Package pgx is a PostgreSQL database driver. pgx provides lower level access to PostgreSQL than the standard database/sql It remains as similar to the database/sql interface as possible while providing better speed and access to PostgreSQL specific features. Import github.com/jack/pgx/stdlib to use pgx as a database/sql compatible driver. pgx implements Query and Scan in the familiar database/sql style. pgx also implements QueryRow in the same style as database/sql. Use Exec to execute a query that does not return a result set. Connection pool usage is explicit and configurable. In pgx, a connection can be created and managed directly, or a connection pool with a configurable maximum connections can be used. Also, the connection pool offers an after connect hook that allows every connection to be automatically setup before being made available in the connection pool. This is especially useful to ensure all connections have the same prepared statements available or to change any other connection settings. It delegates Query, QueryRow, Exec, and Begin functions to an automatically checked out and released connection so you can avoid manually acquiring and releasing connections when you do not need that level of control. pgx maps between all common base types directly between Go and PostgreSQL. In particular: pgx can map nulls in two ways. The first is Null* types that have a data field and a valid field. They work in a similar fashion to database/sql. The second is to use a pointer to a pointer. pgx maps between int16, int32, int64, float32, float64, and string Go slices and the equivalent PostgreSQL array type. Go slices of native types do not support nulls, so if a PostgreSQL array that contains a null is read into a native Go slice an error will occur. pgx includes an Hstore type and a NullHstore type. Hstore is simply a map[string]string and is preferred when the hstore contains no nulls. NullHstore follows the Null* pattern and supports null values. pgx includes built-in support to marshal and unmarshal between Go types and the PostgreSQL JSON and JSONB. pgx encodes from net.IPNet to and from inet and cidr PostgreSQL types. In addition, as a convenience pgx will encode from a net.IP; it will assume a /32 netmask for IPv4 and a /128 for IPv6. pgx includes support for the common data types like integers, floats, strings, dates, and times that have direct mappings between Go and SQL. Support can be added for additional types like point, hstore, numeric, etc. that do not have direct mappings in Go by the types implementing ScannerPgx and Encoder. Custom types can support text or binary formats. Binary format can provide a large performance increase. The natural place for deciding the format for a value would be in ScannerPgx as it is responsible for decoding the returned data. However, that is impossible as the query has already been sent by the time the ScannerPgx is invoked. The solution to this is the global DefaultTypeFormats. If a custom type prefers binary format it should register it there. Note that the type is referred to by name, not by OID. This is because custom PostgreSQL types like hstore will have different OIDs on different servers. When pgx establishes a connection it queries the pg_type table for all types. It then matches the names in DefaultTypeFormats with the returned OIDs and stores it in Conn.PgTypes. See example_custom_type_test.go for an example of a custom type for the PostgreSQL point type. pgx also includes support for custom types implementing the database/sql.Scanner and database/sql/driver.Valuer interfaces. []byte passed as arguments to Query, QueryRow, and Exec are passed unmodified to PostgreSQL. In like manner, a *[]byte passed to Scan will be filled with the raw bytes returned by PostgreSQL. This can be especially useful for reading varchar, text, json, and jsonb values directly into a []byte and avoiding the type conversion from string. Transactions are started by calling Begin or BeginIso. The BeginIso variant creates a transaction with a specified isolation level. Use CopyFrom to efficiently insert multiple rows at a time using the PostgreSQL copy protocol. CopyFrom accepts a CopyFromSource interface. If the data is already in a [][]interface{} use CopyFromRows to wrap it in a CopyFromSource interface. Or implement CopyFromSource to avoid buffering the entire data set in memory. CopyFrom can be faster than an insert with as few as 5 rows. pgx can listen to the PostgreSQL notification system with the WaitForNotification function. It takes a maximum time to wait for a notification. The pgx ConnConfig struct has a TLSConfig field. If this field is nil, then TLS will be disabled. If it is present, then it will be used to configure the TLS connection. This allows total configuration of the TLS connection. pgx defines a simple logger interface. Connections optionally accept a logger that satisfies this interface. The log15 package (http://gopkg.in/inconshreveable/log15.v2) satisfies this interface and it is simple to define adapters for other loggers. Set LogLevel to control logging verbosity.
Package blockchain implements Decred block handling and chain selection rules. The Decred block handling and chain selection rules are an integral, and quite likely the most important, part of Decred. At its core, Decred is a distributed consensus of which blocks are valid and which ones will comprise the main block chain (public ledger) that ultimately determines accepted transactions, so it is extremely important that fully validating nodes agree on all rules. At a high level, this package provides support for inserting new blocks into the block chain according to the aforementioned rules. It includes functionality such as rejecting duplicate blocks, ensuring blocks and transactions follow all rules, and best chain selection along with reorganization. Since this package does not deal with other Decred specifics such as network communication or wallets, it provides a notification system which gives the caller a high level of flexibility in how they want to react to certain events such as newly connected main chain blocks which might result in wallet updates. Before a block is allowed into the block chain, it must go through an intensive series of validation rules. The following list serves as a general outline of those rules to provide some intuition into what is going on under the hood, but is by no means exhaustive: This package supports headers-first semantics such that block data can be processed out of order so long as the associated header is already known. The headers themselves, however, must be processed in the correct order since headers that do not properly connect are rejected. In other words, orphan headers are not allowed. The processing code always maintains the best chain as the branch tip that has the most cumulative proof of work, so it is important to keep that in mind when considering errors returned from processing blocks. Notably, due to the ability to process blocks out of order, and the fact blocks can only be fully validated once all of their ancestors have the block data available, it is to be expected that no error is returned immediately for blocks that are valid enough to make it to the point they require the remaining ancestor block data to be fully validated even though they might ultimately end up failing validation. Similarly, because the data for a block becoming available makes any of its direct descendants that already have their data available eligible for validation, an error being returned does not necessarily mean the block being processed is the one that failed validation. Errors returned by this package have full support for the standard library errors.Is and errors.As methods and are either the raw errors provided by underlying calls or of type blockchain.RuleError, possibly wrapped in a blockchain.MultiError. This allows the caller to differentiate between unexpected errors, such as database errors, versus errors due to rule violations through errors.As. In addition, callers can programmatically determine the specific rule violation by making use of errors.Is with any of the wrapped error kinds.
Package disgord provides Go bindings for the documented Discord API, and allows for a stateful Client using the Session interface, with the option of a configurable caching system or bypass the built-in caching logic all together. Create a Disgord client to get access to the REST API and gateway functionality. In the following example, we listen for new messages and respond with "hello". Session interface: https://pkg.go.dev/github.com/andersfylling/disgord?tab=doc#Session You don't have to use a callback function, channels are supported too! Never close a channel without removing the handler from Disgord, as it will cause a panic. You can control the lifetime of a handler or injected channel by in injecting a controller: disgord.HandlerCtrl. Since you are the owner of the channel, disgord will never close it for you. Disgord handles sharding for you automatically; when starting the bot, when discord demands you to scale up your shards (during runtime), etc. It also gives you control over the shard setup in case you want to run multiple instances of Disgord (in these cases you must handle scaling yourself as Disgord can not). Sharding is done behind the scenes, so you do not need to worry about any settings. Disgord will simply ask Discord for the recommended amount of shards for your bot on startup. However, to set specific amount of shards you can use the `disgord.ShardConfig` to specify a range of valid shard IDs (starts from 0). starting a bot with exactly 5 shards Running multiple instances each with 1 shard (note each instance must use unique shard ids) Handle scaling options yourself You can inject your own cache implementation. By default a read only LFU implementation is used, this should be sufficient for the average user. But you can overwrite certain methods as well! Say you dislike the implementation for MESSAGE_CREATE events, you can embed the default cache and define your own logic: > Note: if you inject your own cache, remember that the cache is also responsible for initiating the objects. > See disgord.CacheNop Whenever you call a REST method from the Session interface; the cache is always checked first. Upon a cache hit, no REST request is executed and you get the data from the cache in return. However, if this is problematic for you or there exist a bug which gives you bad/outdated data, you can bypass it by using Disgord flags. In addition to disgord.IgnoreCache, as shown above, you can pass in other flags such as: disgord.SortByID, disgord.OrderAscending, etc. You can find these flags in the flag.go file. `disgord_diagnosews` will store all the incoming and outgoing JSON data as files in the directory "diagnose-report/packets". The file format is as follows: unix_clientType_direction_shardID_operationCode_sequenceNumber[_eventName].json
Package envconfig implements a configuration reader which reads each value from an environment variable. The basic idea is that you define a configuration struct, like this: Once you have that, you need to initialize the configuration: Then it's just a matter of setting the environment variables when calling your binary: Your conf struct must follow the following rules: By default, envconfig generates all possible keys based on the field chain according to a flexible naming scheme. The field chain is how you access your field in the configuration struct. For example: With that struct, you access the name field via the chain *Shard.Name* The default naming scheme takes that and transforms it into the following: It can handles more complicated cases, with multiple words in one field name. It needs to be in the correct case though, for example: With that struct, you access the name field via the chain *Cassandra.SSLCert* or *Cassandra.SslKey* The default naming scheme takes that and transforms it into the following: And, if that is not good enough for you, you always have the option to use a custom key: Now envconfig will only ever checks the environment variable _cassandraMyName_. There are three types of content for a single variable: Example of a valid slice value: The format for a struct is as follow: Example of a valid struct value: Example of a valid slice of struct values: For bytes slices, you generally don't want to type out a comma-separated list of byte values. For this use case, we support base64 encoded values. Here's an example: This will decode DATA to FOOBAR and put that into conf.Data. Sometimes you don't absolutely need a value. Here's how we tell envconfig a value is optional: Sometimes you want a field to be skipped entirely. Often times you have configuration keys which almost never changes, but you still want to be able to change them. In such cases, you might want to provide a default value. Here's to do this with envconfig: You can of course combine multiple options. The syntax is simple enough, separate each option with a comma. For example: This would give you the default timeout of 1 minute, and lookup the myTimeout environment variable. envconfig supports the following list of types: Notably, we don't (yet) support complex types simply because I had no use for it yet. When the standard types are not enough, you will want to use a custom unmarshaler for your types. You do this by implementing Unmarshaler on your type. Here's an example:
Package grpcreplay supports the capture and replay of gRPC calls. Its main goal is to improve testing. Once you capture the calls of a test that runs against a real service, you have an "automatic mock" that can be replayed against the same test, yielding a unit test that is fast and flake-free. To record a sequence of gRPC calls to a file, create a Recorder and pass its DialOptions to grpc.Dial: It is essential to close the Recorder when the interaction is finished. There is also a NewRecorderWriter function for capturing to an arbitrary io.Writer. To replay a captured file, create a Replayer and ask it for a (fake) connection. We don't actually have to dial a server. (Since we're reading the file and not writing it, we don't have to be as careful about the error returned from Close). A test might use random or time-sensitive values, for instance to create unique resources for isolation from other tests. The test therefore has initial values, such as the current time, or a random seed, that differ from run to run. You must record this initial state and re-establish it on replay. To record the initial state, serialize it into a []byte and pass it as the second argument to NewRecorder: On replay, get the bytes from Replayer.Initial: Recorders and replayers have support for running callbacks before messages are written to or read from the replay file. A Recorder has a BeforeFunc that can modify a request or response before it is written to the replay file. The actual RPCs sent to the service during recording remain unaltered; only what is saved in the replay file can be changed. A Replayer has a BeforeFunc that can modify a request before it is sent for matching. Example uses for these callbacks include customized logging, or scrubbing data before RPCs are written to the replay file. If requests are modified by the callbacks during recording, it is important to perform the same modifications to the requests when replaying, or RPC matching on replay will fail. A common way to analyze and modify the various messages is to use a type switch. A nondeterministic program may invoke RPCs in a different order each time it is run. The order in which RPCs are called during recording may differ from the order during replay. The replayer matches incoming to recorded requests by method name and request contents, so nondeterminism is only a concern for identical requests that result in different responses. A nondeterministic program whose behavior differs depending on the order of such RPCs probably has a race condition: since both the recorded sequence of RPCs and the sequence during replay are valid orderings, the program should behave the same under both. The same is not true of streaming RPCs. The replayer matches streams only by method name, since it has no other information at the time the stream is opened. Two streams with the same method name that are started concurrently may replay in the wrong order. Besides the differences in replay mentioned above, other differences may cause issues for some programs. We list them here. The Replayer delivers a response to an RPC immediately, without waiting for other incoming RPCs. This can violate causality. For example, in a Pub/Sub program where one goroutine publishes and another subscribes, during replay the Subscribe call may finish before the Publish call begins. For streaming RPCs, the Replayer delivers the result of Send and Recv calls in the order they were recorded. No attempt is made to match message contents. At present, this package does not record or replay stream headers and trailers, or the result of the CloseSend method.
Package pq is a pure Go Postgres driver for the database/sql package. In most cases clients will use the database/sql package instead of using this package directly. For example: You can also connect to a database using a URL. For example: Similarly to libpq, when establishing a connection using pq you are expected to supply a connection string containing zero or more parameters. A subset of the connection parameters supported by libpq are also supported by pq. Additionally, pq also lets you specify run-time parameters (such as search_path or work_mem) directly in the connection string. This is different from libpq, which does not allow run-time parameters in the connection string, instead requiring you to supply them in the options parameter. For compatibility with libpq, the following special connection parameters are supported: Valid values for sslmode are: See http://www.postgresql.org/docs/current/static/libpq-connect.html#LIBPQ-CONNSTRING for more information about connection string parameters. Use single quotes for values that contain whitespace: A backslash will escape the next character in values: Note that the connection parameter client_encoding (which sets the text encoding for the connection) may be set but must be "UTF8", matching with the same rules as Postgres. It is an error to provide any other value. In addition to the parameters listed above, any run-time parameter that can be set at backend start time can be set in the connection string. For more information, see http://www.postgresql.org/docs/current/static/runtime-config.html. Most environment variables as specified at http://www.postgresql.org/docs/current/static/libpq-envars.html supported by libpq are also supported by pq. If any of the environment variables not supported by pq are set, pq will panic during connection establishment. Environment variables have a lower precedence than explicitly provided connection parameters. The pgpass mechanism as described in http://www.postgresql.org/docs/current/static/libpq-pgpass.html is supported, but on Windows PGPASSFILE must be specified explicitly. database/sql does not dictate any specific format for parameter markers in query strings, and pq uses the Postgres-native ordinal markers, as shown above. The same marker can be reused for the same parameter: pq does not support the LastInsertId() method of the Result type in database/sql. To return the identifier of an INSERT (or UPDATE or DELETE), use the Postgres RETURNING clause with a standard Query or QueryRow call: For more details on RETURNING, see the Postgres documentation: For additional instructions on querying see the documentation for the database/sql package. Parameters pass through driver.DefaultParameterConverter before they are handled by this package. When the binary_parameters connection option is enabled, []byte values are sent directly to the backend as data in binary format. This package returns the following types for values from the PostgreSQL backend: All other types are returned directly from the backend as []byte values in text format. pq may return errors of type *pq.Error which can be interrogated for error details: See the pq.Error type for details. You can perform bulk imports by preparing a statement returned by pq.CopyIn (or pq.CopyInSchema) in an explicit transaction (sql.Tx). The returned statement handle can then be repeatedly "executed" to copy data into the target table. After all data has been processed you should call Exec() once with no arguments to flush all buffered data. Any call to Exec() might return an error which should be handled appropriately, but because of the internal buffering an error returned by Exec() might not be related to the data passed in the call that failed. CopyIn uses COPY FROM internally. It is not possible to COPY outside of an explicit transaction in pq. Usage example: PostgreSQL supports a simple publish/subscribe model over database connections. See http://www.postgresql.org/docs/current/static/sql-notify.html for more information about the general mechanism. To start listening for notifications, you first have to open a new connection to the database by calling NewListener. This connection can not be used for anything other than LISTEN / NOTIFY. Calling Listen will open a "notification channel"; once a notification channel is open, a notification generated on that channel will effect a send on the Listener.Notify channel. A notification channel will remain open until Unlisten is called, though connection loss might result in some notifications being lost. To solve this problem, Listener sends a nil pointer over the Notify channel any time the connection is re-established following a connection loss. The application can get information about the state of the underlying connection by setting an event callback in the call to NewListener. A single Listener can safely be used from concurrent goroutines, which means that there is often no need to create more than one Listener in your application. However, a Listener is always connected to a single database, so you will need to create a new Listener instance for every database you want to receive notifications in. The channel name in both Listen and Unlisten is case sensitive, and can contain any characters legal in an identifier (see http://www.postgresql.org/docs/current/static/sql-syntax-lexical.html#SQL-SYNTAX-IDENTIFIERS for more information). Note that the channel name will be truncated to 63 bytes by the PostgreSQL server. You can find a complete, working example of Listener usage at https://godoc.org/gitee.com/opengauss/openGauss-connector-go-pq/example/listen. If you need support for Kerberos authentication, add the following to your main package: This package is in a separate module so that users who don't need Kerberos don't have to download unnecessary dependencies. When imported, additional connection string parameters are supported:
Package validator implements value validations for structs and individual fields based on tags. It can also handle Cross-Field and Cross-Struct validation for nested structs and has the ability to dive into arrays and maps of any type. see more examples https://github.com/go-playground/validator/tree/v9/_examples Doing things this way is actually the way the standard library does, see the file.Open method here: The authors return type "error" to avoid the issue discussed in the following, where err is always != nil: Validator only InvalidValidationError for bad validation input, nil or ValidationErrors as type error; so, in your code all you need to do is check if the error returned is not nil, and if it's not check if error is InvalidValidationError ( if necessary, most of the time it isn't ) type cast it to type ValidationErrors like so err.(validator.ValidationErrors). Custom Validation functions can be added. Example: Cross-Field Validation can be done via the following tags: If, however, some custom cross-field validation is required, it can be done using a custom validation. Why not just have cross-fields validation tags (i.e. only eqcsfield and not eqfield)? The reason is efficiency. If you want to check a field within the same struct "eqfield" only has to find the field on the same struct (1 level). But, if we used "eqcsfield" it could be multiple levels down. Example: Multiple validators on a field will process in the order defined. Example: Bad Validator definitions are not handled by the library. Example: Baked In Cross-Field validation only compares fields on the same struct. If Cross-Field + Cross-Struct validation is needed you should implement your own custom validator. Comma (",") is the default separator of validation tags. If you wish to have a comma included within the parameter (i.e. excludesall=,) you will need to use the UTF-8 hex representation 0x2C, which is replaced in the code as a comma, so the above will become excludesall=0x2C. Pipe ("|") is the 'or' validation tags deparator. If you wish to have a pipe included within the parameter i.e. excludesall=| you will need to use the UTF-8 hex representation 0x7C, which is replaced in the code as a pipe, so the above will become excludesall=0x7C Here is a list of the current built in validators: Tells the validation to skip this struct field; this is particularly handy in ignoring embedded structs from being validated. (Usage: -) This is the 'or' operator allowing multiple validators to be used and accepted. (Usage: rbg|rgba) <-- this would allow either rgb or rgba colors to be accepted. This can also be combined with 'and' for example ( Usage: omitempty,rgb|rgba) When a field that is a nested struct is encountered, and contains this flag any validation on the nested struct will be run, but none of the nested struct fields will be validated. This is useful if inside of your program you know the struct will be valid, but need to verify it has been assigned. NOTE: only "required" and "omitempty" can be used on a struct itself. Same as structonly tag except that any struct level validations will not run. Allows conditional validation, for example if a field is not set with a value (Determined by the "required" validator) then other validation such as min or max won't run, but if a value is set validation will run. This tells the validator to dive into a slice, array or map and validate that level of the slice, array or map with the validation tags that follow. Multidimensional nesting is also supported, each level you wish to dive will require another dive tag. dive has some sub-tags, 'keys' & 'endkeys', please see the Keys & EndKeys section just below. Example #1 Example #2 Keys & EndKeys These are to be used together directly after the dive tag and tells the validator that anything between 'keys' and 'endkeys' applies to the keys of a map and not the values; think of it like the 'dive' tag, but for map keys instead of values. Multidimensional nesting is also supported, each level you wish to validate will require another 'keys' and 'endkeys' tag. These tags are only valid for maps. Example #1 Example #2 This validates that the value is not the data types default zero value. For numbers ensures value is not zero. For strings ensures value is not "". For slices, maps, pointers, interfaces, channels and functions ensures the value is not nil. The field under validation must be present and not empty only if any of the other specified fields are present. For strings ensures value is not "". For slices, maps, pointers, interfaces, channels and functions ensures the value is not nil. Examples: The field under validation must be present and not empty only if all of the other specified fields are present. For strings ensures value is not "". For slices, maps, pointers, interfaces, channels and functions ensures the value is not nil. Example: The field under validation must be present and not empty only when any of the other specified fields are not present. For strings ensures value is not "". For slices, maps, pointers, interfaces, channels and functions ensures the value is not nil. Examples: The field under validation must be present and not empty only when all of the other specified fields are not present. For strings ensures value is not "". For slices, maps, pointers, interfaces, channels and functions ensures the value is not nil. Example: This validates that the value is the default value and is almost the opposite of required. For numbers, length will ensure that the value is equal to the parameter given. For strings, it checks that the string length is exactly that number of characters. For slices, arrays, and maps, validates the number of items. For numbers, max will ensure that the value is less than or equal to the parameter given. For strings, it checks that the string length is at most that number of characters. For slices, arrays, and maps, validates the number of items. For numbers, min will ensure that the value is greater or equal to the parameter given. For strings, it checks that the string length is at least that number of characters. For slices, arrays, and maps, validates the number of items. For strings & numbers, eq will ensure that the value is equal to the parameter given. For slices, arrays, and maps, validates the number of items. For strings & numbers, ne will ensure that the value is not equal to the parameter given. For slices, arrays, and maps, validates the number of items. For strings, ints, and uints, oneof will ensure that the value is one of the values in the parameter. The parameter should be a list of values separated by whitespace. Values may be strings or numbers. For numbers, this will ensure that the value is greater than the parameter given. For strings, it checks that the string length is greater than that number of characters. For slices, arrays and maps it validates the number of items. Example #1 Example #2 (time.Time) For time.Time ensures the time value is greater than time.Now.UTC(). Same as 'min' above. Kept both to make terminology with 'len' easier. Example #1 Example #2 (time.Time) For time.Time ensures the time value is greater than or equal to time.Now.UTC(). For numbers, this will ensure that the value is less than the parameter given. For strings, it checks that the string length is less than that number of characters. For slices, arrays, and maps it validates the number of items. Example #1 Example #2 (time.Time) For time.Time ensures the time value is less than time.Now.UTC(). Same as 'max' above. Kept both to make terminology with 'len' easier. Example #1 Example #2 (time.Time) For time.Time ensures the time value is less than or equal to time.Now.UTC(). This will validate the field value against another fields value either within a struct or passed in field. Example #1: Example #2: Field Equals Another Field (relative) This does the same as eqfield except that it validates the field provided relative to the top level struct. This will validate the field value against another fields value either within a struct or passed in field. Examples: Field Does Not Equal Another Field (relative) This does the same as nefield except that it validates the field provided relative to the top level struct. Only valid for Numbers and time.Time types, this will validate the field value against another fields value either within a struct or passed in field. usage examples are for validation of a Start and End date: Example #1: Example #2: This does the same as gtfield except that it validates the field provided relative to the top level struct. Only valid for Numbers and time.Time types, this will validate the field value against another fields value either within a struct or passed in field. usage examples are for validation of a Start and End date: Example #1: Example #2: This does the same as gtefield except that it validates the field provided relative to the top level struct. Only valid for Numbers and time.Time types, this will validate the field value against another fields value either within a struct or passed in field. usage examples are for validation of a Start and End date: Example #1: Example #2: This does the same as ltfield except that it validates the field provided relative to the top level struct. Only valid for Numbers and time.Time types, this will validate the field value against another fields value either within a struct or passed in field. usage examples are for validation of a Start and End date: Example #1: Example #2: This does the same as ltefield except that it validates the field provided relative to the top level struct. This does the same as contains except for struct fields. It should only be used with string types. See the behavior of reflect.Value.String() for behavior on other types. This does the same as excludes except for struct fields. It should only be used with string types. See the behavior of reflect.Value.String() for behavior on other types. For arrays & slices, unique will ensure that there are no duplicates. For maps, unique will ensure that there are no duplicate values. For slices of struct, unique will ensure that there are no duplicate values in a field of the struct specified via a parameter. This validates that a string value contains ASCII alpha characters only This validates that a string value contains ASCII alphanumeric characters only This validates that a string value contains unicode alpha characters only This validates that a string value contains unicode alphanumeric characters only This validates that a string value contains a basic numeric value. basic excludes exponents etc... for integers or float it returns true. This validates that a string value contains a valid hexadecimal. This validates that a string value contains a valid hex color including hashtag (#) This validates that a string value contains a valid rgb color This validates that a string value contains a valid rgba color This validates that a string value contains a valid hsl color This validates that a string value contains a valid hsla color This validates that a string value contains a valid email This may not conform to all possibilities of any rfc standard, but neither does any email provider accept all possibilities. This validates that a string value contains a valid file path and that the file exists on the machine. This is done using os.Stat, which is a platform independent function. This validates that a string value contains a valid url This will accept any url the golang request uri accepts but must contain a schema for example http:// or rtmp:// This validates that a string value contains a valid uri This will accept any uri the golang request uri accepts This validataes that a string value contains a valid URN according to the RFC 2141 spec. This validates that a string value contains a valid base64 value. Although an empty string is valid base64 this will report an empty string as an error, if you wish to accept an empty string as valid you can use this with the omitempty tag. This validates that a string value contains a valid base64 URL safe value according the the RFC4648 spec. Although an empty string is a valid base64 URL safe value, this will report an empty string as an error, if you wish to accept an empty string as valid you can use this with the omitempty tag. This validates that a string value contains a valid bitcoin address. The format of the string is checked to ensure it matches one of the three formats P2PKH, P2SH and performs checksum validation. Bitcoin Bech32 Address (segwit) This validates that a string value contains a valid bitcoin Bech32 address as defined by bip-0173 (https://github.com/bitcoin/bips/blob/master/bip-0173.mediawiki) Special thanks to Pieter Wuille for providng reference implementations. This validates that a string value contains a valid ethereum address. The format of the string is checked to ensure it matches the standard Ethereum address format Full validation is blocked by https://github.com/golang/crypto/pull/28 This validates that a string value contains the substring value. This validates that a string value contains any Unicode code points in the substring value. This validates that a string value contains the supplied rune value. This validates that a string value does not contain the substring value. This validates that a string value does not contain any Unicode code points in the substring value. This validates that a string value does not contain the supplied rune value. This validates that a string value starts with the supplied string value This validates that a string value ends with the supplied string value This validates that a string value contains a valid isbn10 or isbn13 value. This validates that a string value contains a valid isbn10 value. This validates that a string value contains a valid isbn13 value. This validates that a string value contains a valid UUID. Uppercase UUID values will not pass - use `uuid_rfc4122` instead. This validates that a string value contains a valid version 3 UUID. Uppercase UUID values will not pass - use `uuid3_rfc4122` instead. This validates that a string value contains a valid version 4 UUID. Uppercase UUID values will not pass - use `uuid4_rfc4122` instead. This validates that a string value contains a valid version 5 UUID. Uppercase UUID values will not pass - use `uuid5_rfc4122` instead. This validates that a string value contains only ASCII characters. NOTE: if the string is blank, this validates as true. This validates that a string value contains only printable ASCII characters. NOTE: if the string is blank, this validates as true. This validates that a string value contains one or more multibyte characters. NOTE: if the string is blank, this validates as true. This validates that a string value contains a valid DataURI. NOTE: this will also validate that the data portion is valid base64 This validates that a string value contains a valid latitude. This validates that a string value contains a valid longitude. This validates that a string value contains a valid U.S. Social Security Number. This validates that a string value contains a valid IP Address. This validates that a string value contains a valid v4 IP Address. This validates that a string value contains a valid v6 IP Address. This validates that a string value contains a valid CIDR Address. This validates that a string value contains a valid v4 CIDR Address. This validates that a string value contains a valid v6 CIDR Address. This validates that a string value contains a valid resolvable TCP Address. This validates that a string value contains a valid resolvable v4 TCP Address. This validates that a string value contains a valid resolvable v6 TCP Address. This validates that a string value contains a valid resolvable UDP Address. This validates that a string value contains a valid resolvable v4 UDP Address. This validates that a string value contains a valid resolvable v6 UDP Address. This validates that a string value contains a valid resolvable IP Address. This validates that a string value contains a valid resolvable v4 IP Address. This validates that a string value contains a valid resolvable v6 IP Address. This validates that a string value contains a valid Unix Address. This validates that a string value contains a valid MAC Address. Note: See Go's ParseMAC for accepted formats and types: This validates that a string value is a valid Hostname according to RFC 952 https://tools.ietf.org/html/rfc952 This validates that a string value is a valid Hostname according to RFC 1123 https://tools.ietf.org/html/rfc1123 Full Qualified Domain Name (FQDN) This validates that a string value contains a valid FQDN. This validates that a string value appears to be an HTML element tag including those described at https://developer.mozilla.org/en-US/docs/Web/HTML/Element This validates that a string value is a proper character reference in decimal or hexadecimal format This validates that a string value is percent-encoded (URL encoded) according to https://tools.ietf.org/html/rfc3986#section-2.1 This validates that a string value contains a valid directory and that it exists on the machine. This is done using os.Stat, which is a platform independent function. NOTE: When returning an error, the tag returned in "FieldError" will be the alias tag unless the dive tag is part of the alias. Everything after the dive tag is not reported as the alias tag. Also, the "ActualTag" in the before case will be the actual tag within the alias that failed. Here is a list of the current built in alias tags: Validator notes: A collection of validation rules that are frequently needed but are more complex than the ones found in the baked in validators. A non standard validator must be registered manually like you would with your own custom validation functions. Example of registration and use: Here is a list of the current non standard validators: This package panics when bad input is provided, this is by design, bad code like that should not make it to production.
