sampling cases but it may be faster to grow the forest to disk as in the growforest utility. Prediction and Voting is done using Tree.Vote and CatBallotBox and NumBallotBox which implement the VoteTallyer interface.
Package suture provides Erlang-like supervisor trees. This implements Erlang-esque supervisor trees, as adapted for Go. This is intended to be an industrial-strength implementation, but it has not yet been deployed in a hostile environment. (It's headed there, though.) Supervisor Tree -> SuTree -> suture -> holds your code together when it's trying to fall apart. Why use Suture? Suture has 100% test coverage, and is golint clean. This doesn't prove it free of bugs, but it shows I care. A blog post describing the design decisions is available at http://www.jerf.org/iri/post/2930 . To idiomatically use Suture, create a Supervisor which is your top level "application" supervisor. This will often occur in your program's "main" function. Create "Service"s, which implement the Service interface. .Add() them to your Supervisor. Supervisors are also services, so you can create a tree structure here, depending on the exact combination of restarts you want to create. As a special case, when adding Supervisors to Supervisors, the "sub" supervisor will have the "super" supervisor's Log function copied. This allows you to set one log function on the "top" supervisor, and have it propagate down to all the sub-supervisors. This also allows libraries or modules to provide Supervisors without having to commit their users to a particular logging method. Finally, as what is probably the last line of your main() function, call .Serve() on your top level supervisor. This will start all the services you've defined. See the Example for an example, using a simple service that serves out incrementing integers.
Package suture provides Erlang-like supervisor trees. This implements Erlang-esque supervisor trees, as adapted for Go. This is intended to be an industrial-strength implementation, but it has not yet been deployed in a hostile environment. (It's headed there, though.) Supervisor Tree -> SuTree -> suture -> holds your code together when it's trying to fall apart. Why use Suture? Suture has 100% test coverage, and is golint clean. This doesn't prove it free of bugs, but it shows I care. A blog post describing the design decisions is available at http://www.jerf.org/iri/post/2930 . To idiomatically use Suture, create a Supervisor which is your top level "application" supervisor. This will often occur in your program's "main" function. Create "Service"s, which implement the Service interface. .Add() them to your Supervisor. Supervisors are also services, so you can create a tree structure here, depending on the exact combination of restarts you want to create. As a special case, when adding Supervisors to Supervisors, the "sub" supervisor will have the "super" supervisor's Log function copied. This allows you to set one log function on the "top" supervisor, and have it propagate down to all the sub-supervisors. This also allows libraries or modules to provide Supervisors without having to commit their users to a particular logging method. Finally, as what is probably the last line of your main() function, call .Serve() on your top level supervisor. This will start all the services you've defined. See the Example for an example, using a simple service that serves out incrementing integers.
Package btree implements in-memory B-Trees of arbitrary degree. btree implements an in-memory B-Tree for use as an ordered data structure. It is not meant for persistent storage solutions. It has a flatter structure than an equivalent red-black or other binary tree, which in some cases yields better memory usage and/or performance. See some discussion on the matter here: Note, though, that this project is in no way related to the C++ B-Tree implementation written about there. Within this tree, each node contains a slice of items and a (possibly nil) slice of children. For basic numeric values or raw structs, this can cause efficiency differences when compared to equivalent C++ template code that stores values in arrays within the node: These issues don't tend to matter, though, when working with strings or other heap-allocated structures, since C++-equivalent structures also must store pointers and also distribute their values across the heap. This implementation is designed to be a drop-in replacement to gollrb.LLRB trees, (http://github.com/petar/gollrb), an excellent and probably the most widely used ordered tree implementation in the Go ecosystem currently. Its functions, therefore, exactly mirror those of llrb.LLRB where possible. Unlike gollrb, though, we currently don't support storing multiple equivalent values.
Implementation of an R-Way Trie data structure. A Trie has a root Node which is the base of the tree. Each subsequent Node has a letter and children, which are nodes that have letter values associated with them.
Package radixtree implements multiple forms of an Adaptive Radix Tree, aka compressed trie or prefix tree. It is adaptive in the sense that nodes are not constant size, having as few or many children as needed, up to the number of different key segments to traverse to the next branch or value. In a compressed radix tree, typically an edge is looked up by radix (single key symbol) and the edge label contains the key symbols to get to the next prefix branch or terminal (having a value) node, as well as a pointer the next node. This implementation puts the edge label in the next node so that there is not a separate structure for edge and node. Also, the first character of the edge label is omitted, since that is already known when descending the tree. The implementations are optimized for Get performance and allocate 0 bytes of heap memory per Get; therefore no garbage to collect. Once the radix tree is build, it can be repeatedly searched very quickly. Access is not synchronized (not concurrent safe), allowing the caller to synchronize, if needed, in whatever manner works best for the application.
Package btree implements in-memory B-Trees of arbitrary degree. btree implements an in-memory B-Tree for use as an ordered data structure. It is not meant for persistent storage solutions. It has a flatter structure than an equivalent red-black or other binary tree, which in some cases yields better memory usage and/or performance. See some discussion on the matter here: Note, though, that this project is in no way related to the C++ B-Tree implementation written about there. Within this tree, each node contains a slice of items and a (possibly nil) slice of children. For basic numeric values or raw structs, this can cause efficiency differences when compared to equivalent C++ template code that stores values in arrays within the node: These issues don't tend to matter, though, when working with strings or other heap-allocated structures, since C++-equivalent structures also must store pointers and also distribute their values across the heap. This implementation is designed to be a drop-in replacement to gollrb.LLRB trees, (http://github.com/petar/gollrb), an excellent and probably the most widely used ordered tree implementation in the Go ecosystem currently. Its functions, therefore, exactly mirror those of llrb.LLRB where possible. Unlike gollrb, though, we currently don't support storing multiple equivalent values.
Package getfilelist (getfilelist.go) : This is a Golang library to retrieve the file list with the folder structure from the specific folder of Google Drive. # Install You can get this by $ go get -u github.com/tanaikech/go-getfilelist More information is https://github.com/tanaikech/go-getfilelist --------------------------------------------------------------- Package getfilelist (getfilelist.go) : This is a Golang library to retrieve the file list with the folder tree from the specific folder of Google Drive.
Package mimetype uses magic number signatures to detect the MIME type of a file. mimetype stores the list of MIME types in a tree structure with "application/octet-stream" at the root of the hierarchy. The hierarchy approach minimizes the number of checks that need to be done on the input and allows for more precise results once the base type of file has been identified. To check if some bytes/reader/file has a specific MIME type, first perform a detect on the input and then test against the MIME. Different from the string comparison, e.g.: mime.String() == "application/zip", mime.Is("application/zip") method has the following advantages: it handles MIME aliases, is case insensitive, ignores optional MIME parameters, and ignores any leading and trailing whitespace. To find the MIME type of some input, perform a detect. In addition to the basic Detect, there are shortcuts for detecting from a reader: or from a file: Considering the definition of a binary file as "a computer file that is not a text file", they can differentiated by searching for the text/plain MIME in it's MIME hierarchy.