Package aw is a "plug-and-play" workflow development library/framework for Alfred 3 & 4 (https://www.alfredapp.com/). It requires Go 1.13 or later. It provides everything you need to create a polished and blazing-fast Alfred frontend for your project. As of AwGo 0.26, all applicable features of Alfred 4.1 are supported. The main features are: AwGo is an opinionated framework that expects to be used in a certain way in order to eliminate boilerplate. It *will* panic if not run in a valid, minimally Alfred-like environment. At a minimum the following environment variables should be set to meaningful values: NOTE: AwGo is currently in development. The API *will* change and should not be considered stable until v1.0. Until then, be sure to pin a version using go modules or similar. Be sure to also check out the _examples/ subdirectory, which contains some simple, but complete, workflows that demonstrate the features of AwGo and useful workflow idioms. Typically, you'd call your program's main entry point via Workflow.Run(). This way, the library will rescue any panic, log the stack trace and show an error message to the user in Alfred. In the Script box (Language = "/bin/bash"): To generate results for Alfred to show in a Script Filter, use the feedback API of Workflow: You can set workflow variables (via feedback) with Workflow.Var, Item.Var and Modifier.Var. See Workflow.SendFeedback for more documentation. Alfred requires a different JSON format if you wish to set workflow variables. Use the ArgVars (named for its equivalent element in Alfred) struct to generate output from Run Script actions. Be sure to set TextErrors to true to prevent Workflow from generating Alfred JSON if it catches a panic: See ArgVars for more information. New() creates a *Workflow using the default values and workflow settings read from environment variables set by Alfred. You can change defaults by passing one or more Options to New(). If you do not want to use Alfred's environment variables, or they aren't set (i.e. you're not running the code in Alfred), use NewFromEnv() with a custom Env implementation. A Workflow can be re-configured later using its Configure() method. See the documentation for Option for more information on configuring a Workflow. AwGo can check for and install new versions of your workflow. Subpackage update provides an implementation of the Updater interface and sources to load updates from GitHub or Gitea releases, or from the URL of an Alfred `metadata.json` file. See subpackage update and _examples/update. AwGo can filter Script Filter feedback using a Sublime Text-like fuzzy matching algorithm. Workflow.Filter() sorts feedback Items against the provided query, removing those that do not match. See _examples/fuzzy for a basic demonstration, and _examples/bookmarks for a demonstration of implementing fuzzy.Sortable on your own structs and customising the fuzzy sort settings. Fuzzy matching is done by package https://godoc.org/go.deanishe.net/fuzzy AwGo automatically configures the default log package to write to STDERR (Alfred's debugger) and a log file in the workflow's cache directory. The log file is necessary because background processes aren't connected to Alfred, so their output is only visible in the log. It is rotated when it exceeds 1 MiB in size. One previous log is kept. AwGo detects when Alfred's debugger is open (Workflow.Debug() returns true) and in this case prepends filename:linenumber: to log messages. The Config struct (which is included in Workflow as Workflow.Config) provides an interface to the workflow's settings from the Workflow Environment Variables panel (see https://www.alfredapp.com/help/workflows/advanced/variables/#environment). Alfred exports these settings as environment variables, and you can read them ad-hoc with the Config.Get*() methods, and save values back to Alfred/info.plist with Config.Set(). Using Config.To() and Config.From(), you can "bind" your own structs to the settings in Alfred: See the documentation for Config.To and Config.From for more information, and _examples/settings for a demo workflow based on the API. The Alfred struct provides methods for the rest of Alfred's AppleScript API. Amongst other things, you can use it to tell Alfred to open, to search for a query, to browse/action files & directories, or to run External Triggers. See documentation of the Alfred struct for more information. AwGo provides a basic, but useful, API for loading and saving data. In addition to reading/writing bytes and marshalling/unmarshalling to/from JSON, the API can auto-refresh expired cache data. See Cache and Session for the API documentation. Workflow has three caches tied to different directories: These all share (almost) the same API. The difference is in when the data go away. Data saved with Session are deleted after the user closes Alfred or starts using a different workflow. The Cache directory is in a system cache directory, so may be deleted by the system or "system maintenance" tools. The Data directory lives with Alfred's application data and would not normally be deleted. Subpackage util provides several functions for running script files and snippets of AppleScript/JavaScript code. See util for documentation and examples. AwGo offers a simple API to start/stop background processes via Workflow's RunInBackground(), IsRunning() and Kill() methods. This is useful for running checks for updates and other jobs that hit the network or take a significant amount of time to complete, allowing you to keep your Script Filters extremely responsive. See _examples/update and _examples/workflows for demonstrations of this API.
Package binding deserializes data from HTTP requests into a struct ready for your application to use (without reflection). It also facilitates data validation and error handling.
Package graphql-go-tools is library to create GraphQL services using the go programming language. GraphQL is a query language for APIs and a runtime for fulfilling those queries with your existing data. GraphQL provides a complete and understandable description of the data in your API, gives clients the power to ask for exactly what they need and nothing more, makes it easier to evolve APIs over time, and enables powerful developer tools. Source: https://graphql.org This library is intended to be a set of low level building blocks to write high performance and secure GraphQL applications. Use cases could range from writing layer seven GraphQL proxies, firewalls, caches etc.. You would usually not use this library to write a GraphQL server yourself but to build tools for the GraphQL ecosystem. To achieve this goal the library has zero dependencies at its core functionality. It has a full implementation of the GraphQL AST and supports lexing, parsing, validation, normalization, introspection, query planning as well as query execution etc. With the execution package it's possible to write a fully functional GraphQL server that is capable to mediate between various protocols and formats. In it's current state you can use the following DataSources to resolve fields: - Static data (embed static data into a schema to extend a field in a simple way) - HTTP JSON APIs (combine multiple Restful APIs into one single GraphQL Endpoint, nesting is possible) - GraphQL APIs (you can combine multiple GraphQL APIs into one single GraphQL Endpoint, nesting is possible) - Webassembly/WASM Lambdas (e.g. resolve a field using a Rust lambda) If you're looking for a ready to use solution that has all this functionality packaged as a Gateway have a look at: https://wundergraph.com Created by Jens Neuse
Package gcs provides an API for building and using a Golomb-coded set filter. A Golomb-Coded Set (GCS) is a space-efficient probabilistic data structure that is used to test set membership with a tunable false positive rate while simultaneously preventing false negatives. In other words, items that are in the set will always match, but items that are not in the set will also sometimes match with the chosen false positive rate. This package currently implements two different versions for backwards compatibility. Version 1 is deprecated and therefore should no longer be used. Version 2 is the GCS variation that follows the specification details in DCP0005: https://github.com/decred/dcps/blob/master/dcp-0005/dcp-0005.mediawiki#golomb-coded-sets. Version 2 sets do not permit empty items (data of zero length) to be added and are parameterized by the following: * A parameter `B` that defines the remainder code bit size * A parameter `M` that defines the false positive rate as `1/M` * A key for the SipHash-2-4 function * The items to include in the set The errors returned by this package are of type gcs.Error. This allows the caller to programmatically determine the specific error by examining the ErrorKind field of the type asserted gcs.Error while still providing rich error messages with contextual information. See ErrorKind in the package documentation for a full list. GCS is used as a mechanism for storing, transmitting, and committing to per-block filters. Consensus-validating full nodes commit to a single filter for every block and serve the filter to SPV clients that match against the filter locally to determine if the block is potentially relevant. The required parameters for Decred are defined by the blockcf2 package. For more details, see the Block Filters section of DCP0005: https://github.com/decred/dcps/blob/master/dcp-0005/dcp-0005.mediawiki#block-filters
Package lingua accurately detects the natural language of written text, be it long or short. Its task is simple: It tells you which language some text is written in. This is very useful as a preprocessing step for linguistic data in natural language processing applications such as text classification and spell checking. Other use cases, for instance, might include routing e-mails to the right geographically located customer service department, based on the e-mails' languages. Language detection is often done as part of large machine learning frameworks or natural language processing applications. In cases where you don't need the full-fledged functionality of those systems or don't want to learn the ropes of those, a small flexible library comes in handy. So far, the only other comprehensive open source library in the Go ecosystem for this task is Whatlanggo (https://github.com/abadojack/whatlanggo). Unfortunately, it has two major drawbacks: 1. Detection only works with quite lengthy text fragments. For very short text snippets such as Twitter messages, it does not provide adequate results. 2. The more languages take part in the decision process, the less accurate are the detection results. Lingua aims at eliminating these problems. It nearly does not need any configuration and yields pretty accurate results on both long and short text, even on single words and phrases. It draws on both rule-based and statistical methods but does not use any dictionaries of words. It does not need a connection to any external API or service either. Once the library has been downloaded, it can be used completely offline. Compared to other language detection libraries, Lingua's focus is on quality over quantity, that is, getting detection right for a small set of languages first before adding new ones. Currently, 75 languages are supported. They are listed as variants of type Language. Lingua is able to report accuracy statistics for some bundled test data available for each supported language. The test data for each language is split into three parts: 1. a list of single words with a minimum length of 5 characters 2. a list of word pairs with a minimum length of 10 characters 3. a list of complete grammatical sentences of various lengths Both the language models and the test data have been created from separate documents of the Wortschatz corpora (https://wortschatz.uni-leipzig.de) offered by Leipzig University, Germany. Data crawled from various news websites have been used for training, each corpus comprising one million sentences. For testing, corpora made of arbitrarily chosen websites have been used, each comprising ten thousand sentences. From each test corpus, a random unsorted subset of 1000 single words, 1000 word pairs and 1000 sentences has been extracted, respectively. Given the generated test data, I have compared the detection results of Lingua, and Whatlanggo running over the data of Lingua's supported 75 languages. Additionally, I have added Google's CLD3 (https://github.com/google/cld3/) to the comparison with the help of the gocld3 bindings (https://github.com/jmhodges/gocld3). Languages that are not supported by CLD3 or Whatlanggo are simply ignored during the detection process. Lingua clearly outperforms its contenders. Every language detector uses a probabilistic n-gram (https://en.wikipedia.org/wiki/N-gram) model trained on the character distribution in some training corpus. Most libraries only use n-grams of size 3 (trigrams) which is satisfactory for detecting the language of longer text fragments consisting of multiple sentences. For short phrases or single words, however, trigrams are not enough. The shorter the input text is, the less n-grams are available. The probabilities estimated from such few n-grams are not reliable. This is why Lingua makes use of n-grams of sizes 1 up to 5 which results in much more accurate prediction of the correct language. A second important difference is that Lingua does not only use such a statistical model, but also a rule-based engine. This engine first determines the alphabet of the input text and searches for characters which are unique in one or more languages. If exactly one language can be reliably chosen this way, the statistical model is not necessary anymore. In any case, the rule-based engine filters out languages that do not satisfy the conditions of the input text. Only then, in a second step, the probabilistic n-gram model is taken into consideration. This makes sense because loading less language models means less memory consumption and better runtime performance. In general, it is always a good idea to restrict the set of languages to be considered in the classification process using the respective api methods. If you know beforehand that certain languages are never to occur in an input text, do not let those take part in the classifcation process. The filtering mechanism of the rule-based engine is quite good, however, filtering based on your own knowledge of the input text is always preferable. There might be classification tasks where you know beforehand that your language data is definitely not written in Latin, for instance. The detection accuracy can become better in such cases if you exclude certain languages from the decision process or just explicitly include relevant languages. Knowing about the most likely language is nice but how reliable is the computed likelihood? And how less likely are the other examined languages in comparison to the most likely one? In the example below, a slice of ConfidenceValue is returned containing those languages which the calling instance of LanguageDetector has been built from. The entries are sorted by their confidence value in descending order. Each value is a probability between 0.0 and 1.0. The probabilities of all languages will sum to 1.0. If the language is unambiguously identified by the rule engine, the value 1.0 will always be returned for this language. The other languages will receive a value of 0.0. By default, Lingua uses lazy-loading to load only those language models on demand which are considered relevant by the rule-based filter engine. For web services, for instance, it is rather beneficial to preload all language models into memory to avoid unexpected latency while waiting for the service response. If you want to enable the eager-loading mode, you can do it as seen below. Multiple instances of LanguageDetector share the same language models in memory which are accessed asynchronously by the instances. By default, Lingua returns the most likely language for a given input text. However, there are certain words that are spelled the same in more than one language. The word `prologue`, for instance, is both a valid English and French word. Lingua would output either English or French which might be wrong in the given context. For cases like that, it is possible to specify a minimum relative distance that the logarithmized and summed up probabilities for each possible language have to satisfy. It can be stated as seen below. Be aware that the distance between the language probabilities is dependent on the length of the input text. The longer the input text, the larger the distance between the languages. So if you want to classify very short text phrases, do not set the minimum relative distance too high. Otherwise Unknown will be returned most of the time as in the example below. This is the return value for cases where language detection is not reliably possible.
Package ora implements an Oracle database driver. ### Golang Oracle Database Driver ### #### TL;DR; just use it #### Call stored procedure with OUT parameters: An Oracle database may be accessed through the database/sql(http://golang.org/pkg/database/sql) package or through the ora package directly. database/sql offers connection pooling, thread safety, a consistent API to multiple database technologies and a common set of Go types. The ora package offers additional features including pointers, slices, nullable types, numerics of various sizes, Oracle-specific types, Go return type configuration, and Oracle abstractions such as environment, server and session. The ora package is written with the Oracle Call Interface (OCI) C-language libraries provided by Oracle. The OCI libraries are a standard for client application communication and driver communication with Oracle databases. The ora package has been verified to work with: * Oracle Standard 11g (11.2.0.4.0), Linux x86_64 (RHEL6) * Oracle Enterprise 12c (12.1.0.1.0), Windows 8.1 and AMD64. --- * [Installation](https://github.com/rana/ora#installation) * [Data Types](https://github.com/rana/ora#data-types) * [SQL Placeholder Syntax](https://github.com/rana/ora#sql-placeholder-syntax) * [Working With The Sql Package](https://github.com/rana/ora#working-with-the-sql-package) * [Working With The Oracle Package Directly](https://github.com/rana/ora#working-with-the-oracle-package-directly) * [Logging](https://github.com/rana/ora#logging) * [Test Database Setup](https://github.com/rana/ora#test-database-setup) * [Limitations](https://github.com/rana/ora#limitations) * [License](https://github.com/rana/ora#license) * [API Reference](http://godoc.org/github.com/rana/ora#pkg-index) * [Examples](./examples) --- Minimum requirements are Go 1.3 with CGO enabled, a GCC C compiler, and Oracle 11g (11.2.0.4.0) or Oracle Instant Client (11.2.0.4.0). Install Oracle or Oracle Instant Client. Copy the [oci8.pc](contrib/oci8.pc) from the `contrib` folder (or the one for your system, maybe tailored to your specific locations) to a folder in `$PKG_CONFIG_PATH` or a system folder, such as The ora package has no external Go dependencies and is available on GitHub and gopkg.in: *WARNING*: If you have Oracle Instant Client 11.2, you'll need to add "=lnnz11" to the list of linked libs! Otherwise, you may encounter "undefined reference to `nzosSCSP_SetCertSelectionParams' " errors. Oracle Instant Client 12.1 does not need this. The ora package supports all built-in Oracle data types. The supported Oracle built-in data types are NUMBER, BINARY_DOUBLE, BINARY_FLOAT, FLOAT, DATE, TIMESTAMP, TIMESTAMP WITH TIME ZONE, TIMESTAMP WITH LOCAL TIME ZONE, INTERVAL YEAR TO MONTH, INTERVAL DAY TO SECOND, CHAR, NCHAR, VARCHAR, VARCHAR2, NVARCHAR2, LONG, CLOB, NCLOB, BLOB, LONG RAW, RAW, ROWID and BFILE. SYS_REFCURSOR is also supported. Oracle does not provide a built-in boolean type. Oracle provides a single-byte character type. A common practice is to define two single-byte characters which represent true and false. The ora package adopts this approach. The oracle package associates a Go bool value to a Go rune and sends and receives the rune to a CHAR(1 BYTE) column or CHAR(1 CHAR) column. The default false rune is zero '0'. The default true rune is one '1'. The bool rune association may be configured or disabled when directly using the ora package but not with the database/sql package. Within a SQL string a placeholder may be specified to indicate where a Go variable is placed. The SQL placeholder is an Oracle identifier, from 1 to 30 characters, prefixed with a colon (:). For example: Placeholders within a SQL statement are bound by position. The actual name is not used by the ora package driver e.g., placeholder names :c1, :1, or :xyz are treated equally. The `database/sql` package provides a LastInsertId method to return the last inserted row's id. Oracle does not provide such functionality, but if you append `... RETURNING col /*LastInsertId*/` to your SQL, then it will be presented as LastInsertId. Note that you have to mark with a `/*LastInsertId*/` (case insensitive) your `RETURNING` part, to allow ora to return the last column as `LastInsertId()`. That column must fit in `int64`, though! You may access an Oracle database through the database/sql package. The database/sql package offers a consistent API across different databases, connection pooling, thread safety and a set of common Go types. database/sql makes working with Oracle straight-forward. The ora package implements interfaces in the database/sql/driver package enabling database/sql to communicate with an Oracle database. Using database/sql ensures you never have to call the ora package directly. When using database/sql, the mapping between Go types and Oracle types may be changed slightly. The database/sql package has strict expectations on Go return types. The Go-to-Oracle type mapping for database/sql is: The "ora" driver is automatically registered for use with sql.Open, but you can call ora.SetCfg to set the used configuration options including statement configuration and Rset configuration. When configuring the driver for use with database/sql, keep in mind that database/sql has strict Go type-to-Oracle type mapping expectations. The ora package allows programming with pointers, slices, nullable types, numerics of various sizes, Oracle-specific types, Go return type configuration, and Oracle abstractions such as environment, server and session. When working with the ora package directly, the API is slightly different than database/sql. When using the ora package directly, the mapping between Go types and Oracle types may be changed. The Go-to-Oracle type mapping for the ora package is: An example of using the ora package directly: Pointers may be used to capture out-bound values from a SQL statement such as an insert or stored procedure call. For example, a numeric pointer captures an identity value: A string pointer captures an out parameter from a stored procedure: Slices may be used to insert multiple records with a single insert statement: The ora package provides nullable Go types to support DML operations such as insert and select. The nullable Go types provided by the ora package are Int64, Int32, Int16, Int8, Uint64, Uint32, Uint16, Uint8, Float64, Float32, Time, IntervalYM, IntervalDS, String, Bool, Binary and Bfile. For example, you may insert nullable Strings and select nullable Strings: The `Stmt.Prep` method is variadic accepting zero or more `GoColumnType` which define a Go return type for a select-list column. For example, a Prep call can be configured to return an int64 and a nullable Int64 from the same column: Go numerics of various sizes are supported in DML operations. The ora package supports int64, int32, int16, int8, uint64, uint32, uint16, uint8, float64 and float32. For example, you may insert a uint16 and select numerics of various sizes: If a non-nullable type is defined for a nullable column returning null, the Go type's zero value is returned. GoColumnTypes defined by the ora package are: When Stmt.Prep doesn't receive a GoColumnType, or receives an incorrect GoColumnType, the default value defined in RsetCfg is used. EnvCfg, SrvCfg, SesCfg, StmtCfg and RsetCfg are the main configuration structs. EnvCfg configures aspects of an Env. SrvCfg configures aspects of a Srv. SesCfg configures aspects of a Ses. StmtCfg configures aspects of a Stmt. RsetCfg configures aspects of Rset. StmtCfg and RsetCfg have the most options to configure. RsetCfg defines the default mapping between an Oracle select-list column and a Go type. StmtCfg may be set in an EnvCfg, SrvCfg, SesCfg and StmtCfg. RsetCfg may be set in a Stmt. EnvCfg.StmtCfg, SrvCfg.StmtCfg, SesCfg.StmtCfg may optionally be specified to configure a statement. If StmtCfg isn't specified default values are applied. EnvCfg.StmtCfg, SrvCfg.StmtCfg, SesCfg.StmtCfg cascade to new descendent structs. When ora.OpenEnv() is called a specified EnvCfg is used or a default EnvCfg is created. Creating a Srv with env.OpenSrv() will use SrvCfg.StmtCfg if it is specified; otherwise, EnvCfg.StmtCfg is copied by value to SrvCfg.StmtCfg. Creating a Ses with srv.OpenSes() will use SesCfg.StmtCfg if it is specified; otherwise, SrvCfg.StmtCfg is copied by value to SesCfg.StmtCfg. Creating a Stmt with ses.Prep() will use SesCfg.StmtCfg if it is specified; otherwise, a new StmtCfg with default values is set on the Stmt. Call Stmt.Cfg() to change a Stmt's configuration. An Env may contain multiple Srv. A Srv may contain multiple Ses. A Ses may contain multiple Stmt. A Stmt may contain multiple Rset. Setting a RsetCfg on a StmtCfg does not cascade through descendent structs. Configuration of Stmt.Cfg takes effect prior to calls to Stmt.Exe and Stmt.Qry; consequently, any updates to Stmt.Cfg after a call to Stmt.Exe or Stmt.Qry are not observed. One configuration scenario may be to set a server's select statements to return nullable Go types by default: Another scenario may be to configure the runes mapped to bool values: Oracle-specific types offered by the ora package are ora.Rset, ora.IntervalYM, ora.IntervalDS, ora.Raw, ora.Lob and ora.Bfile. ora.Rset represents an Oracle SYS_REFCURSOR. ora.IntervalYM represents an Oracle INTERVAL YEAR TO MONTH. ora.IntervalDS represents an Oracle INTERVAL DAY TO SECOND. ora.Raw represents an Oracle RAW or LONG RAW. ora.Lob may represent an Oracle BLOB or Oracle CLOB. And ora.Bfile represents an Oracle BFILE. ROWID columns are returned as strings and don't have a unique Go type. #### LOBs The default for SELECTing [BC]LOB columns is a safe Bin or S, which means all the contents of the LOB is slurped into memory and returned as a []byte or string. The DefaultLOBFetchLen says LOBs are prefetched only a minimal way, to minimize extra memory usage - you can override this using `stmt.SetCfg(stmt.Cfg().SetLOBFetchLen(100))`. If you want more control, you can use ora.L in Prep, Qry or `ses.SetCfg(ses.Cfg().SetBlob(ora.L))`. But keep in mind that Oracle restricts the use of LOBs: it is forbidden to do ANYTHING while reading the LOB! No another query, no exec, no close of the Rset - even *advance* to the next record in the result set is forbidden! Failing to adhere these rules results in "Invalid handle" and ORA-03127 errors. You cannot start reading another LOB till you haven't finished reading the previous LOB, not even in the same row! Failing this results in ORA-24804! For examples, see [z_lob_test.go](z_lob_test.go). #### Rset Rset is used to obtain Go values from a SQL select statement. Methods Rset.Next, Rset.NextRow, and Rset.Len are available. Fields Rset.Row, Rset.Err, Rset.Index, and Rset.ColumnNames are also available. The Next method attempts to load data from an Oracle buffer into Row, returning true when successful. When no data is available, or if an error occurs, Next returns false setting Row to nil. Any error in Next is assigned to Err. Calling Next increments Index and method Len returns the total number of rows processed. The NextRow method is convenient for returning a single row. NextRow calls Next and returns Row. ColumnNames returns the names of columns defined by the SQL select statement. Rset has two usages. Rset may be returned from Stmt.Qry when prepared with a SQL select statement: Or, *Rset may be passed to Stmt.Exe when prepared with a stored procedure accepting an OUT SYS_REFCURSOR parameter: Stored procedures with multiple OUT SYS_REFCURSOR parameters enable a single Exe call to obtain multiple Rsets: The types of values assigned to Row may be configured in StmtCfg.Rset. For configuration to take effect, assign StmtCfg.Rset prior to calling Stmt.Qry or Stmt.Exe. Rset prefetching may be controlled by StmtCfg.PrefetchRowCount and StmtCfg.PrefetchMemorySize. PrefetchRowCount works in coordination with PrefetchMemorySize. When PrefetchRowCount is set to zero only PrefetchMemorySize is used; otherwise, the minimum of PrefetchRowCount and PrefetchMemorySize is used. The default uses a PrefetchMemorySize of 134MB. Opening and closing Rsets is managed internally. Rset does not have an Open method or Close method. IntervalYM may be be inserted and selected: IntervalDS may be be inserted and selected: Transactions on an Oracle server are supported. DML statements auto-commit unless a transaction has started: Ses.PrepAndExe, Ses.PrepAndQry, Ses.Ins, Ses.Upd, and Ses.Sel are convenient one-line methods. Ses.PrepAndExe offers a convenient one-line call to Ses.Prep and Stmt.Exe. Ses.PrepAndQry offers a convenient one-line call to Ses.Prep and Stmt.Qry. Ses.Ins composes, prepares and executes a sql INSERT statement. Ses.Ins is useful when you have to create and maintain a simple INSERT statement with a long list of columns. As table columns are added and dropped over the lifetime of a table Ses.Ins is easy to read and revise. Ses.Upd composes, prepares and executes a sql UPDATE statement. Ses.Upd is useful when you have to create and maintain a simple UPDATE statement with a long list of columns. As table columns are added and dropped over the lifetime of a table Ses.Upd is easy to read and revise. Ses.Sel composes, prepares and queries a sql SELECT statement. Ses.Sel is useful when you have to create and maintain a simple SELECT statement with a long list of columns that have non-default GoColumnTypes. As table columns are added and dropped over the lifetime of a table Ses.Sel is easy to read and revise. The Ses.Ping method checks whether the client's connection to an Oracle server is valid. A call to Ping requires an open Ses. Ping will return a nil error when the connection is fine: The Srv.Version method is available to obtain the Oracle server version. A call to Version requires an open Ses: Further code examples are available in the [example file](https://github.com/rana/ora/blob/master/z_example_test.go), test files and [samples folder](https://github.com/rana/ora/tree/master/samples). The ora package provides a simple ora.Logger interface for logging. Logging is disabled by default. Specify one of three optional built-in logging packages to enable logging; or, use your own logging package. ora.Cfg().Log offers various options to enable or disable logging of specific ora driver methods. For example: To use the standard Go log package: which produces a sample log of: Messages are prefixed with 'ORA I' for information or 'ORA E' for an error. The log package is configured to write to os.Stderr by default. Use the ora/lg.Std type to configure an alternative io.Writer. To use the glog package: which produces a sample log of: To use the log15 package: which produces a sample log of: See https://github.com/rana/ora/tree/master/samples/lg15/main.go for sample code which uses the log15 package. Tests are available and require some setup. Setup varies depending on whether the Oracle server is configured as a container database or non-container database. It's simpler to setup a non-container database. An example for each setup is explained. Non-container test database setup steps: Container test database setup steps: Some helpful SQL maintenance statements: Run the tests. database/sql method Stmt.QueryRow is not supported. Go 1.6 introduced stricter cgo (call C from Go) rules, and introduced runtime checks. This is good, as the possibility of C code corrupting Go code is almost completely eliminated, but it also means a severe call overhead grow. [Sometimes](https://groups.google.com/forum/#!topic/golang-nuts/ccMkPG6Bi5k) this can be 22x the go 1.5.3 call time! So if you need performance more than correctness, start your programs with "GODEBUG=cgocheck=0" environment setting. Copyright 2017 Rana Ian, Tamás Gulácsi. All rights reserved. Use of this source code is governed by The MIT License found in the accompanying LICENSE file.
Package fig loads configuration files and/or environment variables into Go structs with extra juice for validating fields and setting defaults. Config files may be defined in yaml, json or toml format. When you call `Load()`, fig takes the following steps: Define your configuration file in the root of your project: Define your struct and load it: Pass options as additional parameters to `Load()` to configure fig's behaviour. Do not look for any configuration file with `IgnoreFile()`. If IgnoreFile is given then any other configuration file related options like `File` and `Dirs` are simply ignored. File & Dirs By default fig searches for a file named `config.yaml` in the directory it is run from. Change the file and directories fig searches in with `File()` and `Dirs()`. Fig searches for the file in dirs sequentially and uses the first matching file. The decoder (yaml/json/toml) used is picked based on the file's extension. The struct tag key tag fig looks for to find the field's alt name can be changed using `Tag()`. By default fig uses the tag key `fig`. Fig can be configured to additionally set fields using the environment. This behaviour can be enabled using the option `UseEnv(prefix)`. If loading from file is also enabled then first the struct is loaded from a config file and thus any values found in the environment will overwrite existing values in the struct. Prefix is a string that will be prepended to the keys that are searched in the environment. Although discouraged, prefix may be left empty. Fig searches for keys in the form PREFIX_FIELD_PATH, or if prefix is left empty then FIELD_PATH. A field's path is formed by prepending its name with the names of all the surrounding structs up to the root struct, upper-cased and separated by an underscore. If a field has an alt name defined in its struct tag then that name is preferred over its struct name. With the struct above and `UseEnv("myapp")` fig would search for the following environment variables: Fields contained in struct slices whose elements already exists can be also be set via the environment in the form PARENT_IDX_FIELD, where idx is the index of the field in the slice. With the config above individual servers may be configured with the following environment variable: Note: the Server slice must already have members inside it (i.e. from loading of the configuration file) for the containing fields to be altered via the environment. Fig will not instantiate and insert elements into the slice. Maps and map values cannot be populated from the environment. Change the layout fig uses to parse times using `TimeLayout()`. By default fig parses time using the `RFC.3339` layout (`2006-01-02T15:04:05Z07:00`). By default fig ignores any fields in the config file that are not present in the struct. This behaviour can be changed using `UseStrict()` to achieve strict parsing. When strict parsing is enabled, extra fields in the config file will cause an error. A validate key with a required value in the field's struct tag makes fig check if the field has been set after it's been loaded. Required fields that are not set are returned as an error. Fig uses the following properties to check if a field is set: See example below to help understand: A default key in the field tag makes fig fill the field with the value specified when the field is not otherwise set. Fig attempts to parse the value based on the field's type. If parsing fails then an error is returned. A default value can be set for the following types: Successive elements of slice defaults should be separated by a comma. The entire slice can optionally be enclosed in square brackets: Boolean values: Fig cannot distinguish between false and an unset value for boolean types. As a result, default values for booleans are not currently supported. Maps: Maps are not supported because providing a map in a string form would be complex and error-prone. Users are encouraged to use structs instead for more reliable and structured data handling. Map values: Values retrieved from a map through reflection are not addressable. Therefore, setting default values for map values is not currently supported. The required validation and the default field tags are mutually exclusive as they are contradictory. This is not allowed: A wrapped error `ErrFileNotFound` is returned when fig is not able to find a config file to load. This can be useful for instance to fallback to a different configuration loading mechanism.
Pact Go enables consumer driven contract testing, providing a mock service and DSL for the consumer project, and interaction playback and verification for the service provider project. Consumer side Pact testing is an isolated test that ensures a given component is able to collaborate with another (remote) component. Pact will automatically start a Mock server in the background that will act as the collaborators' test double. This implies that any interactions expected on the Mock server will be validated, meaning a test will fail if all interactions were not completed, or if unexpected interactions were found: A typical consumer-side test would look something like this: If this test completed successfully, a Pact file should have been written to ./pacts/my_consumer-my_provider.json containing all of the interactions expected to occur between the Consumer and Provider. In addition to verbatim value matching, you have 3 useful matching functions in the `dsl` package that can increase expressiveness and reduce brittle test cases. Here is a complex example that shows how all 3 terms can be used together: This example will result in a response body from the mock server that looks like: See the examples in the dsl package and the matcher tests (https://github.com/pact-foundation/pact-go/v2/blob/master/dsl/matcher_test.go) for more matching examples. NOTE: You will need to use valid Ruby regular expressions (http://ruby-doc.org/core-2.1.5/Regexp.html) and double escape backslashes. Read more about flexible matching (https://github.com/pact-foundation/pact-ruby/wiki/Regular-expressions-and-type-matching-with-Pact. Provider side Pact testing, involves verifying that the contract - the Pact file - can be satisfied by the Provider. A typical Provider side test would like something like: The `VerifyProvider` will handle all verifications, treating them as subtests and giving you granular test reporting. If you don't like this behaviour, you may call `VerifyProviderRaw` directly and handle the errors manually. Note that `PactURLs` may be a list of local pact files or remote based urls (possibly from a Pact Broker - http://docs.pact.io/documentation/sharings_pacts.html). Pact reads the specified pact files (from remote or local sources) and replays the interactions against a running Provider. If all of the interactions are met we can say that both sides of the contract are satisfied and the test passes. When validating a Provider, you have 3 options to provide the Pact files: 1. Use "PactURLs" to specify the exact set of pacts to be replayed: Options 2 and 3 are particularly useful when you want to validate that your Provider is able to meet the contracts of what's in Production and also the latest in development. See this [article](http://rea.tech/enter-the-pact-matrix-or-how-to-decouple-the-release-cycles-of-your-microservices/) for more on this strategy. Each interaction in a pact should be verified in isolation, with no context maintained from the previous interactions. So how do you test a request that requires data to exist on the provider? Provider states are how you achieve this using Pact. Provider states also allow the consumer to make the same request with different expected responses (e.g. different response codes, or the same resource with a different subset of data). States are configured on the consumer side when you issue a dsl.Given() clause with a corresponding request/response pair. Configuring the provider is a little more involved, and (currently) requires running an API endpoint to configure any [provider states](http://docs.pact.io/documentation/provider_states.html) during the verification process. The option you must provide to the dsl.VerifyRequest is: An example route using the standard Go http package might look like this: See the examples or read more at http://docs.pact.io/documentation/provider_states.html. See the Pact Broker (http://docs.pact.io/documentation/sharings_pacts.html) documentation for more details on the Broker and this article (http://rea.tech/enter-the-pact-matrix-or-how-to-decouple-the-release-cycles-of-your-microservices/) on how to make it work for you. Publishing using Go code: Publishing from the CLI: Use a cURL request like the following to PUT the pact to the right location, specifying your consumer name, provider name and consumer version. The following flags are required to use basic authentication when publishing or retrieving Pact files to/from a Pact Broker: Pact Go uses a simple log utility (logutils - https://github.com/hashicorp/logutils) to filter log messages. The CLI already contains flags to manage this, should you want to control log level in your tests, you can set it like so:
Package restlayer is an API framework heavily inspired by the excellent Python Eve (http://python-eve.org/). It helps you create a comprehensive, customizable, and secure REST (graph) API on top of pluggable backend storages with no boiler plate code so can focus on your business logic. Implemented as a net/http middleware, it plays well with other middleware like CORS (http://github.com/rs/cors) and is net/context aware thanks to xhandler. REST Layer is an opinionated framework. Unlike many API frameworks, you don’t directly control the routing and you don’t have to write handlers. You just define resources and sub-resources with a schema, the framework automatically figures out what routes to generate behind the scene. You don’t have to take care of the HTTP headers and response, JSON encoding, etc. either. REST layer handles HTTP conditional requests, caching, integrity checking for you. A powerful and extensible validation engine make sure that data comes pre-validated to your custom storage handlers. Generic resource handlers for MongoDB (http://github.com/rs/rest-layer-mongo), ElasticSearch (http://github.com/rs/rest-layer-es) and other databases are also available so you have few to no code to write to make the whole system work. Moreover, REST Layer let you create a graph API by linking resources between them. Thanks to its advanced field selection syntax (and coming support of GraphQL), you can gather resources and their dependencies in a single request, saving you from costly network roundtrips. REST Layer is composed of several sub-packages: See https://github.com/rs/rest-layer/blob/master/README.md for full REST Layer documentation.
Package uplink is the main entrypoint to interacting with Storj Labs' decentralized storage network. Sign up for an account on a Satellite today! https://storj.io/ The fundamental unit of access in the Storj Labs storage network is the Access Grant. An access grant is a serialized structure that is internally comprised of an API Key, a set of encryption key information, and information about which Storj Labs or Tardigrade network Satellite is responsible for the metadata. An access grant is always associated with exactly one Project on one Satellite. If you don't already have an access grant, you will need make an account on a Satellite, generate an API Key, and encapsulate that API Key with encryption information into an access grant. If you don't already have an account on a Satellite, first make one at https://storj.io/ and note the Satellite you choose (such as us1.storj.io, eu1.storj.io, etc). Then, make an API Key in the web interface. The first step to any project is to generate a restricted access grant with the minimal permissions that are needed. Access grants contains all encryption information and they should be restricted as much as possible. To make an access grant, you can create one using our Uplink CLI tool's 'share' subcommand (after setting up the Uplink CLI tool), or you can make one as follows: In the above example, 'serializedAccess' is a human-readable string that represents read-only access to just the "logs" bucket, and is only able to decrypt that one bucket thanks to hierarchical deterministic key derivation. Note: RequestAccessWithPassphrase is CPU-intensive, and your application's normal lifecycle should avoid it and use ParseAccess where possible instead. To revoke an access grant see the Project.RevokeAccess method. A common architecture for building applications is to have a single bucket for the entire application to store the objects of all users. In such architecture, it is of utmost importance to guarantee that users can access only their objects but not the objects of other users. This can be achieved by implementing an app-specific authentication service that generates an access grant for each user by restricting the main access grant of the application. This user-specific access grant is restricted to access the objects only within a specific key prefix defined for the user. When initialized, the authentication server creates the main application access grant with an empty passphrase as follows. The authentication service does not hold any encryption information about users, so the passphrase used to request the main application access grant does not matter. The encryption keys related to user objects will be overridden in a next step on the client-side. It is important that once set to a specific value, this passphrase never changes in the future. Therefore, the best practice is to use an empty passphrase. Whenever a user is authenticated, the authentication service generates the user-specific access grant as follows: The userID is something that uniquely identifies the users in the application and must never change. Along with the user access grant, the authentication service should return a user-specific salt. The salt must be always the same for this user. The salt size is 16-byte or 32-byte. Once the application receives the user-specific access grant and the user-specific salt from the authentication service, it has to override the encryption key in the access grant, so users can encrypt and decrypt their files with encryption keys derived from their passphrase. The user-specific access grant is now ready to use by the application. Once you have a valid access grant, you can open a Project with the access that access grant allows for. Projects allow you to manage buckets and objects within buckets. A bucket represents a collection of objects. You can upload, download, list, and delete objects of any size or shape. Objects within buckets are represented by keys, where keys can optionally be listed using the "/" delimiter. Note: Objects and object keys within buckets are end-to-end encrypted, but bucket names themselves are not encrypted, so the billing interface on the Satellite can show you bucket line items. Objects support a couple kilobytes of arbitrary key/value metadata, and arbitrary-size primary data streams with the ability to read at arbitrary offsets. If you want to access only a small subrange of the data you uploaded, you can use `uplink.DownloadOptions` to specify the download range. Listing objects returns an iterator that allows to walk through all the items:
Package goldie provides test assertions based on golden files. It's typically used for testing responses with larger data bodies. The concept is straight forward. Valid response data is stored in a "golden file". The actual response data will be byte compared with the golden file and the test will fail if there is a difference. Updating the golden file can be done by running `go test -update ./...`.
Package binding transforms a raw request into a struct ready to be used your application. It can also perform validation on the data and handle errors.
Package goldie provides test assertions based on golden files. It's typically used for testing responses with larger data bodies. The concept is straight forward. Valid response data is stored in a "golden file". The actual response data will be byte compared with the golden file and the test will fail if there is a difference. Updating the golden file can be done by running `go test -update ./...`.