Package sops manages JSON, YAML and BINARY documents to be encrypted or decrypted. This package should not be used directly. Instead, Sops users should install the command line client via `go get -u go.mozilla.org/sops/v3/cmd/sops`, or use the decryption helper provided at `go.mozilla.org/sops/v3/decrypt`. We do not guarantee API stability for any package other than `go.mozilla.org/sops/v3/decrypt`. A Sops document is a Tree composed of a data branch with arbitrary key/value pairs and a metadata branch with encryption and integrity information. In JSON and YAML formats, the structure of the cleartext tree is preserved, keys are stored in cleartext and only values are encrypted. Keeping the values in cleartext provides better readability when storing Sops documents in version controls, and allows for merging competing changes on documents. This is a major difference between Sops and other encryption tools that store documents as encrypted blobs. In BINARY format, the cleartext data is treated as a single blob and the encrypted document is in JSON format with a single `data` key and a single encrypted value. Sops allows operators to encrypt their documents with multiple master keys. Each of the master key defined in the document is able to decrypt it, allowing users to share documents amongst themselves without sharing keys, or using a PGP key as a backup for KMS. In practice, this is achieved by generating a data key for each document that is used to encrypt all values, and encrypting the data with each master key defined. Being able to decrypt the data key gives access to the document. The integrity of each document is guaranteed by calculating a Message Authentication Code (MAC) that is stored encrypted by the data key. When decrypting a document, the MAC should be recalculated and compared with the MAC stored in the document to verify that no fraudulent changes have been applied. The MAC covers keys and values as well as their ordering.
Package html implements an HTML5-compliant tokenizer and parser. Tokenization is done by creating a Tokenizer for an io.Reader r. It is the caller's responsibility to ensure that r provides UTF-8 encoded HTML. Given a Tokenizer z, the HTML is tokenized by repeatedly calling z.Next(), which parses the next token and returns its type, or an error: There are two APIs for retrieving the current token. The high-level API is to call Token; the low-level API is to call Text or TagName / TagAttr. Both APIs allow optionally calling Raw after Next but before Token, Text, TagName, or TagAttr. In EBNF notation, the valid call sequence per token is: Token returns an independent data structure that completely describes a token. Entities (such as "<") are unescaped, tag names and attribute keys are lower-cased, and attributes are collected into a []Attribute. For example: The low-level API performs fewer allocations and copies, but the contents of the []byte values returned by Text, TagName and TagAttr may change on the next call to Next. For example, to extract an HTML page's anchor text: Parsing is done by calling Parse with an io.Reader, which returns the root of the parse tree (the document element) as a *Node. It is the caller's responsibility to ensure that the Reader provides UTF-8 encoded HTML. For example, to process each anchor node in depth-first order: The relevant specifications include: https://html.spec.whatwg.org/multipage/syntax.html and https://html.spec.whatwg.org/multipage/syntax.html#tokenization
Package skiplist implements skip list based maps and sets. Skip lists are a data structure that can be used in place of balanced trees. Skip lists use probabilistic balancing rather than strictly enforced balancing and as a result the algorithms for insertion and deletion in skip lists are much simpler and significantly faster than equivalent algorithms for balanced trees. Skip lists were first described in Pugh, William (June 1990). "Skip lists: a probabilistic alternative to balanced trees". Communications of the ACM 33 (6): 668–676 redis like sorted set
This package is the root package of the govmomi library. The library is structured as follows: The minimal usable functionality is available through the vim25 package. It contains subpackages that contain generated types, managed objects, and all available methods. The vim25 package is entirely independent of the other packages in the govmomi tree -- it has no dependencies on its peers. The vim25 package itself contains a client structure that is passed around throughout the entire library. It abstracts a session and its immutable state. See the vim25 package for more information. The session package contains an abstraction for the session manager that allows a user to login and logout. It also provides access to the current session (i.e. to determine if the user is in fact logged in) The object package contains wrappers for a selection of managed objects. The constructors of these objects all take a *vim25.Client, which they pass along to derived objects, if applicable. The govc package contains the govc CLI. The code in this tree is not intended to be used as a library. Any functionality that govc contains that _could_ be used as a library function but isn't, _should_ live in a root level package. Other packages, such as "event", "guest", or "license", provide wrappers for the respective subsystems. They are typically not needed in normal workflows so are kept outside the object package.
This package is the root package of the govmomi library. The library is structured as follows: The minimal usable functionality is available through the vim25 package. It contains subpackages that contain generated types, managed objects, and all available methods. The vim25 package is entirely independent of the other packages in the govmomi tree -- it has no dependencies on its peers. The vim25 package itself contains a client structure that is passed around throughout the entire library. It abstracts a session and its immutable state. See the vim25 package for more information. The session package contains an abstraction for the session manager that allows a user to login and logout. It also provides access to the current session (i.e. to determine if the user is in fact logged in) The object package contains wrappers for a selection of managed objects. The constructors of these objects all take a *vim25.Client, which they pass along to derived objects, if applicable. The govc package contains the govc CLI. The code in this tree is not intended to be used as a library. Any functionality that govc contains that _could_ be used as a library function but isn't, _should_ live in a root level package. Other packages, such as "event", "guest", or "license", provide wrappers for the respective subsystems. They are typically not needed in normal workflows so are kept outside the object package.
Package skipper provides an HTTP routing library with flexible configuration as well as a runtime update of the routing rules. Skipper works as an HTTP reverse proxy that is responsible for mapping incoming requests to multiple HTTP backend services, based on routes that are selected by the request attributes. At the same time, both the requests and the responses can be augmented by a filter chain that is specifically defined for each route. Skipper can load and update the route definitions from multiple data sources without being restarted. It provides a default executable command with a few built-in filters, however, its primary use case is to be extended with custom filters, predicates or data sources. For futher information read 'Extending Skipper'. Skipper took the core design and inspiration from Vulcand: https://github.com/mailgun/vulcand. Skipper is 'go get' compatible. If needed, create a 'go workspace' first: Get the Skipper packages: Create a file with a route: Optionally, verify the syntax of the file: Start Skipper and make an HTTP request: The core of Skipper's request processing is implemented by a reverse proxy in the 'proxy' package. The proxy receives the incoming request, forwards it to the routing engine in order to receive the most specific matching route. When a route matches, the request is forwarded to all filters defined by it. The filters can modify the request or execute any kind of program logic. Once the request has been processed by all the filters, it is forwarded to the backend endpoint of the route. The response from the backend goes once again through all the filters in reverse order. Finally, it is mapped as the response of the original incoming request. Besides the default proxying mechanism, it is possible to define routes without a real network backend endpoint. One of these cases is called a 'shunt' backend, in which case one of the filters needs to handle the request providing its own response (e.g. the 'static' filter). Actually, filters themselves can instruct the request flow to shunt by calling the Serve(*http.Response) method of the filter context. Another case of a route without a network backend is the 'loopback'. A loopback route can be used to match a request, modified by filters, against the lookup tree with different conditions and then execute a different route. One example scenario can be to use a single route as an entry point to execute some calculation to get an A/B testing decision and then matching the updated request metadata for the actual destination route. This way the calculation can be executed for only those requests that don't contain information about a previously calculated