Package podcast generates a fully compliant iTunes and RSS 2.0 podcast feed for GoLang using a simple API. Full documentation with detailed examples located at https://godoc.org/github.com/eduncan911/podcast To use, `go get` and `import` the package like your typical GoLang library. The API exposes a number of method receivers on structs that implements the logic required to comply with the specifications and ensure a compliant feed. A number of overrides occur to help with iTunes visibility of your episodes. Notably, the `Podcast.AddItem` function performs most of the heavy lifting by taking the `Item` input and performing validation, overrides and duplicate setters through the feed. Full detailed Examples of the API are at https://godoc.org/github.com/eduncan911/podcast. This library is supported on GoLang 1.7 and higher. We have implemented Go Modules support and the CI pipeline shows it working with new installs, tested with Go 1.13. To keep 1.7 compatibility, we use `go mod vendor` to maintain the `vendor/` folder for older 1.7 and later runtimes. If either runtime has an issue, please create an Issue and I will address. For version 1.x, you are not restricted in having full control over your feeds. You may choose to skip the API methods and instead use the structs directly. The fields have been grouped by RSS 2.0 and iTunes fields with iTunes specific fields all prefixed with the letter `I`. However, do note that the 2.x version currently in progress will break this extensibility and enforce API methods going forward. This is to ensure that the feed can both be marshalled, and unmarshalled back and forth (current 1.x branch can only be unmarshalled - hence the work for 2.x). `go-fuzz` has been added in 1.4.1, covering all exported API methods. They have been ran extensively and no issues have come out of them yet (most tests were ran overnight, over about 11 hours with zero crashes). If you wish to help fuzz the inputs, with Go 1.13 or later you can run `go-fuzz` on any of the inputs. To obtain a list of available funcs to pass, just run `go-fuzz` without any parameters: If you do find an issue, please raise an issue immediately and I will quickly address. The 1.x branch is now mostly in maintenance mode, open to PRs. This means no more planned features on the 1.x feature branch is expected. With the success of 6 iTunes-accepted podcasts I have published with this library, and with the feedback from the community, the 1.x releases are now considered stable. The 2.x branch's primary focus is to allow for bi-direction marshalling both ways. Currently, the 1.x branch only allows unmarshalling to a serial feed. An attempt to marshall a serialized feed back into a Podcast form will error or not work correctly. Note that while the 2.x branch is targeted to remain backwards compatible, it is true if using the public API funcs to set parameters only. Several of the underlying public fields are being removed in order to accommodate the marshalling of serialized data. Therefore, a version 2.x is denoted for this release. We use SemVer versioning schema. You can rest assured that pulling 1.x branches will remain backwards compatible now and into the future. However, the new 2.x branch, while keeping the same API, is expected break those that bypass the API methods and use the underlying public properties instead. v1.4.2 v1.4.1 v1.4.0 v1.3.2 v1.3.1 v1.3.0 v1.2.1 v1.2.0 v1.1.0 v1.0.0 RSS 2.0: https://cyber.harvard.edu/rss/rss.html Podcasts: https://help.apple.com/itc/podcasts_connect/#/itca5b22233
Package rpm implements the rpm package file format. For more information about the rpm file format, see: http://ftp.rpm.org/max-rpm/s1-rpm-file-format-rpm-file-format.html Packages are composed of two headers: the Signature header and the "Header" header. Each contains key-value pairs called tags. Tags map an integer key to a value whose data type will be one of the TagType types. Tag values can be decoded with the appropriate Tag method for the data type. Many known tags are available as Package methods. For example, RPMTAG_NAME and RPMTAG_BUILDTIME are available as Package.Name and Package.BuildTime respectively. Tags can be retrieved and decoded from the Signature or Header headers directly using Header.GetTag and their tag identifier. Header.GetTag and all Tag methods will return a zero value if the header or the tag do not exist, or if the tag has a different data type. You may enumerate all tags in a header with Header.Tags: In the rpm ecosystem, package versions are compared using EVR; epoch, version, release. Versions may be compared using the Compare function. Packages may be be sorted using the PackageSlice type which implements sort.Interface. Packages are sorted lexically by name ascending and then by version descending. Version is evaluated first by epoch, then by version string, then by release. The Sort function is provided for your convenience. Packages may be validated using MD5Check or GPGCheck. See the example for each function. The payload of an rpm package is typically archived in cpio format and compressed with xz. To decompress and unarchive an rpm payload, the reader that read the rpm package headers will be positioned at the beginning of the payload and can be reused with the appropriate Go packages for the rpm payload format. You can check the archive format with Package.PayloadFormat and the compression algorithm with Package.PayloadCompression. For the cpio archive format, the following package is recommended: https://github.com/cavaliergopher/cpio For xz compression, the following package is recommended: https://github.com/ulikunitz/xz See README.md for a working example of extracting files from a cpio/xz rpm package using these packages. See cmd/rpmdump and cmd/rpminfo for example programs that emulate tools from the rpm ecosystem.
Package orderedcode provides a byte encoding of a sequence of typed items. The resulting bytes can be lexicographically compared to yield the same ordering as item-wise comparison on the original sequences. More precisely, suppose: Then comparing A versus B lexicographically is the same as comparing the vectors [A_1..A_n] and [B_1..B_n] lexicographically. Furthermore, if i < j then [A_1..A_i]'s encoding is a prefix of [A_1..A_j]'s encoding. The order-maintaining and prefix properties described above are useful for generating keys for databases like Bigtable. Call Append(buffer, item1, ..., itemN) to construct the encoded bytes. The valid item types are: As a convenience, orderedcode.Infinity is a value of type struct{}. For example, to encode a sequence of two strings, an 'infinity' and an uint64: Alternatively, encoding can be done in multiple steps: Call Parse(encoded, &item1, ..., &itemN) to deconstruct an encoded string. The valid argument types are the pointers to the valid encoding types. For example: Alternatively: A TrailingString is a string that, if present, must be the last item appended or parsed. It is not mandatory to use a TrailingString; it is valid for the last item to be a standard string or any other type listed above. A TrailingString simply allows a more efficient encoding while retaining the lexicographic order-maintaining property. If used, you cannot append a TrailingString and parse the result as a standard string, or as a StringOrInfinity. For example: The same sequence of types should be used for encoding and decoding (although StringOrInfinity can substitute for either a string or a struct{}, but not for a TrailingString). The wire format is not fully self-describing: "\x00\x01\x04\x03\x02\x00\x01" is a valid encoding of both ["", "\x04\x03\x02"] and [uint64(0), uint64(4), uint64(0x20001)]. Decoding into a pointer of the wrong type may return corrupt data and no error. Each item can optionally be encoded in decreasing order. If the i'th item is and the lexicographic comparison of A and B comes down to A_i versus B_i, then A < B will equal A_i > B_i. To encode in decreasing order, wrap the item in an orderedcode.Decr value. To decode, wrap the item pointer in an orderedcode.Decr. For example: Each item's ordering is independent from other items, but the same ordering should be used to encode and decode the i'th item.
Package ql implements a pure Go embedded SQL database engine. Builder results available at QL is a member of the SQL family of languages. It is less complex and less powerful than SQL (whichever specification SQL is considered to be). 2020-12-10: sql/database driver now supports url parameter removeemptywal=N which has the same semantics as passing RemoveEmptyWAL = N != 0 to OpenFile options. 2020-11-09: Add IF NOT EXISTS support for the INSERT INTO statement. Add IsDuplicateUniqueIndexError function. 2018-11-04: Back end file format V2 is now released. To use the new format for newly created databases set the FileFormat field in *Options passed to OpenFile to value 2 or use the driver named "ql2" instead of "ql". - Both the old and new driver will properly open and use, read and write the old (V1) or new file (V2) format of an existing database. - V1 format has a record size limit of ~64 kB. V2 format record size limit is math.MaxInt32. - V1 format uncommitted transaction size is limited by memory resources. V2 format uncommitted transaction is limited by free disk space. - A direct consequence of the previous is that small transactions perform better using V1 format and big transactions perform better using V2 format. - V2 format uses substantially less memory. 2018-08-02: Release v1.2.0 adds initial support for Go modules. 2017-01-10: Release v1.1.0 fixes some bugs and adds a configurable WAL headroom. 2016-07-29: Release v1.0.6 enables alternatively using = instead of == for equality operation. 2016-07-11: Release v1.0.5 undoes vendoring of lldb. QL now uses stable lldb (modernc.org/lldb). 2016-07-06: Release v1.0.4 fixes a panic when closing the WAL file. 2016-04-03: Release v1.0.3 fixes a data race. 2016-03-23: Release v1.0.2 vendors gitlab.com/cznic/exp/lldb and github.com/camlistore/go4/lock. 2016-03-17: Release v1.0.1 adjusts for latest goyacc. Parser error messages are improved and changed, but their exact form is not considered a API change. 2016-03-05: The current version has been tagged v1.0.0. 2015-06-15: To improve compatibility with other SQL implementations, the count built-in aggregate function now accepts * as its argument. 2015-05-29: The execution planner was rewritten from scratch. It should use indices in all places where they were used before plus in some additional situations. It is possible to investigate the plan using the newly added EXPLAIN statement. The QL tool is handy for such analysis. If the planner would have used an index, but no such exists, the plan includes hints in form of copy/paste ready CREATE INDEX statements. The planner is still quite simple and a lot of work on it is yet ahead. You can help this process by filling an issue with a schema and query which fails to use an index or indices when it should, in your opinion. Bonus points for including output of `ql 'explain <query>'`. 2015-05-09: The grammar of the CREATE INDEX statement now accepts an expression list instead of a single expression, which was further limited to just a column name or the built-in id(). As a side effect, composite indices are now functional. However, the values in the expression-list style index are not yet used by other statements or the statement/query planner. The composite index is useful while having UNIQUE clause to check for semantically duplicate rows before they get added to the table or when such a row is mutated using the UPDATE statement and the expression-list style index tuple of the row is thus recomputed. 2015-05-02: The Schema field of table __Table now correctly reflects any column constraints and/or defaults. Also, the (*DB).Info method now has that information provided in new ColumInfo fields NotNull, Constraint and Default. 2015-04-20: Added support for {LEFT,RIGHT,FULL} [OUTER] JOIN. 2015-04-18: Column definitions can now have constraints and defaults. Details are discussed in the "Constraints and defaults" chapter below the CREATE TABLE statement documentation. 2015-03-06: New built-in functions formatFloat and formatInt. Thanks urandom! (https://github.com/urandom) 2015-02-16: IN predicate now accepts a SELECT statement. See the updated "Predicates" section. 2015-01-17: Logical operators || and && have now alternative spellings: OR and AND (case insensitive). AND was a keyword before, but OR is a new one. This can possibly break existing queries. For the record, it's a good idea to not use any name appearing in, for example, [7] in your queries as the list of QL's keywords may expand for gaining better compatibility with existing SQL "standards". 2015-01-12: ACID guarantees were tightened at the cost of performance in some cases. The write collecting window mechanism, a formerly used implementation detail, was removed. Inserting rows one by one in a transaction is now slow. I mean very slow. Try to avoid inserting single rows in a transaction. Instead, whenever possible, perform batch updates of tens to, say thousands of rows in a single transaction. See also: http://www.sqlite.org/faq.html#q19, the discussed synchronization principles involved are the same as for QL, modulo minor details. Note: A side effect is that closing a DB before exiting an application, both for the Go API and through database/sql driver, is no more required, strictly speaking. Beware that exiting an application while there is an open (uncommitted) transaction in progress means losing the transaction data. However, the DB will not become corrupted because of not closing it. Nor that was the case before, but formerly failing to close a DB could have resulted in losing the data of the last transaction. 2014-09-21: id() now optionally accepts a single argument - a table name. 2014-09-01: Added the DB.Flush() method and the LIKE pattern matching predicate. 2014-08-08: The built in functions max and min now accept also time values. Thanks opennota! (https://github.com/opennota) 2014-06-05: RecordSet interface extended by new methods FirstRow and Rows. 2014-06-02: Indices on id() are now used by SELECT statements. 2014-05-07: Introduction of Marshal, Schema, Unmarshal. 2014-04-15: Added optional IF NOT EXISTS clause to CREATE INDEX and optional IF EXISTS clause to DROP INDEX. 2014-04-12: The column Unique in the virtual table __Index was renamed to IsUnique because the old name is a keyword. Unfortunately, this is a breaking change, sorry. 2014-04-11: Introduction of LIMIT, OFFSET. 2014-04-10: Introduction of query rewriting. 2014-04-07: Introduction of indices. QL imports zappy[8], a block-based compressor, which speeds up its performance by using a C version of the compression/decompression algorithms. If a CGO-free (pure Go) version of QL, or an app using QL, is required, please include 'purego' in the -tags option of go {build,get,install}. For example: If zappy was installed before installing QL, it might be necessary to rebuild zappy first (or rebuild QL with all its dependencies using the -a option): The syntax is specified using Extended Backus-Naur Form (EBNF) Lower-case production names are used to identify lexical tokens. Non-terminals are in CamelCase. Lexical tokens are enclosed in double quotes "" or back quotes “. The form a … b represents the set of characters from a through b as alternatives. The horizontal ellipsis … is also used elsewhere in the spec to informally denote various enumerations or code snippets that are not further specified. QL source code is Unicode text encoded in UTF-8. The text is not canonicalized, so a single accented code point is distinct from the same character constructed from combining an accent and a letter; those are treated as two code points. For simplicity, this document will use the unqualified term character to refer to a Unicode code point in the source text. Each code point is distinct; for instance, upper and lower case letters are different characters. Implementation restriction: For compatibility with other tools, the parser may disallow the NUL character (U+0000) in the statement. Implementation restriction: A byte order mark is disallowed anywhere in QL statements. The following terms are used to denote specific character classes The underscore character _ (U+005F) is considered a letter. Lexical elements are comments, tokens, identifiers, keywords, operators and delimiters, integer, floating-point, imaginary, rune and string literals and QL parameters. Line comments start with the character sequence // or -- and stop at the end of the line. A line comment acts like a space. General comments start with the character sequence /* and continue through the character sequence */. A general comment acts like a space. Comments do not nest. Tokens form the vocabulary of QL. There are four classes: identifiers, keywords, operators and delimiters, and literals. White space, formed from spaces (U+0020), horizontal tabs (U+0009), carriage returns (U+000D), and newlines (U+000A), is ignored except as it separates tokens that would otherwise combine into a single token. The formal grammar uses semicolons ";" as separators of QL statements. A single QL statement or the last QL statement in a list of statements can have an optional semicolon terminator. (Actually a separator from the following empty statement.) Identifiers name entities such as tables or record set columns. There are two kinds of identifiers, normal idententifiers and quoted identifiers. An normal identifier is a sequence of one or more letters and digits. The first character in an identifier must be a letter. For example A quoted identifier is a string of any charaters between guillmets «». Quoted identifiers allow QL key words or phrases with spaces to be used as identifiers. The guillemets were chosen because QL already uses double quotes, single quotes, and backticks for other quoting purposes. «TRANSACTION» «duration» «lovely stories» No identifiers are predeclared, however note that no keyword can be used as a normal identifier. Identifiers starting with two underscores are used for meta data virtual tables names. For forward compatibility, users should generally avoid using any identifiers starting with two underscores. For example The following keywords are reserved and may not be used as identifiers. Keywords are not case sensitive. The following character sequences represent operators, delimiters, and other special tokens Operators consisting of more than one character are referred to by names in the rest of the documentation An integer literal is a sequence of digits representing an integer constant. An optional prefix sets a non-decimal base: 0 for octal, 0x or 0X for hexadecimal. In hexadecimal literals, letters a-f and A-F represent values 10 through 15. For example A floating-point literal is a decimal representation of a floating-point constant. It has an integer part, a decimal point, a fractional part, and an exponent part. The integer and fractional part comprise decimal digits; the exponent part is an e or E followed by an optionally signed decimal exponent. One of the integer part or the fractional part may be elided; one of the decimal point or the exponent may be elided. For example An imaginary literal is a decimal representation of the imaginary part of a complex constant. It consists of a floating-point literal or decimal integer followed by the lower-case letter i. For example A rune literal represents a rune constant, an integer value identifying a Unicode code point. A rune literal is expressed as one or more characters enclosed in single quotes. Within the quotes, any character may appear except single quote and newline. A single quoted character represents the Unicode value of the character itself, while multi-character sequences beginning with a backslash encode values in various formats. The simplest form represents the single character within the quotes; since QL statements are Unicode characters encoded in UTF-8, multiple UTF-8-encoded bytes may represent a single integer value. For instance, the literal 'a' holds a single byte representing a literal a, Unicode U+0061, value 0x61, while 'ä' holds two bytes (0xc3 0xa4) representing a literal a-dieresis, U+00E4, value 0xe4. Several backslash escapes allow arbitrary values to be encoded as ASCII text. There are four ways to represent the integer value as a numeric constant: \x followed by exactly two hexadecimal digits; \u followed by exactly four hexadecimal digits; \U followed by exactly eight hexadecimal digits, and a plain backslash \ followed by exactly three octal digits. In each case the value of the literal is the value represented by the digits in the corresponding base. Although these representations all result in an integer, they have different valid ranges. Octal escapes must represent a value between 0 and 255 inclusive. Hexadecimal escapes satisfy this condition by construction. The escapes \u and \U represent Unicode code points so within them some values are illegal, in particular those above 0x10FFFF and surrogate halves. After a backslash, certain single-character escapes represent special values All other sequences starting with a backslash are illegal inside rune literals. For example A string literal represents a string constant obtained from concatenating a sequence of characters. There are two forms: raw string literals and interpreted string literals. Raw string literals are character sequences between back quotes “. Within the quotes, any character is legal except back quote. The value of a raw string literal is the string composed of the uninterpreted (implicitly UTF-8-encoded) characters between the quotes; in particular, backslashes have no special meaning and the string may contain newlines. Carriage returns inside raw string literals are discarded from the raw string value. Interpreted string literals are character sequences between double quotes "". The text between the quotes, which may not contain newlines, forms the value of the literal, with backslash escapes interpreted as they are in rune literals (except that \' is illegal and \" is legal), with the same restrictions. The three-digit octal (\nnn) and two-digit hexadecimal (\xnn) escapes represent individual bytes of the resulting string; all other escapes represent the (possibly multi-byte) UTF-8 encoding of individual characters. Thus inside a string literal \377 and \xFF represent a single byte of value 0xFF=255, while ÿ, \u00FF, \U000000FF and \xc3\xbf represent the two bytes 0xc3 0xbf of the UTF-8 encoding of character U+00FF. For example These examples all represent the same string If the statement source represents a character as two code points, such as a combining form involving an accent and a letter, the result will be an error if placed in a rune literal (it is not a single code point), and will appear as two code points if placed in a string literal. Literals are assigned their values from the respective text representation at "compile" (parse) time. QL parameters provide the same functionality as literals, but their value is assigned at execution time from an expression list passed to DB.Run or DB.Execute. Using '?' or '$' is completely equivalent. For example Keywords 'false' and 'true' (not case sensitive) represent the two possible constant values of type bool (also not case sensitive). Keyword 'NULL' (not case sensitive) represents an untyped constant which is assignable to any type. NULL is distinct from any other value of any type. A type determines the set of values and operations specific to values of that type. A type is specified by a type name. Named instances of the boolean, numeric, and string types are keywords. The names are not case sensitive. Note: The blob type is exchanged between the back end and the API as []byte. On 32 bit platforms this limits the size which the implementation can handle to 2G. A boolean type represents the set of Boolean truth values denoted by the predeclared constants true and false. The predeclared boolean type is bool. A duration type represents the elapsed time between two instants as an int64 nanosecond count. The representation limits the largest representable duration to approximately 290 years. A numeric type represents sets of integer or floating-point values. The predeclared architecture-independent numeric types are The value of an n-bit integer is n bits wide and represented using two's complement arithmetic. Conversions are required when different numeric types are mixed in an expression or assignment. A string type represents the set of string values. A string value is a (possibly empty) sequence of bytes. The case insensitive keyword for the string type is 'string'. The length of a string (its size in bytes) can be discovered using the built-in function len. A time type represents an instant in time with nanosecond precision. Each time has associated with it a location, consulted when computing the presentation form of the time. The following functions are implicitly declared An expression specifies the computation of a value by applying operators and functions to operands. Operands denote the elementary values in an expression. An operand may be a literal, a (possibly qualified) identifier denoting a constant or a function or a table/record set column, or a parenthesized expression. A qualified identifier is an identifier qualified with a table/record set name prefix. For example Primary expression are the operands for unary and binary expressions. For example A primary expression of the form denotes the element of a string indexed by x. Its type is byte. The value x is called the index. The following rules apply - The index x must be of integer type except bigint or duration; it is in range if 0 <= x < len(s), otherwise it is out of range. - A constant index must be non-negative and representable by a value of type int. - A constant index must be in range if the string a is a literal. - If x is out of range at run time, a run-time error occurs. - s[x] is the byte at index x and the type of s[x] is byte. If s is NULL or x is NULL then the result is NULL. Otherwise s[x] is illegal. For a string, the primary expression constructs a substring. The indices low and high select which elements appear in the result. The result has indices starting at 0 and length equal to high - low. For convenience, any of the indices may be omitted. A missing low index defaults to zero; a missing high index defaults to the length of the sliced operand The indices low and high are in range if 0 <= low <= high <= len(a), otherwise they are out of range. A constant index must be non-negative and representable by a value of type int. If both indices are constant, they must satisfy low <= high. If the indices are out of range at run time, a run-time error occurs. Integer values of type bigint or duration cannot be used as indices. If s is NULL the result is NULL. If low or high is not omitted and is NULL then the result is NULL. Given an identifier f denoting a predeclared function, calls f with arguments a1, a2, … an. Arguments are evaluated before the function is called. The type of the expression is the result type of f. In a function call, the function value and arguments are evaluated in the usual order. After they are evaluated, the parameters of the call are passed by value to the function and the called function begins execution. The return value of the function is passed by value when the function returns. Calling an undefined function causes a compile-time error. Operators combine operands into expressions. Comparisons are discussed elsewhere. For other binary operators, the operand types must be identical unless the operation involves shifts or untyped constants. For operations involving constants only, see the section on constant expressions. Except for shift operations, if one operand is an untyped constant and the other operand is not, the constant is converted to the type of the other operand. The right operand in a shift expression must have unsigned integer type or be an untyped constant that can be converted to unsigned integer type. If the left operand of a non-constant shift expression is an untyped constant, the type of the constant is what it would be if the shift expression were replaced by its left operand alone. Expressions of the form yield a boolean value true if expr2, a regular expression, matches expr1 (see also [6]). Both expression must be of type string. If any one of the expressions is NULL the result is NULL. Predicates are special form expressions having a boolean result type. Expressions of the form are equivalent, including NULL handling, to The types of involved expressions must be comparable as defined in "Comparison operators". Another form of the IN predicate creates the expression list from a result of a SelectStmt. The SelectStmt must select only one column. The produced expression list is resource limited by the memory available to the process. NULL values produced by the SelectStmt are ignored, but if all records of the SelectStmt are NULL the predicate yields NULL. The select statement is evaluated only once. If the type of expr is not the same as the type of the field returned by the SelectStmt then the set operation yields false. The type of the column returned by the SelectStmt must be one of the simple (non blob-like) types: Expressions of the form are equivalent, including NULL handling, to The types of involved expressions must be ordered as defined in "Comparison operators". Expressions of the form yield a boolean value true if expr does not have a specific type (case A) or if expr has a specific type (case B). In other cases the result is a boolean value false. Unary operators have the highest precedence. There are five precedence levels for binary operators. Multiplication operators bind strongest, followed by addition operators, comparison operators, && (logical AND), and finally || (logical OR) Binary operators of the same precedence associate from left to right. For instance, x / y * z is the same as (x / y) * z. Note that the operator precedence is reflected explicitly by the grammar. Arithmetic operators apply to numeric values and yield a result of the same type as the first operand. The four standard arithmetic operators (+, -, *, /) apply to integer, rational, floating-point, and complex types; + also applies to strings; +,- also applies to times. All other arithmetic operators apply to integers only. sum integers, rationals, floats, complex values, strings difference integers, rationals, floats, complex values, times product integers, rationals, floats, complex values / quotient integers, rationals, floats, complex values % remainder integers & bitwise AND integers | bitwise OR integers ^ bitwise XOR integers &^ bit clear (AND NOT) integers << left shift integer << unsigned integer >> right shift integer >> unsigned integer Strings can be concatenated using the + operator String addition creates a new string by concatenating the operands. A value of type duration can be added to or subtracted from a value of type time. Times can subtracted from each other producing a value of type duration. For two integer values x and y, the integer quotient q = x / y and remainder r = x % y satisfy the following relationships with x / y truncated towards zero ("truncated division"). As an exception to this rule, if the dividend x is the most negative value for the int type of x, the quotient q = x / -1 is equal to x (and r = 0). If the divisor is a constant expression, it must not be zero. If the divisor is zero at run time, a run-time error occurs. If the dividend is non-negative and the divisor is a constant power of 2, the division may be replaced by a right shift, and computing the remainder may be replaced by a bitwise AND operation The shift operators shift the left operand by the shift count specified by the right operand. They implement arithmetic shifts if the left operand is a signed integer and logical shifts if it is an unsigned integer. There is no upper limit on the shift count. Shifts behave as if the left operand is shifted n times by 1 for a shift count of n. As a result, x << 1 is the same as x*2 and x >> 1 is the same as x/2 but truncated towards negative infinity. For integer operands, the unary operators +, -, and ^ are defined as follows For floating-point and complex numbers, +x is the same as x, while -x is the negation of x. The result of a floating-point or complex division by zero is not specified beyond the IEEE-754 standard; whether a run-time error occurs is implementation-specific. Whenever any operand of any arithmetic operation, unary or binary, is NULL, as well as in the case of the string concatenating operation, the result is NULL. For unsigned integer values, the operations +, -, *, and << are computed modulo 2n, where n is the bit width of the unsigned integer's type. Loosely speaking, these unsigned integer operations discard high bits upon overflow, and expressions may rely on “wrap around”. For signed integers with a finite bit width, the operations +, -, *, and << may legally overflow and the resulting value exists and is deterministically defined by the signed integer representation, the operation, and its operands. No exception is raised as a result of overflow. An evaluator may not optimize an expression under the assumption that overflow does not occur. For instance, it may not assume that x < x + 1 is always true. Integers of type bigint and rationals do not overflow but their handling is limited by the memory resources available to the program. Comparison operators compare two operands and yield a boolean value. In any comparison, the first operand must be of same type as is the second operand, or vice versa. The equality operators == and != apply to operands that are comparable. The ordering operators <, <=, >, and >= apply to operands that are ordered. These terms and the result of the comparisons are defined as follows - Boolean values are comparable. Two boolean values are equal if they are either both true or both false. - Complex values are comparable. Two complex values u and v are equal if both real(u) == real(v) and imag(u) == imag(v). - Integer values are comparable and ordered, in the usual way. Note that durations are integers. - Floating point values are comparable and ordered, as defined by the IEEE-754 standard. - Rational values are comparable and ordered, in the usual way. - String and Blob values are comparable and ordered, lexically byte-wise. - Time values are comparable and ordered. Whenever any operand of any comparison operation is NULL, the result is NULL. Note that slices are always of type string. Logical operators apply to boolean values and yield a boolean result. The right operand is evaluated conditionally. The truth tables for logical operations with NULL values Conversions are expressions of the form T(x) where T is a type and x is an expression that can be converted to type T. A constant value x can be converted to type T in any of these cases: - x is representable by a value of type T. - x is a floating-point constant, T is a floating-point type, and x is representable by a value of type T after rounding using IEEE 754 round-to-even rules. The constant T(x) is the rounded value. - x is an integer constant and T is a string type. The same rule as for non-constant x applies in this case. Converting a constant yields a typed constant as result. A non-constant value x can be converted to type T in any of these cases: - x has type T. - x's type and T are both integer or floating point types. - x's type and T are both complex types. - x is an integer, except bigint or duration, and T is a string type. Specific rules apply to (non-constant) conversions between numeric types or to and from a string type. These conversions may change the representation of x and incur a run-time cost. All other conversions only change the type but not the representation of x. A conversion of NULL to any type yields NULL. For the conversion of non-constant numeric values, the following rules apply 1. When converting between integer types, if the value is a signed integer, it is sign extended to implicit infinite precision; otherwise it is zero extended. It is then truncated to fit in the result type's size. For example, if v == uint16(0x10F0), then uint32(int8(v)) == 0xFFFFFFF0. The conversion always yields a valid value; there is no indication of overflow. 2. When converting a floating-point number to an integer, the fraction is discarded (truncation towards zero). 3. When converting an integer or floating-point number to a floating-point type, or a complex number to another complex type, the result value is rounded to the precision specified by the destination type. For instance, the value of a variable x of type float32 may be stored using additional precision beyond that of an IEEE-754 32-bit number, but float32(x) represents the result of rounding x's value to 32-bit precision. Similarly, x + 0.1 may use more than 32 bits of precision, but float32(x + 0.1) does not. In all non-constant conversions involving floating-point or complex values, if the result type cannot represent the value the conversion succeeds but the result value is implementation-dependent. 1. Converting a signed or unsigned integer value to a string type yields a string containing the UTF-8 representation of the integer. Values outside the range of valid Unicode code points are converted to "\uFFFD". 2. Converting a blob to a string type yields a string whose successive bytes are the elements of the blob. 3. Converting a value of a string type to a blob yields a blob whose successive elements are the bytes of the string. 4. Converting a value of a bigint type to a string yields a string containing the decimal decimal representation of the integer. 5. Converting a value of a string type to a bigint yields a bigint value containing the integer represented by the string value. A prefix of “0x” or “0X” selects base 16; the “0” prefix selects base 8, and a “0b” or “0B” prefix selects base 2. Otherwise the value is interpreted in base 10. An error occurs if the string value is not in any valid format. 6. Converting a value of a rational type to a string yields a string containing the decimal decimal representation of the rational in the form "a/b" (even if b == 1). 7. Converting a value of a string type to a bigrat yields a bigrat value containing the rational represented by the string value. The string can be given as a fraction "a/b" or as a floating-point number optionally followed by an exponent. An error occurs if the string value is not in any valid format. 8. Converting a value of a duration type to a string returns a string representing the duration in the form "72h3m0.5s". Leading zero units are omitted. As a special case, durations less than one second format using a smaller unit (milli-, micro-, or nanoseconds) to ensure that the leading digit is non-zero. The zero duration formats as 0, with no unit. 9. Converting a string value to a duration yields a duration represented by the string. A duration string is a possibly signed sequence of decimal numbers, each with optional fraction and a unit suffix, such as "300ms", "-1.5h" or "2h45m". Valid time units are "ns", "us" (or "µs"), "ms", "s", "m", "h". 10. Converting a time value to a string returns the time formatted using the format string When evaluating the operands of an expression or of function calls, operations are evaluated in lexical left-to-right order. For example, in the evaluation of the function calls and evaluation of c happen in the order h(), i(), j(), c. Floating-point operations within a single expression are evaluated according to the associativity of the operators. Explicit parentheses affect the evaluation by overriding the default associativity. In the expression x + (y + z) the addition y + z is performed before adding x. Statements control execution. The empty statement does nothing. Alter table statements modify existing tables. With the ADD clause it adds a new column to the table. The column must not exist. With the DROP clause it removes an existing column from a table. The column must exist and it must be not the only (last) column of the table. IOW, there cannot be a table with no columns. For example When adding a column to a table with existing data, the constraint clause of the ColumnDef cannot be used. Adding a constrained column to an empty table is fine. Begin transactions statements introduce a new transaction level. Every transaction level must be eventually balanced by exactly one of COMMIT or ROLLBACK statements. Note that when a transaction is roll-backed because of a statement failure then no explicit balancing of the respective BEGIN TRANSACTION is statement is required nor permitted. Failure to properly balance any opened transaction level may cause dead locks and/or lose of data updated in the uppermost opened but never properly closed transaction level. For example A database cannot be updated (mutated) outside of a transaction. Statements requiring a transaction A database is effectively read only outside of a transaction. Statements not requiring a transaction The commit statement closes the innermost transaction nesting level. If that's the outermost level then the updates to the DB made by the transaction are atomically made persistent. For example Create index statements create new indices. Index is a named projection of ordered values of a table column to the respective records. As a special case the id() of the record can be indexed. Index name must not be the same as any of the existing tables and it also cannot be the same as of any column name of the table the index is on. For example Now certain SELECT statements may use the indices to speed up joins and/or to speed up record set filtering when the WHERE clause is used; or the indices might be used to improve the performance when the ORDER BY clause is present. The UNIQUE modifier requires the indexed values tuple to be index-wise unique or have all values NULL. The optional IF NOT EXISTS clause makes the statement a no operation if the index already exists. A simple index consists of only one expression which must be either a column name or the built-in id(). A more complex and more general index is one that consists of more than one expression or its single expression does not qualify as a simple index. In this case the type of all expressions in the list must be one of the non blob-like types. Note: Blob-like types are blob, bigint, bigrat, time and duration. Create table statements create new tables. A column definition declares the column name and type. Table names and column names are case sensitive. Neither a table or an index of the same name may exist in the DB. For example The optional IF NOT EXISTS clause makes the statement a no operation if the table already exists. The optional constraint clause has two forms. The first one is found in many SQL dialects. This form prevents the data in column DepartmentName to be NULL. The second form allows an arbitrary boolean expression to be used to validate the column. If the value of the expression is true then the validation succeeded. If the value of the expression is false or NULL then the validation fails. If the value of the expression is not of type bool an error occurs. The optional DEFAULT clause is an expression which, if present, is substituted instead of a NULL value when the colum is assigned a value. Note that the constraint and/or default expressions may refer to other columns by name: When a table row is inserted by the INSERT INTO statement or when a table row is updated by the UPDATE statement, the order of operations is as follows: 1. The new values of the affected columns are set and the values of all the row columns become the named values which can be referred to in default expressions evaluated in step 2. 2. If any row column value is NULL and the DEFAULT clause is present in the column's definition, the default expression is evaluated and its value is set as the respective column value. 3. The values, potentially updated, of row columns become the named values which can be referred to in constraint expressions evaluated during step 4. 4. All row columns which definition has the constraint clause present will have that constraint checked. If any constraint violation is detected, the overall operation fails and no changes to the table are made. Delete from statements remove rows from a table, which must exist. For example If the WHERE clause is not present then all rows are removed and the statement is equivalent to the TRUNCATE TABLE statement. Drop index statements remove indices from the DB. The index must exist. For example The optional IF EXISTS clause makes the statement a no operation if the index does not exist. Drop table statements remove tables from the DB. The table must exist. For example The optional IF EXISTS clause makes the statement a no operation if the table does not exist. Insert into statements insert new rows into tables. New rows come from literal data, if using the VALUES clause, or are a result of select statement. In the later case the select statement is fully evaluated before the insertion of any rows is performed, allowing to insert values calculated from the same table rows are to be inserted into. If the ColumnNameList part is omitted then the number of values inserted in the row must be the same as are columns in the table. If the ColumnNameList part is present then the number of values per row must be same as the same number of column names. All other columns of the record are set to NULL. The type of the value assigned to a column must be the same as is the column's type or the value must be NULL. If there exists an unique index that would make the insert statement fail, the optional IF NOT EXISTS turns the insert statement in such case into a no-op. For example If any of the columns of the table were defined using the optional constraints clause or the optional defaults clause then those are processed on a per row basis. The details are discussed in the "Constraints and defaults" chapter below the CREATE TABLE statement documentation. Explain statement produces a recordset consisting of lines of text which describe the execution plan of a statement, if any. For example, the QL tool treats the explain statement specially and outputs the joined lines: The explanation may aid in uderstanding how a statement/query would be executed and if indices are used as expected - or which indices may possibly improve the statement performance. The create index statements above were directly copy/pasted in the terminal from the suggestions provided by the filter recordset pipeline part returned by the explain statement. If the statement has nothing special in its plan, the result is the original statement. To get an explanation of the select statement of the IN predicate, use the EXPLAIN statement with that particular select statement. The rollback statement closes the innermost transaction nesting level discarding any updates to the DB made by it. If that's the outermost level then the effects on the DB are as if the transaction never happened. For example The (temporary) record set from the last statement is returned and can be processed by the client. In this case the rollback is the same as 'DROP TABLE tmp;' but it can be a more complex operation. Select from statements produce recordsets. The optional DISTINCT modifier ensures all rows in the result recordset are unique. Either all of the resulting fields are returned ('*') or only those named in FieldList. RecordSetList is a list of table names or parenthesized select statements, optionally (re)named using the AS clause. The result can be filtered using a WhereClause and orderd by the OrderBy clause. For example If Recordset is a nested, parenthesized SelectStmt then it must be given a name using the AS clause if its field are to be accessible in expressions. A field is an named expression. Identifiers, not used as a type in conversion or a function name in the Call clause, denote names of (other) fields, values of which should be used in the expression. The expression can be named using the AS clause. If the AS clause is not present and the expression consists solely of a field name, then that field name is used as the name of the resulting field. Otherwise the field is unnamed. For example The SELECT statement can optionally enumerate the desired/resulting fields in a list. No two identical field names can appear in the list. When more than one record set is used in the FROM clause record set list, the result record set field names are rewritten to be qualified using the record set names. If a particular record set doesn't have a name, its respective fields became unnamed. The optional JOIN clause, for example is mostly equal to except that the rows from a which, when they appear in the cross join, never made expr to evaluate to true, are combined with a virtual row from b, containing all nulls, and added to the result set. For the RIGHT JOIN variant the discussed rules are used for rows from b not satisfying expr == true and the virtual, all-null row "comes" from a. The FULL JOIN adds the respective rows which would be otherwise provided by the separate executions of the LEFT JOIN and RIGHT JOIN variants. For more thorough OUTER JOIN discussion please see the Wikipedia article at [10]. Resultins rows of a SELECT statement can be optionally ordered by the ORDER BY clause. Collating proceeds by considering the expressions in the expression list left to right until a collating order is determined. Any possibly remaining expressions are not evaluated. All of the expression values must yield an ordered type or NULL. Ordered types are defined in "Comparison operators". Collating of elements having a NULL value is different compared to what the comparison operators yield in expression evaluation (NULL result instead of a boolean value). Below, T denotes a non NULL value of any QL type. NULL collates before any non NULL value (is considered smaller than T). Two NULLs have no collating order (are considered equal). The WHERE clause restricts records considered by some statements, like SELECT FROM, DELETE FROM, or UPDATE. It is an error if the expression evaluates to a non null value of non bool type. Another form of the WHERE clause is an existence predicate of a parenthesized select statement. The EXISTS form evaluates to true if the parenthesized SELECT statement produces a non empty record set. The NOT EXISTS form evaluates to true if the parenthesized SELECT statement produces an empty record set. The parenthesized SELECT statement is evaluated only once (TODO issue #159). The GROUP BY clause is used to project rows having common values into a smaller set of rows. For example Using the GROUP BY without any aggregate functions in the selected fields is in certain cases equal to using the DISTINCT modifier. The last two examples above produce the same resultsets. The optional OFFSET clause allows to ignore first N records. For example The above will produce only rows 11, 12, ... of the record set, if they exist. The value of the expression must a non negative integer, but not bigint or duration. The optional LIMIT clause allows to ignore all but first N records. For example The above will return at most the first 10 records of the record set. The value of the expression must a non negative integer, but not bigint or duration. The LIMIT and OFFSET clauses can be combined. For example Considering table t has, say 10 records, the above will produce only records 4 - 8. After returning record #8, no more result rows/records are computed. 1. The FROM clause is evaluated, producing a Cartesian product of its source record sets (tables or nested SELECT statements). 2. If present, the JOIN cluase is evaluated on the result set of the previous evaluation and the recordset specified by the JOIN clause. (... JOIN Recordset ON ...) 3. If present, the WHERE clause is evaluated on the result set of the previous evaluation. 4. If present, the GROUP BY clause is evaluated on the result set of the previous evaluation(s). 5. The SELECT field expressions are evaluated on the result set of the previous evaluation(s). 6. If present, the DISTINCT modifier is evaluated on the result set of the previous evaluation(s). 7. If present, the ORDER BY clause is evaluated on the result set of the previous evaluation(s). 8. If present, the OFFSET clause is evaluated on the result set of the previous evaluation(s). The offset expression is evaluated once for the first record produced by the previous evaluations. 9. If present, the LIMIT clause is evaluated on the result set of the previous evaluation(s). The limit expression is evaluated once for the first record produced by the previous evaluations. Truncate table statements remove all records from a table. The table must exist. For example Update statements change values of fields in rows of a table. For example Note: The SET clause is optional. If any of the columns of the table were defined using the optional constraints clause or the optional defaults clause then those are processed on a per row basis. The details are discussed in the "Constraints and defaults" chapter below the CREATE TABLE statement documentation. To allow to query for DB meta data, there exist specially named tables, some of them being virtual. Note: Virtual system tables may have fake table-wise unique but meaningless and unstable record IDs. Do not apply the built-in id() to any system table. The table __Table lists all tables in the DB. The schema is The Schema column returns the statement to (re)create table Name. This table is virtual. The table __Colum lists all columns of all tables in the DB. The schema is The Ordinal column defines the 1-based index of the column in the record. This table is virtual. The table __Colum2 lists all columns of all tables in the DB which have the constraint NOT NULL or which have a constraint expression defined or which have a default expression defined. The schema is It's possible to obtain a consolidated recordset for all properties of all DB columns using The Name column is the column name in TableName. The table __Index lists all indices in the DB. The schema is The IsUnique columns reflects if the index was created using the optional UNIQUE clause. This table is virtual. Built-in functions are predeclared. The built-in aggregate function avg returns the average of values of an expression. Avg ignores NULL values, but returns NULL if all values of a column are NULL or if avg is applied to an empty record set. The column values must be of a numeric type. The built-in function coalesce takes at least one argument and returns the first of its arguments which is not NULL. If all arguments are NULL, this function returns NULL. This is useful for providing defaults for NULL values in a select query. The built-in function contains returns true if substr is within s. If any argument to contains is NULL the result is NULL. The built-in aggregate function count returns how many times an expression has a non NULL values or the number of rows in a record set. Note: count() returns 0 for an empty record set. For example Date returns the time corresponding to in the appropriate zone for that time in the given location. The month, day, hour, min, sec, and nsec values may be outside their usual ranges and will be normalized during the conversion. For example, October 32 converts to November 1. A daylight savings time transition skips or repeats times. For example, in the United States, March 13, 2011 2:15am never occurred, while November 6, 2011 1:15am occurred twice. In such cases, the choice of time zone, and therefore the time, is not well-defined. Date returns a time that is correct in one of the two zones involved in the transition, but it does not guarantee which. A location maps time instants to the zone in use at that time. Typically, the location represents the collection of time offsets in use in a geographical area, such as "CEST" and "CET" for central Europe. "local" represents the system's local time zone. "UTC" represents Universal Coordinated Time (UTC). The month specifies a month of the year (January = 1, ...). If any argument to date is NULL the result is NULL. The built-in function day returns the day of the month specified by t. If the argument to day is NULL the result is NULL. The built-in function formatTime returns a textual representation of the time value formatted according to layout, which defines the format by showing how the reference time, would be displayed if it were the value; it serves as an example of the desired output. The same display rules will then be applied to the time value. If any argument to formatTime is NULL the result is NULL. NOTE: The string value of the time zone, like "CET" or "ACDT", is dependent on the time zone of the machine the function is run on. For example, if the t value is in "CET", but the machine is in "ACDT", instead of "CET" the result is "+0100". This is the same what Go (time.Time).String() returns and in fact formatTime directly calls t.String(). returns on a machine in the CET time zone, but may return on a machine in the ACDT zone. The time value is in both cases the same so its ordering and comparing is correct. Only the display value can differ. The built-in functions formatFloat and formatInt format numbers to strings using go's number format functions in the `strconv` package. For all three functions, only the first argument is mandatory. The default values of the rest are shown in the examples. If the first argument is NULL, the result is NULL. returns returns returns Unlike the `strconv` equivalent, the formatInt function handles all integer types, both signed and unsigned. The built-in function hasPrefix tests whether the string s begins with prefix. If any argument to hasPrefix is NULL the result is NULL. The built-in function hasSuffix tests whether the string s ends with suffix. If any argument to hasSuffix is NULL the result is NULL. The built-in function hour returns the hour within the day specified by t, in the range [0, 23]. If the argument to hour is NULL the result is NULL. The built-in function hours returns the duration as a floating point number of hours. If the argument to hours is NULL the result is NULL. The built-in function id takes zero or one arguments. If no argument is provided, id() returns a table-unique automatically assigned numeric identifier of type int. Ids of deleted records are not reused unless the DB becomes completely empty (has no tables). For example If id() without arguments is called for a row which is not a table record then the result value is NULL. For example If id() has one argument it must be a table name of a table in a cross join. For example The built-in function len takes a string argument and returns the lentgh of the string in bytes. The expression len(s) is constant if s is a string constant. If the argument to len is NULL the result is NULL. The built-in aggregate function max returns the largest value of an expression in a record set. Max ignores NULL values, but returns NULL if all values of a column are NULL or if max is applied to an empty record set. The expression values must be of an ordered type. For example The built-in aggregate function min returns the smallest value of an expression in a record set. Min ignores NULL values, but returns NULL if all values of a column are NULL or if min is applied to an empty record set. For example The column values must be of an ordered type. The built-in function minute returns the minute offset within the hour specified by t, in the range [0, 59]. If the argument to minute is NULL the result is NULL. The built-in function minutes returns the duration as a floating point number of minutes. If the argument to minutes is NULL the result is NULL. The built-in function month returns the month of the year specified by t (January = 1, ...). If the argument to month is NULL the result is NULL. The built-in function nanosecond returns the nanosecond offset within the second specified by t, in the range [0, 999999999]. If the argument to nanosecond is NULL the result is NULL. The built-in function nanoseconds returns the duration as an integer nanosecond count. If the argument to nanoseconds is NULL the result is NULL. The built-in function now returns the current local time. The built-in function parseTime parses a formatted string and returns the time value it represents. The layout defines the format by showing how the reference time, would be interpreted if it were the value; it serves as an example of the input format. The same interpretation will then be made to the input string. Elements omitted from the value are assumed to be zero or, when zero is impossible, one, so parsing "3:04pm" returns the time corresponding to Jan 1, year 0, 15:04:00 UTC (note that because the year is 0, this time is before the zero Time). Years must be in the range 0000..9999. The day of the week is checked for syntax but it is otherwise ignored. In the absence of a time zone indicator, parseTime returns a time in UTC. When parsing a time with a zone offset like -0700, if the offset corresponds to a time zone used by the current location, then parseTime uses that location and zone in the returned time. Otherwise it records the time as being in a fabricated location with time fixed at the given zone offset. When parsing a time with a zone abbreviation like MST, if the zone abbreviation has a defined offset in the current location, then that offset is used. The zone abbreviation "UTC" is recognized as UTC regardless of location. If the zone abbreviation is unknown, Parse records the time as being in a fabricated location with the given zone abbreviation and a zero offset. This choice means that such a time can be parses and reformatted with the same layout losslessly, but the exact instant used in the representation will differ by the actual zone offset. To avoid such problems, prefer time layouts that use a numeric zone offset. If any argument to parseTime is NULL the result is NULL. The built-in function second returns the second offset within the minute specified by t, in the range [0, 59]. If the argument to second is NULL the result is NULL. The built-in function seconds returns the duration as a floating point number of seconds. If the argument to seconds is NULL the result is NULL. The built-in function since returns the time elapsed since t. It is shorthand for now()-t. If the argument to since is NULL the result is NULL. The built-in aggregate function sum returns the sum of values of an expression for all rows of a record set. Sum ignores NULL values, but returns NULL if all values of a column are NULL or if sum is applied to an empty record set. The column values must be of a numeric type. The built-in function timeIn returns t with the location information set to loc. For discussion of the loc argument please see date(). If any argument to timeIn is NULL the result is NULL. The built-in function weekday returns the day of the week specified by t. Sunday == 0, Monday == 1, ... If the argument to weekday is NULL the result is NULL. The built-in function year returns the year in which t occurs. If the argument to year is NULL the result is NULL. The built-in function yearDay returns the day of the year specified by t, in the range [1,365] for non-leap years, and [1,366] in leap years. If the argument to yearDay is NULL the result is NULL. Three functions assemble and disassemble complex numbers. The built-in function complex constructs a complex value from a floating-point real and imaginary part, while real and imag extract the real and imaginary parts of a complex value. The type of the arguments and return value correspond. For complex, the two arguments must be of the same floating-point type and the return type is the complex type with the corresponding floating-point constituents: complex64 for float32, complex128 for float64. The real and imag functions together form the inverse, so for a complex value z, z == complex(real(z), imag(z)). If the operands of these functions are all constants, the return value is a constant. If any argument to any of complex, real, imag functions is NULL the result is NULL. For the numeric types, the following sizes are guaranteed Portions of this specification page are modifications based on work[2] created and shared by Google[3] and used according to terms described in the Creative Commons 3.0 Attribution License[4]. This specification is licensed under the Creative Commons Attribution 3.0 License, and code is licensed under a BSD license[5]. Links from the above documentation This section is not part of the specification. WARNING: The implementation of indices is new and it surely needs more time to become mature. Indices are used currently used only by the WHERE clause. The following expression patterns of 'WHERE expression' are recognized and trigger index use. The relOp is one of the relation operators <, <=, ==, >=, >. For the equality operator both operands must be of comparable types. For all other operators both operands must be of ordered types. The constant expression is a compile time constant expression. Some constant folding is still a TODO. Parameter is a QL parameter ($1 etc.). Consider tables t and u, both with an indexed field f. The WHERE expression doesn't comply with the above simple detected cases. However, such query is now automatically rewritten to which will use both of the indices. The impact of using the indices can be substantial (cf. BenchmarkCrossJoin*) if the resulting rows have low "selectivity", ie. only few rows from both tables are selected by the respective WHERE filtering. Note: Existing QL DBs can be used and indices can be added to them. However, once any indices are present in the DB, the old QL versions cannot work with such DB anymore. Running a benchmark with -v (-test.v) outputs information about the scale used to report records/s and a brief description of the benchmark. For example Running the full suite of benchmarks takes a lot of time. Use the -timeout flag to avoid them being killed after the default time limit (10 minutes).