decision. For further details, see the 'proxy' and 'filters' package documentation. Finding a request's route happens by matching the request attributes to the conditions in the route's definitions. Such definitions may have the following conditions: - method - path (optionally with wildcards) - path regular expressions - host regular expressions - headers - header regular expressions It is also possible to create custom predicates with any other matching criteria. The relation between the conditions in a route definition is 'and', meaning, that a request must fulfill each condition to match a route. For further details, see the 'routing' package documentation. Filters are applied in order of definition to the request and in reverse order to the response. They are used to modify request and response attributes, such as headers, or execute background tasks, like logging. Some filters may handle the requests without proxying them to service backends. Filters, depending on their implementation, may accept/require parameters, that are set specifically to the route. For further details, see the 'filters' package documentation. Each route has one of the following backends: HTTP endpoint, shunt or loopback. Backend endpoints can be any HTTP service. They are specified by their network address, including the protocol scheme, the domain name or the IP address, and optionally the port number: e.g. "https://www.example.org:4242". (The path and query are sent from the original request, or set by filters.) A shunt route means that Skipper handles the request alone and doesn't make requests to a backend service. In this case, it is the responsibility of one of the filters to generate the response. A loopback route executes the routing mechanism on current state of the request from the start, including the route lookup. This way it serves as a form of an internal redirect. Route definitions consist of the following: - request matching conditions (predicates) - filter chain (optional) - backend (either an HTTP endpoint or a shunt) The eskip package implements the in-memory and text representations of route definitions, including a parser. (Note to contributors: in order to stay compatible with 'go get', the generated part of the parser is stored in the repository. When changing the grammar, 'go generate' needs to be executed explicitly to update the parser.) For further details, see the 'eskip' package documentation Skipper's route definitions of Skipper are loaded from one or more data sources. It can receive incremental updates from those data sources at runtime. It provides three different data clients: - Innkeeper: the Innkeeper service implements a storage for large sets of Skipper routes, with an HTTP+JSON API, OAuth2 authentication and role management. See the 'innkeeper' package and https://github.com/zalando/innkeeper. - etcd: Skipper can load routes and receive updates from etcd clusters (https://github.com/coreos/etcd). See the 'etcd' package. - static file: package eskipfile implements a simple data client, which can load route definitions from a static file in eskip format. Currently, it loads the routes on startup. It doesn't support runtime updates. Skipper can use additional data sources, provided by extensions. Sources must implement the DataClient interface in the routing package. Skipper can be started with the default executable command 'skipper', or as a library built into an application. The easiest way to start Skipper as a library is to execute the 'Run' function of the current, root package. Each option accepted by the 'Run' function is wired in the default executable as well, as a command line flag. E.g. EtcdUrls becomes -etcd-urls as a comma separated list. For command line help, enter: An additional utility, eskip, can be used to verify, print, update and delete routes from/to files or etcd (Innkeeper on the roadmap). See the cmd/eskip command package, and/or enter in the command line: Skipper doesn't use dynamically loaded plugins, however, it can be used as a library, and it can be extended with custom predicates, filters and/or custom data sources. To create a custom predicate, one needs to implement the PredicateSpec interface in the routing package. Instances of the PredicateSpec are used internally by the routing package to create the actual Predicate objects as referenced in eskip routes, with concrete arguments. Example, randompredicate.go: In the above example, a custom predicate is created, that can be referenced in eskip definitions with the name 'Random': To create a custom filter we need to implement the Spec interface of the filters package. 'Spec' is the specification of a filter, and it is used to create concrete filter instances, while the raw route definitions are processed. Example, hellofilter.go: The above example creates a filter specification, and in the routes where they are included, the filter instances will set the 'X-Hello' header for each and every response. The name of the filter is 'hello', and in a route definition it is referenced as: The easiest way to create a custom Skipper variant is to implement the required filters (as in the example above) by importing the Skipper package, and starting it with the 'Run' command. Example, hello.go: A file containing the routes, routes.eskip: Start the custom router: The 'Run' function in the root Skipper package starts its own listener but it doesn't provide the best composability. The proxy package, however, provides a standard http.Handler, so it is possible to use it in a more complex solution as a building block for routing. Skipper provides detailed logging of failures, and access logs in Apache log format. Skipper also collects detailed performance metrics, and exposes them on a separate listener endpoint for pulling snapshots. For details, see the 'logging' and 'metrics' packages documentation. The router's performance depends on the environment and on the used filters. Under ideal circumstances, and without filters, the biggest time factor is the route lookup. Skipper is able to scale to thousands of routes with logarithmic performance degradation. However, this comes at the cost of increased memory consumption, due to storing the whole lookup tree in a single structure. Benchmarks for the tree lookup can be run by: In case more aggressive scale is needed, it is possible to setup Skipper in a cascade model, with multiple Skipper instances for specific route segments.
Package merkletree implements a Merkle Tree capable of storing arbitrary content. A Merkle Tree is a hash tree that provides an efficient way to verify the contents of a set data are present and untampered with. At its core, a Merkle Tree is a list of items representing the data that should be verified. Each of these items is inserted into a leaf node and a tree of hashes is constructed bottom up using a hash of the nodes left and right children's hashes. This means that the root node will effictively be a hash of all other nodes (hashes) in the tree. This property allows the tree to be reproduced and thus verified by on the hash of the root node of the tree. The benefit of the tree structure is verifying any single content entry in the tree will require only nlog2(n) steps in the worst case. Creating a new merkletree requires that the type that the tree will be constructed from implements the Content interface. A slice of the Content items should be created and then passed to the NewTree method. t represents the Merkle Tree and can be verified and manipulated with the API methods described below.
Package sops manages JSON, YAML and BINARY documents to be encrypted or decrypted. This package should not be used directly. Instead, Sops users should install the command line client via `go get -u go.mozilla.org/sops/v3/cmd/sops`, or use the decryption helper provided at `go.mozilla.org/sops/v3/decrypt`. We do not guarantee API stability for any package other than `go.mozilla.org/sops/v3/decrypt`. A Sops document is a Tree composed of a data branch with arbitrary key/value pairs and a metadata branch with encryption and integrity information. In JSON and YAML formats, the structure of the cleartext tree is preserved, keys are stored in cleartext and only values are encrypted. Keeping the values in cleartext provides better readability when storing Sops documents in version controls, and allows for merging competing changes on documents. This is a major difference between Sops and other encryption tools that store documents as encrypted blobs. In BINARY format, the cleartext data is treated as a single blob and the encrypted document is in JSON format with a single `data` key and a single encrypted value. Sops allows operators to encrypt their documents with multiple master keys. Each of the master key defined in the document is able to decrypt it, allowing users to share documents amongst themselves without sharing keys, or using a PGP key as a backup for KMS. In practice, this is achieved by generating a data key for each document that is used to encrypt all values, and encrypting the data with each master key defined. Being able to decrypt the data key gives access to the document. The integrity of each document is guaranteed by calculating a Message Authentication Code (MAC) that is stored encrypted by the data key. When decrypting a document, the MAC should be recalculated and compared with the MAC stored in the document to verify that no fraudulent changes have been applied. The MAC covers keys and values as well as their ordering.