Meeus implements algorithms from the book "Astronomical Algorithms" by Jean Meeus. It follows the second edition, copyright 1998, with corrections as of August 10, 2009. It requires Go 1.1 or later. Jean Meeus's book has long been respected as a broad-reaching source of astronomical algorithms, and many code libraries have been based on it. This library will be distinct in several respects, I hope. First of all it is in the Go language, a programming language new enough that it well postdates the book itself. Go has many advantages for a large and diverse library such as this and it is a fine language for for scientific computations. I hope that a Go implementation will prove relevant for some time in the future. Next, this library attempts fairly comprehensive coverage of the book. Each chapter of the book is addressed, and in the very few cases where there seems no code from the chapter that is applicable in Go, similar and more appropriate techniques are at least discussed in documentation. If meaningful, examples are given as well. While this library attempts fairly comprehensive coverage of the book, it does not attempt to present a complete, well rounded, and polished astronomy library. Such a production-quality astronomy library would likely include some updated routines and data, routines and data from other sources, and would fill in various holes of functionality which Meeus elects to gloss over. Such a library could certainly be derived from this one, but it is beyond the scope of what is attempted here. Thus, this library should represent a solid foundation for the development of a broad range of astronomy software. Much software should be able to use this library directly. Some software will need routines from additional sources. When the API of this library begins to present friction with that of other code, it may be time to fork or otherwise derive a new library from this one. Please feel free to do this, respecting of course the MIT license under which this software is offered. By Go convention, each package is in its own subdirectory. The "subdirectories" list of this documentation page lists all packages of of the library. Each package also corresponds to exacly one chapter of the book. The package documentation heading references the chapter number and a cross reference is given below of chapter numbers and package names. Within a chapter of the book, Meeus presents explanatory text, numbered formulas, numbered examples, and other exercises. Within a package of this library, there are library functions and other codified definitions; there are Go examples which appear in documentation and which are also evaluated and verified to produce correct output by the go test feature; and there is test code which is neither part of the API nor the documentation but which verified by the go test feature. The "API", or choice of functions to implement in Go, covers many of Meeus's numbered formulas and covers the algorithms needed to work most of the numbered examples. The correspondence is not one-to-one, but often "refactored" into functions that seem more idiomatic to Go. This is set as the limit of the API however, and thus the limit of the functionality offered by this library. Each numbered example in the book is also translated to a Go example function. This typically shows how to use the implemented API to compute the results of the example. As the go test feature validates these results, the examples also serve as baseline tests of the correctness of the API code. Relevant "exercises" from the book are also often implemented as Go examples. A few packages remain incomplete. A package is considered complete if it implements all major formulas and algorithms and if it implements all numbered examples. For incomplete packages, the package documentation will describe the ways in which it is incomplete and typically give reasons for the incompleteness. In addition to the chapter packages, there is a package called "base". This contains a few definitions that are provided by Meeus but are of such general use that they really don't belong with any one chapter. The much greater bulk of base however, are functions which Meeus does not explicitly provide, but again are of general use. The nature of these functions is as helper subroutines or IO subroutines. The functions do not offer additional astronomy algorithms beyond those provided by Meeus. To more closely follow the book's use of Greek letters and other symbols, Unicode is freely used in the source code. Recognizing that these symbols are awkard to enter in many environments however, they are avoided for exported symbols that comprise the library API. The function Coord.EclToEq for example, returns (α, δ float64) but of course you can assign these return values to whatever variables you like. The struct Coord.Equatorial on the other hand, has exported fields RA and Dec. ASCII is used in this case to simplify using these symbols in your code. Some identifiers use the prime symbol (ʹ). That's Unicode U+02B9, not the ASCII '. Go uses ASCII ' for raw strings and does not allow it in identifiers. U+02B9 on the other hand is Unicode category Lm, and is perfectly valid in Go identifiers. An earler version of this library used the Go type float64 for most parameters and return values. This allowed terse, efficient code but required careful attention to the scaling or units used. Go defined types are now used for Time, RA, HourAngle, and general Angle quantities in the interest of making units and coversions more clear. These types are defined in the external package github.com/soniakeys/unit. An earlier version of this library included routines for formatting sexagesimal quantities. These have been moved to the external package github.com/soniakeys/sexagesimal and use of this package is now restricted to examples and tests. Meeus packages and the sexagesimal package both depend on the unit package. Meeus packages do not depend on sexagesimal, although the Meeus tests do. .
Package binding is a middleware that provides request data binding and validation for Macaron.
Package hiboot is a web/cli app application framework Hiboot is a cloud native web and cli application framework written in Go. Hiboot integrates the popular libraries but make them simpler, easier to use. It borrowed some of the Spring features like dependency injection, aspect oriented programming, and auto configuration. You can integrate any other libraries easily by auto configuration with dependency injection support. hiboot-data is the typical project that implement customized hiboot starters. see https://godoc.org/hidevops.io/hiboot-data Overview One of the most significant feature of Hiboot is Dependency Injection. Hiboot implements JSR-330 standard. Let's say that we have two implementations of AuthenticationService, below will explain how does Hiboot work. In Hiboot the injection into fields is triggered by `inject:""` struct tag. when inject tag is present on a field, Hiboot tries to resolve the object to inject by the type of the field. If several implementations of the same service interface are available, you have to disambiguate which implementation you want to be injected. This can be done by naming the field to specific implementation. Although Field Injection is pretty convenient, but the Constructor Injection is the first-class citizen, we usually advise people to use constructor injection as it has below advantages, It's testable, easy to implement unit test. Syntax validation, with syntax validation on most of the IDEs to avoid typo. No need to use a dedicated mechanism to ensure required properties are set. type userController struct { at.RestController basicAuthenticationService AuthenticationService } // Hiboot will inject the implementation of AuthenticationService func newUserController(basicAuthenticationService AuthenticationService) { return &userController{ basicAuthenticationService: basicAuthenticationService, } } func init() { app.Register(newUserController) } Features This section will show you how to create and run a simplest hiboot application. Let’s get started! Get the source code Source Code This is a simple hello world example
Package ivs provides the API client, operations, and parameter types for Amazon Interactive Video Service. The Amazon Interactive Video Service (IVS) API is REST compatible, using a standard HTTP API and an Amazon Web Services EventBridge event stream for responses. JSON is used for both requests and responses, including errors. The API is an Amazon Web Services regional service. For a list of supported regions and Amazon IVS HTTPS service endpoints, see the Amazon IVS pagein the Amazon Web Services General Reference. All API request parameters and URLs are case sensitive. For a summary of notable documentation changes in each release, see Document History. Allowed Header Values Accept: application/json Accept-Encoding: gzip, deflate Content-Type: application/json Key Concepts Channel — Stores configuration data related to your live stream. You first create a channel and then use the channel’s stream key to start your live stream. Stream key — An identifier assigned by Amazon IVS when you create a channel, which is then used to authorize streaming. Treat the stream key like a secret, since it allows anyone to stream to the channel. Playback key pair — Video playback may be restricted using playback-authorization tokens, which use public-key encryption. A playback key pair is the public-private pair of keys used to sign and validate the playback-authorization token. Recording configuration — Stores configuration related to recording a live stream and where to store the recorded content. Multiple channels can reference the same recording configuration. Playback restriction policy — Restricts playback by countries and/or origin sites. For more information about your IVS live stream, also see Getting Started with IVS Low-Latency Streaming. A tag is a metadata label that you assign to an Amazon Web Services resource. A tag comprises a key and a value, both set by you. For example, you might set a tag as topic:nature to label a particular video category. See Best practices and strategies in Tagging Amazon Web Services Resources and Tag Editor for details, including restrictions that apply to tags and "Tag naming limits and requirements"; Amazon IVS has no service-specific constraints beyond what is documented there. Tags can help you identify and organize your Amazon Web Services resources. For example, you can use the same tag for different resources to indicate that they are related. You can also use tags to manage access (see Access Tags). The Amazon IVS API has these tag-related operations: TagResource, UntagResource, and ListTagsForResource. The following resources support tagging: Channels, Stream Keys, Playback Key Pairs, and Recording Configurations. At most 50 tags can be applied to a resource. Note the differences between these concepts: Authentication is about verifying identity. You need to be authenticated to sign Amazon IVS API requests. Authorization is about granting permissions. Your IAM roles need to have permissions for Amazon IVS API requests. In addition, authorization is needed to view Amazon IVS private channels. (Private channels are channels that are enabled for "playback authorization.") All Amazon IVS API requests must be authenticated with a signature. The Amazon Web Services Command-Line Interface (CLI) and Amazon IVS Player SDKs take care of signing the underlying API calls for you. However, if your application calls the Amazon IVS API directly, it’s your responsibility to sign the requests. You generate a signature using valid Amazon Web Services credentials that have permission to perform the requested action. For example, you must sign PutMetadata requests with a signature generated from a user account that has the ivs:PutMetadata permission. For more information: Authentication and generating signatures — See Authenticating Requests (Amazon Web Services Signature Version 4)in the Amazon Web Services General Reference. Managing Amazon IVS permissions — See Identity and Access Managementon the Security page of the Amazon IVS User Guide. Amazon Resource Names (ARNs) ARNs uniquely identify AWS resources. An ARN is required when you need to specify a resource unambiguously across all of AWS, such as in IAM policies and API calls. For more information, see Amazon Resource Namesin the AWS General Reference.
Package urlpath matches paths against a template. It's meant for applications that take in REST-like URL paths, and need to validate and extract data from those paths. See New for documentation of the syntax for creating paths. See Match for how to validate and parse an inputted path.
Package toml provides facilities for decoding and encoding TOML configuration files via reflection. There is also support for delaying decoding with the Primitive type, and querying the set of keys in a TOML document with the MetaData type. The specification implemented: https://github.com/toml-lang/toml The sub-command github.com/BurntSushi/toml/cmd/tomlv can be used to verify whether a file is a valid TOML document. It can also be used to print the type of each key in a TOML document. There are two important types of tests used for this package. The first is contained inside '*_test.go' files and uses the standard Go unit testing framework. These tests are primarily devoted to holistically testing the decoder and encoder. The second type of testing is used to verify the implementation's adherence to the TOML specification. These tests have been factored into their own project: https://github.com/BurntSushi/toml-test The reason the tests are in a separate project is so that they can be used by any implementation of TOML. Namely, it is language agnostic. Example StrictDecoding shows how to detect whether there are keys in the TOML document that weren't decoded into the value given. This is useful for returning an error to the user if they've included extraneous fields in their configuration. Example UnmarshalTOML shows how to implement a struct type that knows how to unmarshal itself. The struct must take full responsibility for mapping the values passed into the struct. The method may be used with interfaces in a struct in cases where the actual type is not known until the data is examined. Example Unmarshaler shows how to decode TOML strings into your own custom data type.
Package restlayer is an API framework heavily inspired by the excellent Python Eve (http://python-eve.org/). It helps you create a comprehensive, customizable, and secure REST (graph) API on top of pluggable backend storages with no boiler plate code so can focus on your business logic. Implemented as a net/http middleware, it plays well with other middleware like CORS (http://github.com/rs/cors) and is net/context aware thanks to xhandler. REST Layer is an opinionated framework. Unlike many API frameworks, you don’t directly control the routing and you don’t have to write handlers. You just define resources and sub-resources with a schema, the framework automatically figures out what routes to generate behind the scene. You don’t have to take care of the HTTP headers and response, JSON encoding, etc. either. REST layer handles HTTP conditional requests, caching, integrity checking for you. A powerful and extensible validation engine make sure that data comes pre-validated to your custom storage handlers. Generic resource handlers for MongoDB (http://github.com/clarify/rested/storers/mongo) and other databases are also available so you have few to no code to write to make the whole system work. Moreover, REST Layer let you create a graph API by linking resources between them. Thanks to its advanced field selection syntax, you can gather resources and their dependencies in a single request, saving you from costly network roundtrips. REST Layer is composed of several sub-packages: See https://github.com/clarify/rested/blob/master/README.md for full REST Layer documentation.
Package sessions is a sessions package for fasthttp, it provides cookie and filesystem sessions and infrastructure for custom session backends. The key features are: Let's start with an example that shows the sessions API in a nutshell: First we initialize a session store calling NewCookieStore() and passing a secret key used to authenticate the session. Inside the handler, we call store.Get() to retrieve an existing session or a new one. Then we set some session values in session.Values, which is a map[interface{}]interface{}. And finally we call session.Save() to save the session in the response. Important Note: application must to call sessions.Clear at the end of a request lifetime. An easy way to do this is to wrap your handler with sessions.ClearHandler. That's all you need to know for the basic usage. Let's take a look at other options, starting with flash messages. Flash messages are session values that last until read. The term appeared with Ruby On Rails a few years back. When we request a flash message, it is removed from the session. To add a flash, call session.AddFlash(), and to get all flashes, call session.Flashes(). Here is an example: Flash messages are useful to set information to be read after a redirection, like after form submissions. There may also be cases where you want to store a complex datatype within a session, such as a struct. Sessions are serialised using the encoding/gob package, so it is easy to register new datatypes for storage in sessions: As it's not possible to pass a raw type as a parameter to a function, gob.Register() relies on us passing it a value of the desired type. In the example above we've passed it a pointer to a struct and a pointer to a custom type representing a map[string]interface. (We could have passed non-pointer values if we wished.) This will then allow us to serialise/deserialise values of those types to and from our sessions. Note that because session values are stored in a map[string]interface{}, there's a need to type-assert data when retrieving it. We'll use the Person struct we registered above: By default, session cookies last for a month. This is probably too long for some cases, but it is easy to change this and other attributes during runtime. Sessions can be configured individually or the store can be configured and then all sessions saved using it will use that configuration. We access session.Options or store.Options to set a new configuration. The fields are basically a subset of http.Cookie fields. Let's change the maximum age of a session to one week: Sometimes we may want to change authentication and/or encryption keys without breaking existing sessions. The CookieStore supports key rotation, and to use it you just need to set multiple authentication and encryption keys, in pairs, to be tested in order: New sessions will be saved using the first pair. Old sessions can still be read because the first pair will fail, and the second will be tested. This makes it easy to "rotate" secret keys and still be able to validate existing sessions. Note: for all pairs the encryption key is optional; set it to nil or omit it and and encryption won't be used. Multiple sessions can be used in the same request, even with different session backends. When this happens, calling Save() on each session individually would be cumbersome, so we have a way to save all sessions at once: it's sessions.Save(). Here's an example: This is possible because when we call Get() from a session store, it adds the session to a common registry. Save() uses it to save all registered sessions.
Package siris is a fully-featured HTTP/2 backend web framework written entirely in Google’s Go Language. Source code and other details for the project are available at GitHub: The only requirement is the Go Programming Language, at least version 1.8 Example code: Access to all hosts that serve your application can be provided by the `Application#Hosts` field, after the `Run` method. But the most common scenario is that you may need access to the host before the `Run` method, there are two ways of gain access to the host supervisor, read below. First way is to use the `app.NewHost` to create a new host and use one of its `Serve` or `Listen` functions to start the application via the `siris#Raw` Runner. Note that this way needs an extra import of the `net/http` package. Example Code: Second, and probably easier way is to use the `host.Configurator`. Note that this method requires an extra import statement of "github.com/go-siris/siris/core/host" when using go < 1.9, if you're targeting on go1.9 then you can use the `siris#Supervisor` and omit the extra host import. All common `Runners` we saw earlier (`siris#Addr, siris#Listener, siris#Server, siris#TLS, siris#AutoTLS`) accept a variadic argument of `host.Configurator`, there are just `func(*host.Supervisor)`. Therefore the `Application` gives you the rights to modify the auto-created host supervisor through these. Example Code: All HTTP methods are supported, developers can also register handlers for same paths for different methods. The first parameter is the HTTP Method, second parameter is the request path of the route, third variadic parameter should contains one or more context.Handler executed by the registered order when a user requests for that specific resouce path from the server. Example code: In order to make things easier for the user, Siris provides functions for all HTTP Methods. The first parameter is the request path of the route, second variadic parameter should contains one or more context.Handler executed by the registered order when a user requests for that specific resouce path from the server. Example code: A set of routes that are being groupped by path prefix can (optionally) share the same middleware handlers and template layout. A group can have a nested group too. `.Party` is being used to group routes, developers can declare an unlimited number of (nested) groups. Example code: Siris developers are able to register their own handlers for http statuses like 404 not found, 500 internal server error and so on. Example code: With the help of Siris's expressionist router you can build any form of API you desire, with safety. Example code: At the previous example, we've seen static routes, group of routes, subdomains, wildcard subdomains, a small example of parameterized path with a single known paramete and custom http errors, now it's time to see wildcard parameters and macros. Siris, like net/http std package registers route's handlers by a Handler, the Siris' type of handler is just a func(ctx context.Context) where context comes from github.com/go-siris/siris/context. Until go 1.9 you will have to import that package too, after go 1.9 this will be not be necessary. Siris has the easiest and the most powerful routing process you have ever meet. At the same time, Siris has its own interpeter(yes like a programming language) for route's path syntax and their dynamic path parameters parsing and evaluation, I am calling them "macros" for shortcut. How? It calculates its needs and if not any special regexp needed then it just registers the route with the low-level path syntax, otherwise it pre-compiles the regexp and adds the necessary middleware(s). Standard macro types for parameters: if type is missing then parameter's type is defaulted to string, so {param} == {param:string}. If a function not found on that type then the "string"'s types functions are being used. i.e: Besides the fact that Siris provides the basic types and some default "macro funcs" you are able to register your own too!. Register a named path parameter function: at the func(argument ...) you can have any standard type, it will be validated before the server starts so don't care about performance here, the only thing it runs at serve time is the returning func(paramValue string) bool. Example code: A path parameter name should contain only alphabetical letters, symbols, containing '_' and numbers are NOT allowed. If route failed to be registered, the app will panic without any warnings if you didn't catch the second return value(error) on .Handle/.Get.... Last, do not confuse ctx.Values() with ctx.Params(). Path parameter's values goes to ctx.Params() and context's local storage that can be used to communicate between handlers and middleware(s) goes to ctx.Values(), path parameters and the rest of any custom values are separated for your own good. Run Static Files Example code: More examples can be found here: https://github.com/go-siris/siris/tree/master/_examples/beginner/file-server Middleware is just a concept of ordered chain of handlers. Middleware can be registered globally, per-party, per-subdomain and per-route. Example code: Siris is able to wrap and convert any external, third-party Handler you used to use to your web application. Let's convert the https://github.com/rs/cors net/http external middleware which returns a `next form` handler. Example code: Siris supports 5 template engines out-of-the-box, developers can still use any external golang template engine, as `context.ResponseWriter()` is an `io.Writer`. All of these five template engines have common features with common API, like Layout, Template Funcs, Party-specific layout, partial rendering and more. Example code: View engine supports bundled(https://github.com/jteeuwen/go-bindata) template files too. go-bindata gives you two functions, asset and assetNames, these can be set to each of the template engines using the `.Binary` func. Example code: A real example can be found here: https://github.com/go-siris/siris/tree/master/_examples/intermediate/view/embedding-templates-into-app. Enable auto-reloading of templates on each request. Useful while developers are in dev mode as they no neeed to restart their app on every template edit. Example code: Each one of these template engines has different options located here: https://github.com/go-siris/siris/tree/master/view . This example will show how to store and access data from a session. You don’t need any third-party library, but If you want you can use any session manager compatible or not. In this example we will only allow authenticated users to view our secret message on the /secret page. To get access to it, the will first have to visit /login to get a valid session cookie, which logs him in. Additionally he can visit /logout to revoke his access to our secret message. Example code: Running the example: But you should have a basic idea of the framework by now, we just scratched the surface. If you enjoy what you just saw and want to learn more, please follow the below links: Examples: Built'n Middleware: Community Middleware: Home Page:
Package websocket implements the WebSocket protocol defined in RFC 6455. The Conn type represents a WebSocket connection. A server application uses the Upgrade function from an Upgrader object with a HTTP request handler to get a pointer to a Conn: Call the connection WriteMessage and ReadMessages methods to send and receive messages as a slice of bytes. This snippet of code shows how to echo messages using these methods: In above snippet of code, p is a []byte and messageType is an int with value websocket.BinaryMessage or websocket.TextMessage. An application can also send and receive messages using the io.WriteCloser and io.Reader interfaces. To send a message, call the connection NextWriter method to get an io.WriteCloser, write the message to the writer and close the writer when done. To receive a message, call the connection NextReader method to get an io.Reader and read until io.EOF is returned. This snippet snippet shows how to echo messages using the NextWriter and NextReader methods: The WebSocket protocol distinguishes between text and binary data messages. Text messages are interpreted as UTF-8 encoded text. The interpretation of binary messages is left to the application. This package uses the TextMessage and BinaryMessage integer constants to identify the two data message types. The ReadMessage and NextReader methods return the type of the received message. The messageType argument to the WriteMessage and NextWriter methods specifies the type of a sent message. It is the application's responsibility to ensure that text messages are valid UTF-8 encoded text. The WebSocket protocol defines three types of control messages: close, ping and pong. Call the connection WriteControl, WriteMessage or NextWriter methods to send a control message to the peer. Connections handle received ping and pong messages by invoking a callback function set with SetPingHandler and SetPongHandler methods. These callback functions can be invoked from the ReadMessage method, the NextReader method or from a call to the data message reader returned from NextReader. Connections handle received close messages by returning an error from the ReadMessage method, the NextReader method or from a call to the data message reader returned from NextReader. Connections do not support concurrent calls to the write methods (NextWriter, SetWriteDeadline, WriteMessage) or concurrent calls to the read methods methods (NextReader, SetReadDeadline, ReadMessage). Connections do support a concurrent reader and writer. The Close and WriteControl methods can be called concurrently with all other methods. The application must read the connection to process ping and close messages sent from the peer. If the application is not otherwise interested in messages from the peer, then the application should start a goroutine to read and discard messages from the peer. A simple example is: Web browsers allow Javascript applications to open a WebSocket connection to any host. It's up to the server to enforce an origin policy using the Origin request header sent by the browser. The Upgrader calls the function specified in the CheckOrigin field to check the origin. If the CheckOrigin function returns false, then the Upgrade method fails the WebSocket handshake with HTTP status 403. If the CheckOrigin field is nil, then the Upgrader uses a safe default: fail the handshake if the Origin request header is present and not equal to the Host request header. An application can allow connections from any origin by specifying a function that always returns true: The deprecated Upgrade function does not enforce an origin policy. It's the application's responsibility to check the Origin header before calling Upgrade.