Package skipper provides an HTTP routing library with flexible configuration as well as a runtime update of the routing rules. Skipper works as an HTTP reverse proxy that is responsible for mapping incoming requests to multiple HTTP backend services, based on routes that are selected by the request attributes. At the same time, both the requests and the responses can be augmented by a filter chain that is specifically defined for each route. Optionally, it can provide circuit breaker mechanism individually for each backend host. Skipper can load and update the route definitions from multiple data sources without being restarted. It provides a default executable command with a few built-in filters, however, its primary use case is to be extended with custom filters, predicates or data sources. For further information read 'Extending Skipper'. Skipper took the core design and inspiration from Vulcand: https://github.com/mailgun/vulcand. Skipper is 'go get' compatible. If needed, create a 'go workspace' first: Get the Skipper packages: Create a file with a route: Optionally, verify the syntax of the file: Start Skipper and make an HTTP request: The core of Skipper's request processing is implemented by a reverse proxy in the 'proxy' package. The proxy receives the incoming request, forwards it to the routing engine in order to receive the most specific matching route. When a route matches, the request is forwarded to all filters defined by it. The filters can modify the request or execute any kind of program logic. Once the request has been processed by all the filters, it is forwarded to the backend endpoint of the route. The response from the backend goes once again through all the filters in reverse order. Finally, it is mapped as the response of the original incoming request. Besides the default proxying mechanism, it is possible to define routes without a real network backend endpoint. One of these cases is called a 'shunt' backend, in which case one of the filters needs to handle the request providing its own response (e.g. the 'static' filter). Actually, filters themselves can instruct the request flow to shunt by calling the Serve(*http.Response) method of the filter context. Another case of a route without a network backend is the 'loopback'. A loopback route can be used to match a request, modified by filters, against the lookup tree with different conditions and then execute a different route. One example scenario can be to use a single route as an entry point to execute some calculation to get an A/B testing decision and then matching the updated request metadata for the actual destination route. This way the calculation can be executed for only those requests that don't contain information about a previously calculated decision. For further details, see the 'proxy' and 'filters' package documentation. Finding a request's route happens by matching the request attributes to the conditions in the route's definitions. Such definitions may have the following conditions: - method - path (optionally with wildcards) - path regular expressions - host regular expressions - headers - header regular expressions It is also possible to create custom predicates with any other matching criteria. The relation between the conditions in a route definition is 'and', meaning, that a request must fulfill each condition to match a route. For further details, see the 'routing' package documentation. Filters are applied in order of definition to the request and in reverse order to the response. They are used to modify request and response attributes, such as headers, or execute background tasks, like logging. Some filters may handle the requests without proxying them to service backends. Filters, depending on their implementation, may accept/require parameters, that are set specifically to the route. For further details, see the 'filters' package documentation. Each route has one of the following backends: HTTP endpoint, shunt or loopback. Backend endpoints can be any HTTP service. They are specified by their network address, including the protocol scheme, the domain name or the IP address, and optionally the port number: e.g. "https://www.example.org:4242". (The path and query are sent from the original request, or set by filters.) A shunt route means that Skipper handles the request alone and doesn't make requests to a backend service. In this case, it is the responsibility of one of the filters to generate the response. A loopback route executes the routing mechanism on current state of the request from the start, including the route lookup. This way it serves as a form of an internal redirect. Route definitions consist of the following: - request matching conditions (predicates) - filter chain (optional) - backend (either an HTTP endpoint or a shunt) The eskip package implements the in-memory and text representations of route definitions, including a parser. (Note to contributors: in order to stay compatible with 'go get', the generated part of the parser is stored in the repository. When changing the grammar, 'go generate' needs to be executed explicitly to update the parser.) For further details, see the 'eskip' package documentation Skipper has filter implementations of basic auth and OAuth2. It can be integrated with tokeninfo based OAuth2 providers. For details, see: https://godoc.org/github.com/zalando/skipper/filters/auth. Skipper's route definitions of Skipper are loaded from one or more data sources. It can receive incremental updates from those data sources at runtime. It provides three different data clients: - Kubernetes: Skipper can be used as part of a Kubernetes Ingress Controller implementation together with https://github.com/zalando-incubator/kube-ingress-aws-controller . In this scenario, Skipper uses the Kubernetes API's Ingress extensions as a source for routing. For a complete deployment example, see more details in: https://github.com/zalando-incubator/kubernetes-on-aws/ . - Innkeeper: the Innkeeper service implements a storage for large sets of Skipper routes, with an HTTP+JSON API, OAuth2 authentication and role management. See the 'innkeeper' package and https://github.com/zalando/innkeeper. - etcd: Skipper can load routes and receive updates from etcd clusters (https://github.com/coreos/etcd). See the 'etcd' package. - static file: package eskipfile implements a simple data client, which can load route definitions from a static file in eskip format. Currently, it loads the routes on startup. It doesn't support runtime updates. Skipper can use additional data sources, provided by extensions. Sources must implement the DataClient interface in the routing package. Skipper provides circuit breakers, configured either globally, based on backend hosts or based on individual routes. It supports two types of circuit breaker behavior: open on N consecutive failures, or open on N failures out of M requests. For details, see: https://godoc.org/github.com/zalando/skipper/circuit. Skipper can be started with the default executable command 'skipper', or as a library built into an application. The easiest way to start Skipper as a library is to execute the 'Run' function of the current, root package. Each option accepted by the 'Run' function is wired in the default executable as well, as a command line flag. E.g. EtcdUrls becomes -etcd-urls as a comma separated list. For command line help, enter: An additional utility, eskip, can be used to verify, print, update and delete routes from/to files or etcd (Innkeeper on the roadmap). See the cmd/eskip command package, and/or enter in the command line: Skipper doesn't use dynamically loaded plugins, however, it can be used as a library, and it can be extended with custom predicates, filters and/or custom data sources. To create a custom predicate, one needs to implement the PredicateSpec interface in the routing package. Instances of the PredicateSpec are used internally by the routing package to create the actual Predicate objects as referenced in eskip routes, with concrete arguments. Example, randompredicate.go: In the above example, a custom predicate is created, that can be referenced in eskip definitions with the name 'Random': To create a custom filter we need to implement the Spec interface of the filters package. 'Spec' is the specification of a filter, and it is used to create concrete filter instances, while the raw route definitions are processed. Example, hellofilter.go: The above example creates a filter specification, and in the routes where they are included, the filter instances will set the 'X-Hello' header for each and every response. The name of the filter is 'hello', and in a route definition it is referenced as: The easiest way to create a custom Skipper variant is to implement the required filters (as in the example above) by importing the Skipper package, and starting it with the 'Run' command. Example, hello.go: A file containing the routes, routes.eskip: Start the custom router: The 'Run' function in the root Skipper package starts its own listener but it doesn't provide the best composability. The proxy package, however, provides a standard http.Handler, so it is possible to use it in a more complex solution as a building block for routing. Skipper provides detailed logging of failures, and access logs in Apache log format. Skipper also collects detailed performance metrics, and exposes them on a separate listener endpoint for pulling snapshots. For details, see the 'logging' and 'metrics' packages documentation. The router's performance depends on the environment and on the used filters. Under ideal circumstances, and without filters, the biggest time factor is the route lookup. Skipper is able to scale to thousands of routes with logarithmic performance degradation. However, this comes at the cost of increased memory consumption, due to storing the whole lookup tree in a single structure. Benchmarks for the tree lookup can be run by: In case more aggressive scale is needed, it is possible to setup Skipper in a cascade model, with multiple Skipper instances for specific route segments.
Package joseki is a pure Go library for working with RDF, a powerful framework for representing informations as graphs. For more informations about RDF itself, please see https://www.w3.org/TR/rdf11-concepts Joseki provides the following features to work with RDF : * Structures to represent and manipulate the RDF model (URIs, Literals, Blank Nodes, Triples, etc). * RDF Graphs to store data, with several implentations provided. * A Low level API to query data stored in graphs. * A High level API to query data using the SPARQL 1.1 query language. * Query processing using modern techniques such as join ordering or optimized query execution plans. * Load RDF data stored in files in various formats (N-Triples, Turtle, etc) into any graph. * Serialize a RDF Graph into various formats. This package aims to work with RDF graphs, which are composed of RDF Triple {Subject Object Predicate}. Using joseki, you can represent an RDF Triple as followed : You can also store your RDF Triples in a RDF Graph, using various type of graphs. Here, we use a Tree Graph to store our triple : You can also query any triple from a RDF Graph, using a low level API or a SPARQL query. For more informations about specific features, see the documentation of each subpackage. Author : Thomas Minier
Package dirtree provides basic traversal, search, and string conversion functionality for a directory tree-like structure. The propose of dirtree is to provide a way to construct a tree, that can be traversed and printed, where each node is a simple container for its children. This is useful for displaying and navigating containers whose structure can be represented in a generalized way by this this package.
Package skipper provides an HTTP routing library with flexible configuration as well as a runtime update of the routing rules. Skipper works as an HTTP reverse proxy that is responsible for mapping incoming requests to multiple HTTP backend services, based on routes that are selected by the request attributes. At the same time, both the requests and the responses can be augmented by a filter chain that is specifically defined for each route. Skipper can load and update the route definitions from multiple data sources without being restarted. It provides a default executable command with a few built-in filters, however, its primary use case is to be extended with custom filters, predicates or data sources. For futher information read 'Extending Skipper'. Skipper took the core design and inspiration from Vulcand: https://github.com/mailgun/vulcand. Skipper is 'go get' compatible. If needed, create a 'go workspace' first: Get the Skipper packages: Create a file with a route: Optionally, verify the syntax of the file: Start Skipper and make an HTTP request: The core of Skipper's request processing is implemented by a reverse proxy in the 'proxy' package. The proxy receives the incoming request, forwards it to the routing engine in order to receive the most specific matching route. When a route matches, the request is forwarded to all filters defined by it. The filters can modify the request or execute any kind of program logic. Once the request has been processed by all the filters, it is forwarded to the backend endpoint of the route. The response from the backend goes once again through all the filters in reverse order. Finally, it is mapped as the response of the original incoming request. Besides the default proxying mechanism, it is possible to define routes without a real network backend endpoint. One of these cases is called a 'shunt' backend, in which case one of the filters needs to handle the request providing its own response (e.g. the 'static' filter). Actually, filters themselves can instruct the request flow to shunt by calling the Serve(*http.Response) method of the filter context. Another case of a route without a network backend is the 'loopback'. A loopback route can be used to match a request, modified by filters, against the lookup tree with different conditions and then execute a different route. One example scenario can be to use a single route as an entry point to execute some calculation to get an A/B testing decision and then matching the updated request metadata for the actual destination route. This way the calculation can be executed for only those requests that don't contain information about a previously calculated decision. For further details, see the 'proxy' and 'filters' package documentation. Finding a request's route happens by matching the request attributes to the conditions in the route's definitions. Such definitions may have the following conditions: - method - path (optionally with wildcards) - path regular expressions - host regular expressions - headers - header regular expressions It is also possible to create custom predicates with any other matching criteria. The relation between the conditions in a route definition is 'and', meaning, that a request must fulfill each condition to match a route. For further details, see the 'routing' package documentation. Filters are applied in order of definition to the request and in reverse order to the response. They are used to modify request and response attributes, such as headers, or execute background tasks, like logging. Some filters may handle the requests without proxying them to service backends. Filters, depending on their implementation, may accept/require parameters, that are set specifically to the route. For further details, see the 'filters' package documentation. Each route has one of the following backends: HTTP endpoint, shunt or loopback. Backend endpoints can be any HTTP service. They are specified by their network address, including the protocol scheme, the domain name or the IP address, and optionally the port number: e.g. "https://www.example.org:4242". (The path and query are sent from the original request, or set by filters.) A shunt route means that Skipper handles the request alone and doesn't make requests to a backend service. In this case, it is the responsibility of one of the filters to generate the response. A loopback route executes the routing mechanism on current state of the request from the start, including the route lookup. This way it serves as a form of an internal redirect. Route definitions consist of the following: - request matching conditions (predicates) - filter chain (optional) - backend (either an HTTP endpoint or a shunt) The eskip package implements the in-memory and text representations of route definitions, including a parser. (Note to contributors: in order to stay compatible with 'go get', the generated part of the parser is stored in the repository. When changing the grammar, 'go generate' needs to be executed explicitly to update the parser.) For further details, see the 'eskip' package documentation Skipper's route definitions of Skipper are loaded from one or more data sources. It can receive incremental updates from those data sources at runtime. It provides three different data clients: - Innkeeper: the Innkeeper service implements a storage for large sets of Skipper routes, with an HTTP+JSON API, OAuth2 authentication and role management. See the 'innkeeper' package and https://github.com/zalando/innkeeper. - etcd: Skipper can load routes and receive updates from etcd clusters (https://github.com/coreos/etcd). See the 'etcd' package. - static file: package eskipfile implements a simple data client, which can load route definitions from a static file in eskip format. Currently, it loads the routes on startup. It doesn't support runtime updates. Skipper can use additional data sources, provided by extensions. Sources must implement the DataClient interface in the routing package. Skipper can be started with the default executable command 'skipper', or as a library built into an application. The easiest way to start Skipper as a library is to execute the 'Run' function of the current, root package. Each option accepted by the 'Run' function is wired in the default executable as well, as a command line flag. E.g. EtcdUrls becomes -etcd-urls as a comma separated list. For command line help, enter: An additional utility, eskip, can be used to verify, print, update and delete routes from/to files or etcd (Innkeeper on the roadmap). See the cmd/eskip command package, and/or enter in the command line: Skipper doesn't use dynamically loaded plugins, however, it can be used as a library, and it can be extended with custom predicates, filters and/or custom data sources. To create a custom predicate, one needs to implement the PredicateSpec interface in the routing package. Instances of the PredicateSpec are used internally by the routing package to create the actual Predicate objects as referenced in eskip routes, with concrete arguments. Example, randompredicate.go: In the above example, a custom predicate is created, that can be referenced in eskip definitions with the name 'Random': To create a custom filter we need to implement the Spec interface of the filters package. 'Spec' is the specification of a filter, and it is used to create concrete filter instances, while the raw route definitions are processed. Example, hellofilter.go: The above example creates a filter specification, and in the routes where they are included, the filter instances will set the 'X-Hello' header for each and every response. The name of the filter is 'hello', and in a route definition it is referenced as: The easiest way to create a custom Skipper variant is to implement the required filters (as in the example above) by importing the Skipper package, and starting it with the 'Run' command. Example, hello.go: A file containing the routes, routes.eskip: Start the custom router: The 'Run' function in the root Skipper package starts its own listener but it doesn't provide the best composability. The proxy package, however, provides a standard http.Handler, so it is possible to use it in a more complex solution as a building block for routing. Skipper provides detailed logging of failures, and access logs in Apache log format. Skipper also collects detailed performance metrics, and exposes them on a separate listener endpoint for pulling snapshots. For details, see the 'logging' and 'metrics' packages documentation. The router's performance depends on the environment and on the used filters. Under ideal circumstances, and without filters, the biggest time factor is the route lookup. Skipper is able to scale to thousands of routes with logarithmic performance degradation. However, this comes at the cost of increased memory consumption, due to storing the whole lookup tree in a single structure. Benchmarks for the tree lookup can be run by: In case more aggressive scale is needed, it is possible to setup Skipper in a cascade model, with multiple Skipper instances for specific route segments.
Package toml is a TOML parser and manipulation library. This version supports the specification as described in https://github.com/toml-lang/toml/blob/master/versions/en/toml-v0.4.0.md Go-toml can marshal and unmarshal TOML documents from and to data structures. Go-toml can operate on a TOML document as a tree. Use one of the Load* functions to parse TOML data and obtain a Tree instance, then one of its methods to manipulate the tree. The package github.com/pelletier/go-toml/query implements a system similar to JSONPath to quickly retrieve elements of a TOML document using a single expression. See the package documentation for more information.
Package Ki provides the base element of GoKi Trees: Ki = Tree in Japanese, and "Key" in English -- powerful tree structures supporting scenegraphs, programs, parsing, etc. The Node struct that implements the Ki interface, which can be used as an embedded type (or a struct field) in other structs to provide core tree functionality, including: Parent / Child Tree structure -- each Node can ONLY have one parent. Node struct's can also have Node fields -- these are functionally like fixed auto-named children. Paths for locating Nodes within the hierarchy -- key for many use-cases, including ability to convert pointers to/from strings for IO and robust deep copy and move functions. The path separator is / for children and . for fields. Apply a function across nodes up or down a tree (natural "me first", breadth-first, depth-first) -- very flexible for tree walking. Generalized I/O -- can Save and Load the Tree as JSON, XML, etc -- including pointers which are saved using paths and automatically cached-out after loading -- enums also bidirectionally convertable to strings using enum type registry in kit package. Robust deep copy, clone, move of nodes, with automatic pointer updating. Signal sending and receiving between Nodes (simlar to Qt Signals / Slots) -- setup connections once and then emit signals to all receivers when relevant event happens. Robust state updating -- wrap updates in UpdateStart / End, and signals are blocked until the final end, at the highest affected level in the tree, at which point a single update signal is sent -- automatically gives the minimal update. Properties (as a string-keyed map) with property inheritance, including type-level properties via kit type registry.