Package websocket implements the WebSocket protocol defined in RFC 6455. The Conn type represents a WebSocket connection. A server application uses the Upgrade function from an Upgrader object with a HTTP request handler to get a pointer to a Conn: Call the connection's WriteMessage and ReadMessage methods to send and receive messages as a slice of bytes. This snippet of code shows how to echo messages using these methods: In above snippet of code, p is a []byte and messageType is an int with value websocket.BinaryMessage or websocket.TextMessage. An application can also send and receive messages using the io.WriteCloser and io.Reader interfaces. To send a message, call the connection NextWriter method to get an io.WriteCloser, write the message to the writer and close the writer when done. To receive a message, call the connection NextReader method to get an io.Reader and read until io.EOF is returned. This snippet shows how to echo messages using the NextWriter and NextReader methods: The WebSocket protocol distinguishes between text and binary data messages. Text messages are interpreted as UTF-8 encoded text. The interpretation of binary messages is left to the application. This package uses the TextMessage and BinaryMessage integer constants to identify the two data message types. The ReadMessage and NextReader methods return the type of the received message. The messageType argument to the WriteMessage and NextWriter methods specifies the type of a sent message. It is the application's responsibility to ensure that text messages are valid UTF-8 encoded text. The WebSocket protocol defines three types of control messages: close, ping and pong. Call the connection WriteControl, WriteMessage or NextWriter methods to send a control message to the peer. Connections handle received close messages by sending a close message to the peer and returning a *CloseError from the the NextReader, ReadMessage or the message Read method. Connections handle received ping and pong messages by invoking callback functions set with SetPingHandler and SetPongHandler methods. The callback functions are called from the NextReader, ReadMessage and the message Read methods. The default ping handler sends a pong to the peer. The application's reading goroutine can block for a short time while the handler writes the pong data to the connection. The application must read the connection to process ping, pong and close messages sent from the peer. If the application is not otherwise interested in messages from the peer, then the application should start a goroutine to read and discard messages from the peer. A simple example is: Connections support one concurrent reader and one concurrent writer. Applications are responsible for ensuring that no more than one goroutine calls the write methods (NextWriter, SetWriteDeadline, WriteMessage, WriteJSON) concurrently and that no more than one goroutine calls the read methods (NextReader, SetReadDeadline, ReadMessage, ReadJSON, SetPongHandler, SetPingHandler) concurrently. The Close and WriteControl methods can be called concurrently with all other methods. Web browsers allow Javascript applications to open a WebSocket connection to any host. It's up to the server to enforce an origin policy using the Origin request header sent by the browser. The Upgrader calls the function specified in the CheckOrigin field to check the origin. If the CheckOrigin function returns false, then the Upgrade method fails the WebSocket handshake with HTTP status 403. If the CheckOrigin field is nil, then the Upgrader uses a safe default: fail the handshake if the Origin request header is present and not equal to the Host request header. An application can allow connections from any origin by specifying a function that always returns true: The deprecated Upgrade function does not enforce an origin policy. It's the application's responsibility to check the Origin header before calling Upgrade. Per message compression extensions (RFC 7692) are experimentally supported by this package in a limited capacity. Setting the EnableCompression option to true in Dialer or Upgrader will attempt to negotiate per message deflate support. If compression was successfully negotiated with the connection's peer, any message received in compressed form will be automatically decompressed. All Read methods will return uncompressed bytes. Per message compression of messages written to a connection can be enabled or disabled by calling the corresponding Conn method: Currently this package does not support compression with "context takeover". This means that messages must be compressed and decompressed in isolation, without retaining sliding window or dictionary state across messages. For more details refer to RFC 7692. Use of compression is experimental and may result in decreased performance.
Package validator implements value validations for structs and individual fields based on tags. It can also handle Cross-Field and Cross-Struct validation for nested structs and has the ability to dive into arrays and maps of any type. Why not a better error message? Because this library intends for you to handle your own error messages. Why should I handle my own errors? Many reasons. We built an internationalized application and needed to know the field, and what validation failed so we could provide a localized error. Doing things this way is actually the way the standard library does, see the file.Open method here: The authors return type "error" to avoid the issue discussed in the following, where err is always != nil: Validator only returns nil or ValidationErrors as type error; so, in your code all you need to do is check if the error returned is not nil, and if it's not type cast it to type ValidationErrors like so err.(validator.ValidationErrors). Custom functions can be added. Example: Cross-Field Validation can be done via the following tags: If, however, some custom cross-field validation is required, it can be done using a custom validation. Why not just have cross-fields validation tags (i.e. only eqcsfield and not eqfield)? The reason is efficiency. If you want to check a field within the same struct "eqfield" only has to find the field on the same struct (1 level). But, if we used "eqcsfield" it could be multiple levels down. Example: Multiple validators on a field will process in the order defined. Example: Bad Validator definitions are not handled by the library. Example: Baked In Cross-Field validation only compares fields on the same struct. If Cross-Field + Cross-Struct validation is needed you should implement your own custom validator. Comma (",") is the default separator of validation tags. If you wish to have a comma included within the parameter (i.e. excludesall=,) you will need to use the UTF-8 hex representation 0x2C, which is replaced in the code as a comma, so the above will become excludesall=0x2C. Pipe ("|") is the default separator of validation tags. If you wish to have a pipe included within the parameter i.e. excludesall=| you will need to use the UTF-8 hex representation 0x7C, which is replaced in the code as a pipe, so the above will become excludesall=0x7C Here is a list of the current built in validators: Tells the validation to skip this struct field; this is particularly handy in ignoring embedded structs from being validated. (Usage: -) This is the 'or' operator allowing multiple validators to be used and accepted. (Usage: rbg|rgba) <-- this would allow either rgb or rgba colors to be accepted. This can also be combined with 'and' for example ( Usage: omitempty,rgb|rgba) When a field that is a nested struct is encountered, and contains this flag any validation on the nested struct will be run, but none of the nested struct fields will be validated. This is usefull if inside of you program you know the struct will be valid, but need to verify it has been assigned. NOTE: only "required" and "omitempty" can be used on a struct itself. Same as structonly tag except that any struct level validations will not run. Is a special tag without a validation function attached. It is used when a field is a Pointer, Interface or Invalid and you wish to validate that it exists. Example: want to ensure a bool exists if you define the bool as a pointer and use exists it will ensure there is a value; couldn't use required as it would fail when the bool was false. exists will fail is the value is a Pointer, Interface or Invalid and is nil. Allows conditional validation, for example if a field is not set with a value (Determined by the "required" validator) then other validation such as min or max won't run, but if a value is set validation will run. This tells the validator to dive into a slice, array or map and validate that level of the slice, array or map with the validation tags that follow. Multidimensional nesting is also supported, each level you wish to dive will require another dive tag. Example #1 Example #2 This validates that the value is not the data types default zero value. For numbers ensures value is not zero. For strings ensures value is not "". For slices, maps, pointers, interfaces, channels and functions ensures the value is not nil. For numbers, max will ensure that the value is equal to the parameter given. For strings, it checks that the string length is exactly that number of characters. For slices, arrays, and maps, validates the number of items. For numbers, max will ensure that the value is less than or equal to the parameter given. For strings, it checks that the string length is at most that number of characters. For slices, arrays, and maps, validates the number of items. For numbers, min will ensure that the value is greater or equal to the parameter given. For strings, it checks that the string length is at least that number of characters. For slices, arrays, and maps, validates the number of items. For strings & numbers, eq will ensure that the value is equal to the parameter given. For slices, arrays, and maps, validates the number of items. For strings & numbers, ne will ensure that the value is not equal to the parameter given. For slices, arrays, and maps, validates the number of items. For numbers, this will ensure that the value is greater than the parameter given. For strings, it checks that the string length is greater than that number of characters. For slices, arrays and maps it validates the number of items. Example #1 Example #2 (time.Time) For time.Time ensures the time value is greater than time.Now.UTC(). Same as 'min' above. Kept both to make terminology with 'len' easier. Example #1 Example #2 (time.Time) For time.Time ensures the time value is greater than or equal to time.Now.UTC(). For numbers, this will ensure that the value is less than the parameter given. For strings, it checks that the string length is less than that number of characters. For slices, arrays, and maps it validates the number of items. Example #1 Example #2 (time.Time) For time.Time ensures the time value is less than time.Now.UTC(). Same as 'max' above. Kept both to make terminology with 'len' easier. Example #1 Example #2 (time.Time) For time.Time ensures the time value is less than or equal to time.Now.UTC(). This will validate the field value against another fields value either within a struct or passed in field. Example #1: Example #2: Field Equals Another Field (relative) This does the same as eqfield except that it validates the field provided relative to the top level struct. This will validate the field value against another fields value either within a struct or passed in field. Examples: Field Does Not Equal Another Field (relative) This does the same as nefield except that it validates the field provided relative to the top level struct. Only valid for Numbers and time.Time types, this will validate the field value against another fields value either within a struct or passed in field. usage examples are for validation of a Start and End date: Example #1: Example #2: This does the same as gtfield except that it validates the field provided relative to the top level struct. Only valid for Numbers and time.Time types, this will validate the field value against another fields value either within a struct or passed in field. usage examples are for validation of a Start and End date: Example #1: Example #2: This does the same as gtefield except that it validates the field provided relative to the top level struct. Only valid for Numbers and time.Time types, this will validate the field value against another fields value either within a struct or passed in field. usage examples are for validation of a Start and End date: Example #1: Example #2: This does the same as ltfield except that it validates the field provided relative to the top level struct. Only valid for Numbers and time.Time types, this will validate the field value against another fields value either within a struct or passed in field. usage examples are for validation of a Start and End date: Example #1: Example #2: This does the same as ltefield except that it validates the field provided relative to the top level struct. This validates that a string value contains alpha characters only This validates that a string value contains alphanumeric characters only This validates that a string value contains a basic numeric value. basic excludes exponents etc... This validates that a string value contains a valid hexadecimal. This validates that a string value contains a valid hex color including hashtag (#) This validates that a string value contains a valid rgb color This validates that a string value contains a valid rgba color This validates that a string value contains a valid hsl color This validates that a string value contains a valid hsla color This validates that a string value contains a valid email This may not conform to all possibilities of any rfc standard, but neither does any email provider accept all posibilities. This validates that a string value contains a valid url This will accept any url the golang request uri accepts but must contain a schema for example http:// or rtmp:// This validates that a string value contains a valid uri This will accept any uri the golang request uri accepts This validates that a string value contains a valid base64 value. Although an empty string is valid base64 this will report an empty string as an error, if you wish to accept an empty string as valid you can use this with the omitempty tag. This validates that a string value contains the substring value. This validates that a string value contains any Unicode code points in the substring value. This validates that a string value contains the supplied rune value. This validates that a string value does not contain the substring value. This validates that a string value does not contain any Unicode code points in the substring value. This validates that a string value does not contain the supplied rune value. This validates that a string value contains a valid isbn10 or isbn13 value. This validates that a string value contains a valid isbn10 value. This validates that a string value contains a valid isbn13 value. This validates that a string value contains a valid UUID. This validates that a string value contains a valid version 3 UUID. This validates that a string value contains a valid version 4 UUID. This validates that a string value contains a valid version 5 UUID. This validates that a string value contains only ASCII characters. NOTE: if the string is blank, this validates as true. This validates that a string value contains only printable ASCII characters. NOTE: if the string is blank, this validates as true. This validates that a string value contains one or more multibyte characters. NOTE: if the string is blank, this validates as true. This validates that a string value contains a valid DataURI. NOTE: this will also validate that the data portion is valid base64 This validates that a string value contains a valid latitude. This validates that a string value contains a valid longitude. This validates that a string value contains a valid U.S. Social Security Number. This validates that a string value contains a valid IP Adress. This validates that a string value contains a valid v4 IP Adress. This validates that a string value contains a valid v6 IP Adress. This validates that a string value contains a valid CIDR Adress. This validates that a string value contains a valid v4 CIDR Adress. This validates that a string value contains a valid v6 CIDR Adress. This validates that a string value contains a valid resolvable TCP Adress. This validates that a string value contains a valid resolvable v4 TCP Adress. This validates that a string value contains a valid resolvable v6 TCP Adress. This validates that a string value contains a valid resolvable UDP Adress. This validates that a string value contains a valid resolvable v4 UDP Adress. This validates that a string value contains a valid resolvable v6 UDP Adress. This validates that a string value contains a valid resolvable IP Adress. This validates that a string value contains a valid resolvable v4 IP Adress. This validates that a string value contains a valid resolvable v6 IP Adress. This validates that a string value contains a valid Unix Adress. This validates that a string value contains a valid MAC Adress. Note: See Go's ParseMAC for accepted formats and types: NOTE: When returning an error, the tag returned in "FieldError" will be the alias tag unless the dive tag is part of the alias. Everything after the dive tag is not reported as the alias tag. Also, the "ActualTag" in the before case will be the actual tag within the alias that failed. Here is a list of the current built in alias tags: Validator notes: This package panics when bad input is provided, this is by design, bad code like that should not make it to production.
package forms is a lightweight, but incredibly useful library for parsing form data from an http.Request. It supports multipart forms, url-encoded forms, json data, and url query parameters. It also provides helper methods for converting data into other types and a Validator object which can be used to validate the data. Forms is framework-agnostic and works directly with the http package. For the full source code, example usage, and more, visit https://github.com/albrow/forms. Version 0.3.2
Package graphql-go-tools is library to create GraphQL services using the go programming language. GraphQL is a query language for APIs and a runtime for fulfilling those queries with your existing data. GraphQL provides a complete and understandable description of the data in your API, gives clients the power to ask for exactly what they need and nothing more, makes it easier to evolve APIs over time, and enables powerful developer tools. Source: https://graphql.org This library is intended to be a set of low level building blocks to write high performance and secure GraphQL applications. Use cases could range from writing layer seven GraphQL proxies, firewalls, caches etc.. You would usually not use this library to write a GraphQL server yourself but to build tools for the GraphQL ecosystem. To achieve this goal the library has zero dependencies at its core functionality. It has a full implementation of the GraphQL AST and supports lexing, parsing, validation, normalization, introspection, query planning as well as query execution etc. With the execution package it's possible to write a fully functional GraphQL server that is capable to mediate between various protocols and formats. In it's current state you can use the following DataSources to resolve fields: - Static data (embed static data into a schema to extend a field in a simple way) - HTTP JSON APIs (combine multiple Restful APIs into one single GraphQL Endpoint, nesting is possible) - GraphQL APIs (you can combine multiple GraphQL APIs into one single GraphQL Endpoint, nesting is possible) - Webassembly/WASM Lambdas (e.g. resolve a field using a Rust lambda) If you're looking for a ready to use solution that has all this functionality packaged as a Gateway have a look at: https://wundergraph.com Created by Jens Neuse
Package hiboot is a web/cli app application framework Hiboot is a cloud native web and cli application framework written in Go. Hiboot integrates the popular libraries but make them simpler, easier to use. It borrowed some of the Spring features like dependency injection, aspect oriented programming, and auto configuration. You can integrate any other libraries easily by auto configuration with dependency injection support. hiboot-data is the typical project that implement customized hiboot starters. see https://godoc.org/github.com/hidevopsio/hiboot-data Overview One of the most significant feature of Hiboot is Dependency Injection. Hiboot implements JSR-330 standard. Let's say that we have two implementations of AuthenticationService, below will explain how does Hiboot work. In Hiboot the injection into fields is triggered by `inject:""` struct tag. when inject tag is present on a field, Hiboot tries to resolve the object to inject by the type of the field. If several implementations of the same service interface are available, you have to disambiguate which implementation you want to be injected. This can be done by naming the field to specific implementation. Although Field Injection is pretty convenient, but the Constructor Injection is the first-class citizen, we usually advise people to use constructor injection as it has below advantages, It's testable, easy to implement unit test. Syntax validation, with syntax validation on most of the IDEs to avoid typo. No need to use a dedicated mechanism to ensure required properties are set. type userController struct { at.RestController basicAuthenticationService AuthenticationService } // Hiboot will inject the implementation of AuthenticationService func newUserController(basicAuthenticationService AuthenticationService) { return &userController{ basicAuthenticationService: basicAuthenticationService, } } func init() { app.Register(newUserController) } Features This section will show you how to create and run a simplest hiboot application. Let’s get started! Get the source code Source Code This is a simple hello world example
Package websocket implements the WebSocket protocol defined in RFC 6455. The Conn type represents a WebSocket connection. A server application calls the Upgrader.Upgrade method from an HTTP request handler to get a *Conn: Call the connection's WriteMessage and ReadMessage methods to send and receive messages as a slice of bytes. This snippet of code shows how to echo messages using these methods: In above snippet of code, p is a []byte and messageType is an int with value websocket.BinaryMessage or websocket.TextMessage. An application can also send and receive messages using the io.WriteCloser and io.Reader interfaces. To send a message, call the connection NextWriter method to get an io.WriteCloser, write the message to the writer and close the writer when done. To receive a message, call the connection NextReader method to get an io.Reader and read until io.EOF is returned. This snippet shows how to echo messages using the NextWriter and NextReader methods: The WebSocket protocol distinguishes between text and binary data messages. Text messages are interpreted as UTF-8 encoded text. The interpretation of binary messages is left to the application. This package uses the TextMessage and BinaryMessage integer constants to identify the two data message types. The ReadMessage and NextReader methods return the type of the received message. The messageType argument to the WriteMessage and NextWriter methods specifies the type of a sent message. It is the application's responsibility to ensure that text messages are valid UTF-8 encoded text. The WebSocket protocol defines three types of control messages: close, ping and pong. Call the connection WriteControl, WriteMessage or NextWriter methods to send a control message to the peer. Connections handle received close messages by calling the handler function set with the SetCloseHandler method and by returning a *CloseError from the NextReader, ReadMessage or the message Read method. The default close handler sends a close message to the peer. Connections handle received ping messages by calling the handler function set with the SetPingHandler method. The default ping handler sends a pong message to the peer. Connections handle received pong messages by calling the handler function set with the SetPongHandler method. The default pong handler does nothing. If an application sends ping messages, then the application should set a pong handler to receive the corresponding pong. The control message handler functions are called from the NextReader, ReadMessage and message reader Read methods. The default close and ping handlers can block these methods for a short time when the handler writes to the connection. The application must read the connection to process close, ping and pong messages sent from the peer. If the application is not otherwise interested in messages from the peer, then the application should start a goroutine to read and discard messages from the peer. A simple example is: Connections support one concurrent reader and one concurrent writer. Applications are responsible for ensuring that no more than one goroutine calls the write methods (NextWriter, SetWriteDeadline, WriteMessage, WriteJSON, EnableWriteCompression, SetCompressionLevel) concurrently and that no more than one goroutine calls the read methods (NextReader, SetReadDeadline, ReadMessage, ReadJSON, SetPongHandler, SetPingHandler) concurrently. The Close and WriteControl methods can be called concurrently with all other methods. Web browsers allow Javascript applications to open a WebSocket connection to any host. It's up to the server to enforce an origin policy using the Origin request header sent by the browser. The Upgrader calls the function specified in the CheckOrigin field to check the origin. If the CheckOrigin function returns false, then the Upgrade method fails the WebSocket handshake with HTTP status 403. If the CheckOrigin field is nil, then the Upgrader uses a safe default: fail the handshake if the Origin request header is present and the Origin host is not equal to the Host request header. The deprecated package-level Upgrade function does not perform origin checking. The application is responsible for checking the Origin header before calling the Upgrade function. Connections buffer network input and output to reduce the number of system calls when reading or writing messages. Write buffers are also used for constructing WebSocket frames. See RFC 6455, Section 5 for a discussion of message framing. A WebSocket frame header is written to the network each time a write buffer is flushed to the network. Decreasing the size of the write buffer can increase the amount of framing overhead on the connection. The buffer sizes in bytes are specified by the ReadBufferSize and WriteBufferSize fields in the Dialer and Upgrader. The Dialer uses a default size of 4096 when a buffer size field is set to zero. The Upgrader reuses buffers created by the HTTP server when a buffer size field is set to zero. The HTTP server buffers have a size of 4096 at the time of this writing. The buffer sizes do not limit the size of a message that can be read or written by a connection. Buffers are held for the lifetime of the connection by default. If the Dialer or Upgrader WriteBufferPool field is set, then a connection holds the write buffer only when writing a message. Applications should tune the buffer sizes to balance memory use and performance. Increasing the buffer size uses more memory, but can reduce the number of system calls to read or write the network. In the case of writing, increasing the buffer size can reduce the number of frame headers written to the network. Some guidelines for setting buffer parameters are: Limit the buffer sizes to the maximum expected message size. Buffers larger than the largest message do not provide any benefit. Depending on the distribution of message sizes, setting the buffer size to a value less than the maximum expected message size can greatly reduce memory use with a small impact on performance. Here's an example: If 99% of the messages are smaller than 256 bytes and the maximum message size is 512 bytes, then a buffer size of 256 bytes will result in 1.01 more system calls than a buffer size of 512 bytes. The memory savings is 50%. A write buffer pool is useful when the application has a modest number writes over a large number of connections. when buffers are pooled, a larger buffer size has a reduced impact on total memory use and has the benefit of reducing system calls and frame overhead. Per message compression extensions (RFC 7692) are experimentally supported by this package in a limited capacity. Setting the EnableCompression option to true in Dialer or Upgrader will attempt to negotiate per message deflate support. If compression was successfully negotiated with the connection's peer, any message received in compressed form will be automatically decompressed. All Read methods will return uncompressed bytes. Per message compression of messages written to a connection can be enabled or disabled by calling the corresponding Conn method: Currently this package does not support compression with "context takeover". This means that messages must be compressed and decompressed in isolation, without retaining sliding window or dictionary state across messages. For more details refer to RFC 7692. Use of compression is experimental and may result in decreased performance.