This package is the root package of the govmomi library. The library is structured as follows: The minimal usable functionality is available through the vim25 package. It contains subpackages that contain generated types, managed objects, and all available methods. The vim25 package is entirely independent of the other packages in the govmomi tree -- it has no dependencies on its peers. The vim25 package itself contains a client structure that is passed around throughout the entire library. It abstracts a session and its immutable state. See the vim25 package for more information. The session package contains an abstraction for the session manager that allows a user to login and logout. It also provides access to the current session (i.e. to determine if the user is in fact logged in) The object package contains wrappers for a selection of managed objects. The constructors of these objects all take a *vim25.Client, which they pass along to derived objects, if applicable. The govc package contains the govc CLI. The code in this tree is not intended to be used as a library. Any functionality that govc contains that _could_ be used as a library function but isn't, _should_ live in a root level package. Other packages, such as "event", "guest", or "license", provide wrappers for the respective subsystems. They are typically not needed in normal workflows so are kept outside the object package.
Package skipper provides an HTTP routing library with flexible configuration as well as a runtime update of the routing rules. Skipper works as an HTTP reverse proxy that is responsible for mapping incoming requests to multiple HTTP backend services, based on routes that are selected by the request attributes. At the same time, both the requests and the responses can be augmented by a filter chain that is specifically defined for each route. Skipper can load and update the route definitions from multiple data sources without being restarted. It provides a default executable command with a few built-in filters, however, its primary use case is to be extended with custom filters, predicates or data sources. For futher information read 'Extending Skipper'. Skipper took the core design and inspiration from Vulcand: https://github.com/mailgun/vulcand. Skipper is 'go get' compatible. If needed, create a 'go workspace' first: Get the Skipper packages: Create a file with a route: Optionally, verify the syntax of the file: Start Skipper and make an HTTP request: The core of Skipper's request processing is implemented by a reverse proxy in the 'proxy' package. The proxy receives the incoming request, forwards it to the routing engine in order to receive the most specific matching route. When a route matches, the request is forwarded to all filters defined by it. The filters can modify the request or execute any kind of program logic. Once the request has been processed by all the filters, it is forwarded to the backend endpoint of the route. The response from the backend goes once again through all the filters in reverse order. Finally, it is mapped as the response of the original incoming request. Besides the default proxying mechanism, it is possible to define routes without a real network backend endpoint. One of these cases is called a 'shunt' backend, in which case one of the filters needs to handle the request providing its own response (e.g. the 'static' filter). Actually, filters themselves can instruct the request flow to shunt by calling the Serve(*http.Response) method of the filter context. Another case of a route without a network backend is the 'loopback'. A loopback route can be used to match a request, modified by filters, against the lookup tree with different conditions and then execute a different route. One example scenario can be to use a single route as an entry point to execute some calculation to get an A/B testing decision and then matching the updated request metadata for the actual destination route. This way the calculation can be executed for only those requests that don't contain information about a previously calculated decision. For further details, see the 'proxy' and 'filters' package documentation. Finding a request's route happens by matching the request attributes to the conditions in the route's definitions. Such definitions may have the following conditions: - method - path (optionally with wildcards) - path regular expressions - host regular expressions - headers - header regular expressions It is also possible to create custom predicates with any other matching criteria. The relation between the conditions in a route definition is 'and', meaning, that a request must fulfill each condition to match a route. For further details, see the 'routing' package documentation. Filters are applied in order of definition to the request and in reverse order to the response. They are used to modify request and response attributes, such as headers, or execute background tasks, like logging. Some filters may handle the requests without proxying them to service backends. Filters, depending on their implementation, may accept/require parameters, that are set specifically to the route. For further details, see the 'filters' package documentation. Each route has one of the following backends: HTTP endpoint, shunt or loopback. Backend endpoints can be any HTTP service. They are specified by their network address, including the protocol scheme, the domain name or the IP address, and optionally the port number: e.g. "https://www.example.org:4242". (The path and query are sent from the original request, or set by filters.) A shunt route means that Skipper handles the request alone and doesn't make requests to a backend service. In this case, it is the responsibility of one of the filters to generate the response. A loopback route executes the routing mechanism on current state of the request from the start, including the route lookup. This way it serves as a form of an internal redirect. Route definitions consist of the following: - request matching conditions (predicates) - filter chain (optional) - backend (either an HTTP endpoint or a shunt) The eskip package implements the in-memory and text representations of route definitions, including a parser. (Note to contributors: in order to stay compatible with 'go get', the generated part of the parser is stored in the repository. When changing the grammar, 'go generate' needs to be executed explicitly to update the parser.) For further details, see the 'eskip' package documentation Skipper's route definitions of Skipper are loaded from one or more data sources. It can receive incremental updates from those data sources at runtime. It provides three different data clients: - Innkeeper: the Innkeeper service implements a storage for large sets of Skipper routes, with an HTTP+JSON API, OAuth2 authentication and role management. See the 'innkeeper' package and https://github.com/zalando/innkeeper. - etcd: Skipper can load routes and receive updates from etcd clusters (https://github.com/coreos/etcd). See the 'etcd' package. - static file: package eskipfile implements a simple data client, which can load route definitions from a static file in eskip format. Currently, it loads the routes on startup. It doesn't support runtime updates. Skipper can use additional data sources, provided by extensions. Sources must implement the DataClient interface in the routing package. Skipper can be started with the default executable command 'skipper', or as a library built into an application. The easiest way to start Skipper as a library is to execute the 'Run' function of the current, root package. Each option accepted by the 'Run' function is wired in the default executable as well, as a command line flag. E.g. EtcdUrls becomes -etcd-urls as a comma separated list. For command line help, enter: An additional utility, eskip, can be used to verify, print, update and delete routes from/to files or etcd (Innkeeper on the roadmap). See the cmd/eskip command package, and/or enter in the command line: Skipper doesn't use dynamically loaded plugins, however, it can be used as a library, and it can be extended with custom predicates, filters and/or custom data sources. To create a custom predicate, one needs to implement the PredicateSpec interface in the routing package. Instances of the PredicateSpec are used internally by the routing package to create the actual Predicate objects as referenced in eskip routes, with concrete arguments. Example, randompredicate.go: In the above example, a custom predicate is created, that can be referenced in eskip definitions with the name 'Random': To create a custom filter we need to implement the Spec interface of the filters package. 'Spec' is the specification of a filter, and it is used to create concrete filter instances, while the raw route definitions are processed. Example, hellofilter.go: The above example creates a filter specification, and in the routes where they are included, the filter instances will set the 'X-Hello' header for each and every response. The name of the filter is 'hello', and in a route definition it is referenced as: The easiest way to create a custom Skipper variant is to implement the required filters (as in the example above) by importing the Skipper package, and starting it with the 'Run' command. Example, hello.go: A file containing the routes, routes.eskip: Start the custom router: The 'Run' function in the root Skipper package starts its own listener but it doesn't provide the best composability. The proxy package, however, provides a standard http.Handler, so it is possible to use it in a more complex solution as a building block for routing. Skipper provides detailed logging of failures, and access logs in Apache log format. Skipper also collects detailed performance metrics, and exposes them on a separate listener endpoint for pulling snapshots. For details, see the 'logging' and 'metrics' packages documentation. The router's performance depends on the environment and on the used filters. Under ideal circumstances, and without filters, the biggest time factor is the route lookup. Skipper is able to scale to thousands of routes with logarithmic performance degradation. However, this comes at the cost of increased memory consumption, due to storing the whole lookup tree in a single structure. Benchmarks for the tree lookup can be run by: In case more aggressive scale is needed, it is possible to setup Skipper in a cascade model, with multiple Skipper instances for specific route segments.
Package merkletree implements a Merkle Tree capable of storing arbitrary content. A Merkle Tree is a hash tree that provides an efficient way to verify the contents of a set data are present and untampered with. At its core, a Merkle Tree is a list of items representing the data that should be verified. Each of these items is inserted into a leaf node and a tree of hashes is constructed bottom up using a hash of the nodes left and right children's hashes. This means that the root node will effictively be a hash of all other nodes (hashes) in the tree. This property allows the tree to be reproduced and thus verified by on the hash of the root node of the tree. The benefit of the tree structure is verifying any single content entry in the tree will require only nlog2(n) steps in the worst case. Creating a new merkletree requires that the type that the tree will be constructed from implements the Content interface. A slice of the Content items should be created and then passed to the NewTree method. t represents the Merkle Tree and can be verified and manipulated with the API methods described below.
Package treemux provides an HTTP request multiplexer that routes using a tree structure. Wildcards ("*") are used to indicate flexible path elements in a resource URL, which can then be mapped to a single Handler (function). Example: With the following route: Paths like these will be handled by `handleCity`: Wildcard cannot be used for parts of an element (i.e. `/foo*/bar` will not work).
Package merkletree implements a Merkle Tree capable of storing arbitrary content. A Merkle Tree is a hash tree that provides an efficient way to verify the contents of a set data are present and untampered with. At its core, a Merkle Tree is a list of items representing the data that should be verified. Each of these items is inserted into a leaf node and a tree of hashes is constructed bottom up using a hash of the nodes left and right children's hashes. This means that the root node will effictively be a hash of all other nodes (hashes) in the tree. This property allows the tree to be reproduced and thus verified by on the hash of the root node of the tree. The benefit of the tree structure is verifying any single content entry in the tree will require only nlog2(n) steps in the worst case. Creating a new merkletree requires that the type that the tree will be constructed from implements the Content interface. A slice of the Content items should be created and then passed to the NewTree method. t represents the Merkle Tree and can be verified and manipulated with the API methods described below.
Copyright 2021 Philoj Johny * Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain A copy of the License at * http://www.apache.org/licenses/LICENSE-2.0 * Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Copyright 2021 Philoj Johny * Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain A copy of the License at * http://www.apache.org/licenses/LICENSE-2.0 * Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Copyright 2021 Philoj Johny * Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain A copy of the License at * http://www.apache.org/licenses/LICENSE-2.0 * Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Package treepalette implements an indexed color palette based on kd-tree structure.
Package btree implements in-memory B-Trees of arbitrary degree. btree implements an in-memory B-Tree for use as an ordered data structure. It is not meant for persistent storage solutions. It has a flatter structure than an equivalent red-black or other binary tree, which in some cases yields better memory usage and/or performance. See some discussion on the matter here: Note, though, that this project is in no way related to the C++ B-Tree implementation written about there. Within this tree, each node contains a slice of items and a (possibly nil) slice of children. For basic numeric values or raw structs, this can cause efficiency differences when compared to equivalent C++ template code that stores values in arrays within the node: These issues don't tend to matter, though, when working with strings or other heap-allocated structures, since C++-equivalent structures also must store pointers and also distribute their values across the heap. This implementation is designed to be a drop-in replacement to gollrb.LLRB trees, (http://github.com/petar/gollrb), an excellent and probably the most widely used ordered tree implementation in the Go ecosystem currently. Its functions, therefore, exactly mirror those of llrb.LLRB where possible. Unlike gollrb, though, we currently don't support storing multiple equivalent values.
Package btree implements in-memory B-Trees of arbitrary degree. btree implements an in-memory B-Tree for use as an ordered data structure. It is not meant for persistent storage solutions. It has a flatter structure than an equivalent red-black or other binary tree, which in some cases yields better memory usage and/or performance. See some discussion on the matter here: Note, though, that this project is in no way related to the C++ B-Tree implementation written about there. Within this tree, each node contains a slice of items and a (possibly nil) slice of children. For basic numeric values or raw structs, this can cause efficiency differences when compared to equivalent C++ template code that stores values in arrays within the node: These issues don't tend to matter, though, when working with strings or other heap-allocated structures, since C++-equivalent structures also must store pointers and also distribute their values across the heap. This implementation is designed to be a drop-in replacement to gollrb.LLRB trees, (http://github.com/petar/gollrb), an excellent and probably the most widely used ordered tree implementation in the Go ecosystem currently. Its functions, therefore, exactly mirror those of llrb.LLRB where possible. Unlike gollrb, though, we currently don't support storing multiple equivalent values.
Package btree implements in-memory B-Trees of arbitrary degree. btree implements an in-memory B-Tree for use as an ordered data structure. It is not meant for persistent storage solutions. It has a flatter structure than an equivalent red-black or other binary tree, which in some cases yields better memory usage and/or performance. See some discussion on the matter here: Note, though, that this project is in no way related to the C++ B-Tree implementation written about there. Within this tree, each node contains a slice of items and a (possibly nil) slice of children. For basic numeric values or raw structs, this can cause efficiency differences when compared to equivalent C++ template code that stores values in arrays within the node: These issues don't tend to matter, though, when working with strings or other heap-allocated structures, since C++-equivalent structures also must store pointers and also distribute their values across the heap. This implementation is designed to be a drop-in replacement to gollrb.LLRB trees, (http://github.com/petar/gollrb), an excellent and probably the most widely used ordered tree implementation in the Go ecosystem currently. Its functions, therefore, exactly mirror those of llrb.LLRB where possible. Unlike gollrb, though, we currently don't support storing multiple equivalent values.
This package is the root package of the govmomi library. The library is structured as follows: The minimal usable functionality is available through the vim25 package. It contains subpackages that contain generated types, managed objects, and all available methods. The vim25 package is entirely independent of the other packages in the govmomi tree -- it has no dependencies on its peers. The vim25 package itself contains a client structure that is passed around throughout the entire library. It abstracts a session and its immutable state. See the vim25 package for more information. The session package contains an abstraction for the session manager that allows a user to login and logout. It also provides access to the current session (i.e. to determine if the user is in fact logged in) The object package contains wrappers for a selection of managed objects. The constructors of these objects all take a *vim25.Client, which they pass along to derived objects, if applicable. The govc package contains the govc CLI. The code in this tree is not intended to be used as a library. Any functionality that govc contains that _could_ be used as a library function but isn't, _should_ live in a root level package. Other packages, such as "event", "guest", or "license", provide wrappers for the respective subsystems. They are typically not needed in normal workflows so are kept outside the object package.
Package toml is a TOML parser and manipulation library. This version supports the specification as described in https://github.com/toml-lang/toml/blob/master/versions/en/toml-v0.4.0.md Go-toml can marshal and unmarshal TOML documents from and to data structures. Go-toml can operate on a TOML document as a tree. Use one of the Load* functions to parse TOML data and obtain a Tree instance, then one of its methods to manipulate the tree. The package github.com/pelletier/go-toml/query implements a system similar to JSONPath to quickly retrieve elements of a TOML document using a single expression. See the package documentation for more information.