Package ora implements an Oracle database driver. An Oracle database may be accessed through the database/sql package or through the ora package directly. database/sql offers connection pooling, thread safety, a consistent API to multiple database technologies and a common set of Go types. The ora package offers additional features including pointers, slices, nullable types, numerics of various sizes, Oracle-specific types, Go return type configuration, and Oracle abstractions such as environment, server and session. The ora package is written with the Oracle Call Interface (OCI) C-language libraries provided by Oracle. The OCI libraries are a standard for client application communication and driver communication with Oracle databases. The ora package has been verified to work with: Minimum requirements are Go 1.3 with CGO enabled, a GCC C compiler, and Oracle 11g (11.2.0.4.0) or Oracle Instant Client (11.2.0.4.0). Install Oracle or Oracle Instant Client. Copy the [oci8.pc](contrib/oci8.pc) from the `contrib` folder (or the one for your system, maybe tailored to your specific locations) to a folder in `$PKG_CONFIG_PATH` or a system folder, such as The ora package has no external Go dependencies and is available on GitHub and gopkg.in: The ora package supports all built-in Oracle data types. The supported Oracle built-in data types are NUMBER, BINARY_DOUBLE, BINARY_FLOAT, FLOAT, DATE, TIMESTAMP, TIMESTAMP WITH TIME ZONE, TIMESTAMP WITH LOCAL TIME ZONE, INTERVAL YEAR TO MONTH, INTERVAL DAY TO SECOND, CHAR, NCHAR, VARCHAR, VARCHAR2, NVARCHAR2, LONG, CLOB, NCLOB, BLOB, LONG RAW, RAW, ROWID and BFILE. SYS_REFCURSOR is also supported. Oracle does not provide a built-in boolean type. Oracle provides a single-byte character type. A common practice is to define two single-byte characters which represent true and false. The ora package adopts this approach. The oracle package associates a Go bool value to a Go rune and sends and receives the rune to a CHAR(1 BYTE) column or CHAR(1 CHAR) column. The default false rune is zero '0'. The default true rune is one '1'. The bool rune association may be configured or disabled when directly using the ora package but not with the database/sql package. Within a SQL string a placeholder may be specified to indicate where a Go variable is placed. The SQL placeholder is an Oracle identifier, from 1 to 30 characters, prefixed with a colon (:). For example: Placeholders within a SQL statement are bound by position. The actual name is not used by the ora package driver e.g., placeholder names :c1, :1, or :xyz are treated equally. You may access an Oracle database through the database/sql package. The database/sql package offers a consistent API across different databases, connection pooling, thread safety and a set of common Go types. database/sql makes working with Oracle straight-forward. The ora package implements interfaces in the database/sql/driver package enabling database/sql to communicate with an Oracle database. Using database/sql ensures you never have to call the ora package directly. When using database/sql, the mapping between Go types and Oracle types may be changed slightly. The database/sql package has strict expectations on Go return types. The Go-to-Oracle type mapping for database/sql is: The "ora" driver is automatically registered for use with sql.Open, but you can call ora.SetDrvCfg to set the used configuration options including statement configuration and Rset configuration. When configuring the driver for use with database/sql, keep in mind that database/sql has strict Go type-to-Oracle type mapping expectations. The ora package allows programming with pointers, slices, nullable types, numerics of various sizes, Oracle-specific types, Go return type configuration, and Oracle abstractions such as environment, server and session. When working with the ora package directly, the API is slightly different than database/sql. When using the ora package directly, the mapping between Go types and Oracle types may be changed. The Go-to-Oracle type mapping for the ora package is: An example of using the ora package directly: Pointers may be used to capture out-bound values from a SQL statement such as an insert or stored procedure call. For example, a numeric pointer captures an identity value: A string pointer captures an out parameter from a stored procedure: Slices may be used to insert multiple records with a single insert statement: The ora package provides nullable Go types to support DML operations such as insert and select. The nullable Go types provided by the ora package are Int64, Int32, Int16, Int8, Uint64, Uint32, Uint16, Uint8, Float64, Float32, Time, IntervalYM, IntervalDS, String, Bool, Binary and Bfile. For example, you may insert nullable Strings and select nullable Strings: The Stmt.Prep method is variadic accepting zero or more GoColumnType which define a Go return type for a select-list column. For example, a Prep call can be configured to return an int64 and a nullable Int64 from the same column: Go numerics of various sizes are supported in DML operations. The ora package supports int64, int32, int16, int8, uint64, uint32, uint16, uint8, float64 and float32. For example, you may insert a uint16 and select numerics of various sizes: If a non-nullable type is defined for a nullable column returning null, the Go type's zero value is returned. GoColumnTypes defined by the ora package are: When Stmt.Prep doesn't receive a GoColumnType, or receives an incorrect GoColumnType, the default value defined in RsetCfg is used. EnvCfg, SrvCfg, SesCfg, StmtCfg and RsetCfg are the main configuration structs. EnvCfg configures aspects of an Env. SrvCfg configures aspects of a Srv. SesCfg configures aspects of a Ses. StmtCfg configures aspects of a Stmt. RsetCfg configures aspects of Rset. StmtCfg and RsetCfg have the most options to configure. RsetCfg defines the default mapping between an Oracle select-list column and a Go type. StmtCfg may be set in an EnvCfg, SrvCfg, SesCfg and StmtCfg. RsetCfg may be set in a Stmt. EnvCfg.StmtCfg, SrvCfg.StmtCfg, SesCfg.StmtCfg may optionally be specified to configure a statement. If StmtCfg isn't specified default values are applied. EnvCfg.StmtCfg, SrvCfg.StmtCfg, SesCfg.StmtCfg cascade to new descendent structs. When ora.OpenEnv() is called a specified EnvCfg is used or a default EnvCfg is created. Creating a Srv with env.OpenSrv() will use SrvCfg.StmtCfg if it is specified; otherwise, EnvCfg.StmtCfg is copied by value to SrvCfg.StmtCfg. Creating a Ses with srv.OpenSes() will use SesCfg.StmtCfg if it is specified; otherwise, SrvCfg.StmtCfg is copied by value to SesCfg.StmtCfg. Creating a Stmt with ses.Prep() will use SesCfg.StmtCfg if it is specified; otherwise, a new StmtCfg with default values is set on the Stmt. Call Stmt.Cfg() to change a Stmt's configuration. An Env may contain multiple Srv. A Srv may contain multiple Ses. A Ses may contain multiple Stmt. A Stmt may contain multiple Rset. Setting a RsetCfg on a StmtCfg does not cascade through descendent structs. Configuration of Stmt.Cfg takes effect prior to calls to Stmt.Exe and Stmt.Qry; consequently, any updates to Stmt.Cfg after a call to Stmt.Exe or Stmt.Qry are not observed. One configuration scenario may be to set a server's select statements to return nullable Go types by default: Another scenario may be to configure the runes mapped to bool values: Oracle-specific types offered by the ora package are ora.Rset, ora.IntervalYM, ora.IntervalDS, ora.Raw, ora.Lob and ora.Bfile. ora.Rset represents an Oracle SYS_REFCURSOR. ora.IntervalYM represents an Oracle INTERVAL YEAR TO MONTH. ora.IntervalDS represents an Oracle INTERVAL DAY TO SECOND. ora.Raw represents an Oracle RAW or LONG RAW. ora.Lob may represent an Oracle BLOB or Oracle CLOB. And ora.Bfile represents an Oracle BFILE. ROWID columns are returned as strings and don't have a unique Go type. Rset is used to obtain Go values from a SQL select statement. Methods Rset.Next, Rset.NextRow, and Rset.Len are available. Fields Rset.Row, Rset.Err, Rset.Index, and Rset.ColumnNames are also available. The Next method attempts to load data from an Oracle buffer into Row, returning true when successful. When no data is available, or if an error occurs, Next returns false setting Row to nil. Any error in Next is assigned to Err. Calling Next increments Index and method Len returns the total number of rows processed. The NextRow method is convenient for returning a single row. NextRow calls Next and returns Row. ColumnNames returns the names of columns defined by the SQL select statement. Rset has two usages. Rset may be returned from Stmt.Qry when prepared with a SQL select statement: Or, *Rset may be passed to Stmt.Exe when prepared with a stored procedure accepting an OUT SYS_REFCURSOR parameter: Stored procedures with multiple OUT SYS_REFCURSOR parameters enable a single Exe call to obtain multiple Rsets: The types of values assigned to Row may be configured in StmtCfg.Rset. For configuration to take effect, assign StmtCfg.Rset prior to calling Stmt.Qry or Stmt.Exe. Rset prefetching may be controlled by StmtCfg.PrefetchRowCount and StmtCfg.PrefetchMemorySize. PrefetchRowCount works in coordination with PrefetchMemorySize. When PrefetchRowCount is set to zero only PrefetchMemorySize is used; otherwise, the minimum of PrefetchRowCount and PrefetchMemorySize is used. The default uses a PrefetchMemorySize of 134MB. Opening and closing Rsets is managed internally. Rset does not have an Open method or Close method. IntervalYM may be be inserted and selected: IntervalDS may be be inserted and selected: Transactions on an Oracle server are supported. DML statements auto-commit unless a transaction has started: Ses.PrepAndExe, Ses.PrepAndQry, Ses.Ins, Ses.Upd, and Ses.Sel are convenient one-line methods. Ses.PrepAndExe offers a convenient one-line call to Ses.Prep and Stmt.Exe. Ses.PrepAndQry offers a convenient one-line call to Ses.Prep and Stmt.Qry. Ses.Ins composes, prepares and executes a sql INSERT statement. Ses.Ins is useful when you have to create and maintain a simple INSERT statement with a long list of columns. As table columns are added and dropped over the lifetime of a table Ses.Ins is easy to read and revise. Ses.Upd composes, prepares and executes a sql UPDATE statement. Ses.Upd is useful when you have to create and maintain a simple UPDATE statement with a long list of columns. As table columns are added and dropped over the lifetime of a table Ses.Upd is easy to read and revise. Ses.Sel composes, prepares and queries a sql SELECT statement. Ses.Sel is useful when you have to create and maintain a simple SELECT statement with a long list of columns that have non-default GoColumnTypes. As table columns are added and dropped over the lifetime of a table Ses.Sel is easy to read and revise. The Ses.Ping method checks whether the client's connection to an Oracle server is valid. A call to Ping requires an open Ses. Ping will return a nil error when the connection is fine: The Srv.Version method is available to obtain the Oracle server version. A call to Version requires an open Ses: Further code examples are available in the example file, test files and samples folder. The ora package provides a simple ora.Logger interface for logging. Logging is disabled by default. Specify one of three optional built-in logging packages to enable logging; or, use your own logging package. ora.Cfg().Log offers various options to enable or disable logging of specific ora driver methods. For example: To use the standard Go log package: which produces a sample log of: Messages are prefixed with 'ORA I' for information or 'ORA E' for an error. The log package is configured to write to os.Stderr by default. Use the ora/lg.Std type to configure an alternative io.Writer. To use the glog package: which produces a sample log of: To use the log15 package: which produces a sample log of: See https://github.com/rana/ora/tree/master/samples/lg15/main.go for sample code which uses the log15 package. Tests are available and require some setup. Setup varies depending on whether the Oracle server is configured as a container database or non-container database. It's simpler to setup a non-container database. An example for each setup is explained. Non-container test database setup steps: Container test database setup steps: Some helpful SQL maintenance statements: Run the tests. database/sql method Stmt.QueryRow is not supported. Copyright 2015 Rana Ian. All rights reserved. Use of this source code is governed by The MIT License found in the accompanying LICENSE file.
Package arrow provides an implementation of Apache Arrow. Apache Arrow is a cross-language development platform for in-memory data. It specifies a standardized language-independent columnar memory format for flat and hierarchical data, organized for efficient analytic operations on modern hardware. It also provides computational libraries and zero-copy streaming messaging and inter-process communication. The fundamental data structure in Arrow is an Array, which holds a sequence of values of the same type. An array consists of memory holding the data and an additional validity bitmap that indicates if the corresponding entry in the array is valid (not null). If the array has no null entries, it is possible to omit this bitmap. This example shows how to create a FixedSizeList array. The resulting array should be: This example shows how one can slice an array. The initial (float64) array is: and the sub-slice is: This example demonstrates creating an array, sourcing the values and null bitmaps directly from byte slices. The null count is set to UnknownNullCount, instructing the array to calculate the null count from the bitmap when NullN is called. This example shows how to create a List array. The resulting array should be: This example demonstrates how to build an array of int64 values using a builder and Append. Whilst convenient for small arrays, This example shows how to create a Struct array. The resulting array should be:
Package toml provides facilities for decoding and encoding TOML configuration files via reflection. There is also support for delaying decoding with the Primitive type, and querying the set of keys in a TOML document with the MetaData type. The specification implemented: https://github.com/toml-lang/toml The sub-command github.com/BurntSushi/toml/cmd/tomlv can be used to verify whether a file is a valid TOML document. It can also be used to print the type of each key in a TOML document. There are two important types of tests used for this package. The first is contained inside '*_test.go' files and uses the standard Go unit testing framework. These tests are primarily devoted to holistically testing the decoder and encoder. The second type of testing is used to verify the implementation's adherence to the TOML specification. These tests have been factored into their own project: https://github.com/BurntSushi/toml-test The reason the tests are in a separate project is so that they can be used by any implementation of TOML. Namely, it is language agnostic. Example StrictDecoding shows how to detect whether there are keys in the TOML document that weren't decoded into the value given. This is useful for returning an error to the user if they've included extraneous fields in their configuration. Example UnmarshalTOML shows how to implement a struct type that knows how to unmarshal itself. The struct must take full responsibility for mapping the values passed into the struct. The method may be used with interfaces in a struct in cases where the actual type is not known until the data is examined. Example Unmarshaler shows how to decode TOML strings into your own custom data type.
Pact Go enables consumer driven contract testing, providing a mock service and DSL for the consumer project, and interaction playback and verification for the service provider project. Consumer side Pact testing is an isolated test that ensures a given component is able to collaborate with another (remote) component. Pact will automatically start a Mock server in the background that will act as the collaborators' test double. This implies that any interactions expected on the Mock server will be validated, meaning a test will fail if all interactions were not completed, or if unexpected interactions were found: A typical consumer-side test would look something like this: If this test completed successfully, a Pact file should have been written to ./pacts/my_consumer-my_provider.json containing all of the interactions expected to occur between the Consumer and Provider. In addition to verbatim value matching, you have 3 useful matching functions in the `dsl` package that can increase expressiveness and reduce brittle test cases. Here is a complex example that shows how all 3 terms can be used together: This example will result in a response body from the mock server that looks like: See the examples in the dsl package and the matcher tests (https://github.com/pact-foundation/pact-go/blob/master/dsl/matcher_test.go) for more matching examples. NOTE: You will need to use valid Ruby regular expressions (http://ruby-doc.org/core-2.1.5/Regexp.html) and double escape backslashes. Read more about flexible matching (https://github.com/pact-foundation/pact-ruby/wiki/Regular-expressions-and-type-matching-with-Pact. Provider side Pact testing, involves verifying that the contract - the Pact file - can be satisfied by the Provider. A typical Provider side test would like something like: The `VerifyProvider` will handle all verifications, treating them as subtests and giving you granular test reporting. If you don't like this behaviour, you may call `VerifyProviderRaw` directly and handle the errors manually. Note that `PactURLs` may be a list of local pact files or remote based urls (possibly from a Pact Broker - http://docs.pact.io/documentation/sharings_pacts.html). Pact reads the specified pact files (from remote or local sources) and replays the interactions against a running Provider. If all of the interactions are met we can say that both sides of the contract are satisfied and the test passes. When validating a Provider, you have 3 options to provide the Pact files: 1. Use "PactURLs" to specify the exact set of pacts to be replayed: Options 2 and 3 are particularly useful when you want to validate that your Provider is able to meet the contracts of what's in Production and also the latest in development. See this [article](http://rea.tech/enter-the-pact-matrix-or-how-to-decouple-the-release-cycles-of-your-microservices/) for more on this strategy. Each interaction in a pact should be verified in isolation, with no context maintained from the previous interactions. So how do you test a request that requires data to exist on the provider? Provider states are how you achieve this using Pact. Provider states also allow the consumer to make the same request with different expected responses (e.g. different response codes, or the same resource with a different subset of data). States are configured on the consumer side when you issue a dsl.Given() clause with a corresponding request/response pair. Configuring the provider is a little more involved, and (currently) requires running an API endpoint to configure any [provider states](http://docs.pact.io/documentation/provider_states.html) during the verification process. The option you must provide to the dsl.VerifyRequest is: An example route using the standard Go http package might look like this: See the examples or read more at http://docs.pact.io/documentation/provider_states.html. See the Pact Broker (http://docs.pact.io/documentation/sharings_pacts.html) documentation for more details on the Broker and this article (http://rea.tech/enter-the-pact-matrix-or-how-to-decouple-the-release-cycles-of-your-microservices/) on how to make it work for you. Publishing using Go code: Publishing from the CLI: Use a cURL request like the following to PUT the pact to the right location, specifying your consumer name, provider name and consumer version. The following flags are required to use basic authentication when publishing or retrieving Pact files to/from a Pact Broker: Pact Go uses a simple log utility (logutils - https://github.com/hashicorp/logutils) to filter log messages. The CLI already contains flags to manage this, should you want to control log level in your tests, you can set it like so:
Package sr provides a schema registry client and a helper type to encode values and decode data according to the schema registry wire format. As mentioned on the Serde type, this package does not provide schema auto-discovery and type auto-decoding. To aid in strong typing and validated encoding/decoding, you must register IDs and values to how to encode or decode them. The client does not automatically cache schemas, instead, the Serde type is used for the actual caching of IDs to how to encode/decode the IDs. The Client type itself simply speaks http to your schema registry and returns the results. To read more about the schema registry, see the following:
Package uuid implements a fast representation of UUIDs (Universally Unique Identifiers) and integrates with JSON and SQL drivers. This package supports reading of multiple formats of UUIDs, including but not limited to: The parsing-speed of UUIDs in this package is achieved in several ways: A lookup table converts hexadecimal digits to bytes. Scanning and parsing is done in place without allocating anything. Resulting bytes are written to the UUID as it is parsed. On parse errors this will leave the UUID only partially populated with data from the input string, leaving the rest of the UUID unmodified. This package just ignores non-hexadecimal digits when scanning. This can cause some odd representations of hexadecimal data to be parsed as valid UUIDs, and longer strings like these will parse successfully: However, the hexadecimal digits MUST come in pairs, and the total number of bytes represented by them MUST equal 16, or it will generate a parse error. For example, invalid UUIDs like these will not parse: All string-creating functions will generate UUIDs in the canonical format of:
Package lookslike is used to validate JSON-like nested map data-structure against a set of expectations. Its key features are allowing custom, function defined validators for values, and allowing the composition of multiple validation specs. See the example below for more details. Most key functions include detailed examples of their use within this documentation.
Package appconfigdata provides the API client, operations, and parameter types for AWS AppConfig Data. AppConfig Data provides the data plane APIs your application uses to retrieve configuration data. Here's how it works: Your application retrieves configuration data by first establishing a configuration session using the AppConfig Data StartConfigurationSessionAPI action. Your session's client then makes periodic calls to GetLatestConfigurationto check for and retrieve the latest data available. When calling StartConfigurationSession , your code sends the following information: Identifiers (ID or name) of an AppConfig application, environment, and configuration profile that the session tracks. (Optional) The minimum amount of time the session's client must wait between calls to GetLatestConfiguration . In response, AppConfig provides an InitialConfigurationToken to be given to the session's client and used the first time it calls GetLatestConfiguration for that session. This token should only be used once in your first call to GetLatestConfiguration . You must use the new token in the GetLatestConfiguration response ( NextPollConfigurationToken ) in each subsequent call to GetLatestConfiguration . When calling GetLatestConfiguration , your client code sends the most recent ConfigurationToken value it has and receives in response: NextPollConfigurationToken : the ConfigurationToken value to use on the next call to GetLatestConfiguration . NextPollIntervalInSeconds : the duration the client should wait before making its next call to GetLatestConfiguration . This duration may vary over the course of the session, so it should be used instead of the value sent on the StartConfigurationSession call. The configuration: the latest data intended for the session. This may be empty if the client already has the latest version of the configuration. The InitialConfigurationToken and NextPollConfigurationToken should only be used once. To support long poll use cases, the tokens are valid for up to 24 hours. If a GetLatestConfiguration call uses an expired token, the system returns BadRequestException . For more information and to view example CLI commands that show how to retrieve a configuration using the AppConfig Data StartConfigurationSession and GetLatestConfiguration API actions, see Retrieving the configuration in the AppConfig User Guide.
Package address is a library that validates and formats addresses using data generated from Google's Address Data Service. Code generated by address. DO NOT EDIT.
Package evidently provides the API client, operations, and parameter types for Amazon CloudWatch Evidently. You can use Amazon CloudWatch Evidently to safely validate new features by serving them to a specified percentage of your users while you roll out the feature. You can monitor the performance of the new feature to help you decide when to ramp up traffic to your users. This helps you reduce risk and identify unintended consequences before you fully launch the feature. You can also conduct A/B experiments to make feature design decisions based on evidence and data. An experiment can test as many as five variations at once. Evidently collects experiment data and analyzes it using statistical methods. It also provides clear recommendations about which variations perform better. You can test both user-facing features and backend features.