Package hamt is just a trivial front door to the hamt32 and hamt64 packages which really contain the HAMT implementations. Those HAMT implementations are identical in every way but the size of the computed hash, called Hashval. Those are either uint32 or uint64 values for hamt32 and hamt64 respectively. This package merely implements New(), New32() and New64() functions and the table option constants FixedTables, SparseTables, HybridTables, and the map TableOptionName (eg. hamt.TableOptionName[hamt.FixedTables] == "FixedTables"). There are several choices to make: Hashval hamt32 versus hamt64, FixedTables versus SparseTables versus HybridTables, and Functional versus Transient. Then there is a hidden choice; you can change the source code constant, NumIndexBits, to a value other than the current setting of 5. The New() function makes all the recommended choices for you. That is it uses the 64 bit hashVal (aka hamt64), functional behavior, and hybrid tables. Just use hamt64. I implemnted both before I really understood HAMT. I was conflating 32 bit hash values with 32 wide branching factor (that was just a feature of the other implmentations I was looking at). While 32bit FNV hash values are still pretty random I have seen plenty of collisions in my tests. I have never seen 64bit FNV hash values collide and in the current state of computing having 64bit CPUs as the norm. I recommend using hamt64. If you are on 32bit CPUs then maybe you could choose hamt32. Tables is the name I use to for the interior (aka non-leaf) nodes of the hamt data structure. Those tables being the indexed arrays from the Hash-indexed Array Mapped Tries (HAMT) name. This is the classic speed versus memory choice with a twist. The facts to consider are: The tree is indexed by essentially random values (the parts of the hash value of the key), so the tree is going to be "balanced" to a statistical likelihood. The inner branching nodes will be very densely populated, and the outer branching nodes will be very sparsely populated. FixedTables are fastest to access and modify, because it is a simple matter of getting and setting preallocated fixed sized arrays. However, they will be wasting most of their allocated space most of the time. SparseTables are slowest because we always have to calculate bit counts of bit arrays for get or set type operations. Further, inserting or removing values is a matter of manipulating slice values. On the other hand, given the way slice memory allocation works, they will usually waste less than half their allocated memory. According to tests, HybridTables setting behaves precisely the way we want it to behave. For a test set of data with 3,149,824 KeyVal pairs, he distribution of tables comes in two groups: tables with 25-32 entries and tables with 1-11 entries. There are no tables outside those two groupings. The 25-32 entry tables are all fixed tables and the 1-11 entry tables are all sparse tables. Of the sparse tables %40.1 have 1 or 2 entries, %85.4 have 4 or less and %99.7 have 8 or less entries. Given sparse tables start at capacity of 2 and capacity grows by doubling, the sparse tables are efficiently packed. The conclusion from this test data is that HybridTables setting is an excellent fit for memory efficiency. Benchmarks show that fixed table hamts are slower than hybrid table hamts for Put operations and comparable for Get & Del operations. I conclude that is due to the massive over use of memory in fixed tables. This conclusion is partly due to the fact that the Put operation differntial between fixed and hybrid table hamts is twice as large for functional versus transient hamt behavior. Clearly HybridTables table option for my HAMT data structure is the best choice. The bottom line is that writing to transient behavior in a multiple threads almost guarantees problems unless you implement a locking solution (and that can be hard to do in a performant manner). On the other hand, given that HamtFunctional behavior returns a new HamtFunctional data structure upon any modification, HamtFunctional data structures are inherently thread safe. On your third hand, the copy-on-write strategy of HamtFunctional is inherently slower than modify-in-place strategy of HamtTransient. How much slower? For large hamt data structures (~3 million key/value pairs) the transient Put operation takes ~1000ns, where the functional Put op takes ~3200ns. Which really isn't that bad because they are within the same order of magnitude and it is already fast. Using the transient behavior begs the question: why not use the Go builtin map? Of course, the reason is obvious if your key must be a slice; Go map keys can not be slices. The ability to implement a reasonably efficient functional behavior for HAMTs is the point of this library. The hamt transient speed is definitely is slower than Go's builtin map: 435 vs 130 ns/Get; 950 vs 235 ns/Put; 900 vs 175 ns/Del; 235 vs 23 ns/KeyVal iterate. The point of this library is to implement the functional map-like behavior, so that is what I assume you will use it for. The transient behavior is useful for faster single threaded bulk operations then transform it back to the functional behavior. Both hamt32 and hamt64 have a constant NumIndexBits which determines all the other constants defining the HAMT structures. For both hamt32 and hamt64, the NumIndexBits constant is set to 5. You can manually change the source code to set NumIndexBits to some uint other than 5. IndexBits is set to 5 because that is how other people do it. NumIndexBits determines the branching factor (IndexLimit) and the depth (DepthLimit) of the HAMT data structure. Given IndexBits=5 IndexLimit=32, and DepthLimit=6 for hamt32 and DepthLimit=12 for hamt64.
This package is the root package of the govmomi library. The library is structured as follows: The minimal usable functionality is available through the vim25 package. It contains subpackages that contain generated types, managed objects, and all available methods. The vim25 package is entirely independent of the other packages in the govmomi tree -- it has no dependencies on its peers. The vim25 package itself contains a client structure that is passed around throughout the entire library. It abstracts a session and its immutable state. See the vim25 package for more information. The session package contains an abstraction for the session manager that allows a user to login and logout. It also provides access to the current session (i.e. to determine if the user is in fact logged in) The object package contains wrappers for a selection of managed objects. The constructors of these objects all take a *vim25.Client, which they pass along to derived objects, if applicable. The govc package contains the govc CLI. The code in this tree is not intended to be used as a library. Any functionality that govc contains that _could_ be used as a library function but isn't, _should_ live in a root level package. Other packages, such as "event", "guest", or "license", provide wrappers for the respective subsystems. They are typically not needed in normal workflows so are kept outside the object package.
Package trie presents a simple, clean, black and white radix trie interface. For more information on what kind of data structure a radix trie is, please see http://en.wikipedia.org/wiki/Radix_tree. Two types of data structures are available. A black and white only tree (default) which merely records the existence of keys added to the data structure, and key-value black and white trie which stores an arbitrary value in the trie attached to the trie. Because the value is stored seperately from the existence of the key you can store nil values in the trie and be able to tell that apart from a key that does not exist. The data structures inside this package are NOT synchronized, you'll want to add a sync.Mutex or sync.RWMutex to your code if it needs to be thread safe. At this point in time I do consider the structures to be *mostly* safe to use concurrently without locking as long as you're willing to end up in a part of the trie that existed when you started making your call but not by the time the call has ended. For more read operations this is "OK" (please know the gaurantees required by your application) but it is absolutely not OK for write operations and you should absolutely synchronize those or risk fairly massive corruption. Example BW Trie usage
This package is the root package of the govmomi library. The library is structured as follows: The minimal usable functionality is available through the vim25 package. It contains subpackages that contain generated types, managed objects, and all available methods. The vim25 package is entirely independent of the other packages in the govmomi tree -- it has no dependencies on its peers. The vim25 package itself contains a client structure that is passed around throughout the entire library. It abstracts a session and its immutable state. See the vim25 package for more information. The session package contains an abstraction for the session manager that allows a user to login and logout. It also provides access to the current session (i.e. to determine if the user is in fact logged in) The object package contains wrappers for a selection of managed objects. The constructors of these objects all take a *vim25.Client, which they pass along to derived objects, if applicable. The govc package contains the govc CLI. The code in this tree is not intended to be used as a library. Any functionality that govc contains that _could_ be used as a library function but isn't, _should_ live in a root level package. Other packages, such as "event", "guest", or "license", provide wrappers for the respective subsystems. They are typically not needed in normal workflows so are kept outside the object package.