Package gopacket provides packet decoding for the Go language. gopacket contains many sub-packages with additional functionality you may find useful, including: Also, if you're looking to dive right into code, see the examples subdirectory for numerous simple binaries built using gopacket libraries. Minimum go version required is 1.5 except for pcapgo/EthernetHandle, afpacket, and bsdbpf which need at least 1.7 due to x/sys/unix dependencies. gopacket takes in packet data as a []byte and decodes it into a packet with a non-zero number of "layers". Each layer corresponds to a protocol within the bytes. Once a packet has been decoded, the layers of the packet can be requested from the packet. Packets can be decoded from a number of starting points. Many of our base types implement Decoder, which allow us to decode packets for which we don't have full data. Most of the time, you won't just have a []byte of packet data lying around. Instead, you'll want to read packets in from somewhere (file, interface, etc) and process them. To do that, you'll want to build a PacketSource. First, you'll need to construct an object that implements the PacketDataSource interface. There are implementations of this interface bundled with gopacket in the gopacket/pcap and gopacket/pfring subpackages... see their documentation for more information on their usage. Once you have a PacketDataSource, you can pass it into NewPacketSource, along with a Decoder of your choice, to create a PacketSource. Once you have a PacketSource, you can read packets from it in multiple ways. See the docs for PacketSource for more details. The easiest method is the Packets function, which returns a channel, then asynchronously writes new packets into that channel, closing the channel if the packetSource hits an end-of-file. You can change the decoding options of the packetSource by setting fields in packetSource.DecodeOptions... see the following sections for more details. gopacket optionally decodes packet data lazily, meaning it only decodes a packet layer when it needs to handle a function call. Lazily-decoded packets are not concurrency-safe. Since layers have not all been decoded, each call to Layer() or Layers() has the potential to mutate the packet in order to decode the next layer. If a packet is used in multiple goroutines concurrently, don't use gopacket.Lazy. Then gopacket will decode the packet fully, and all future function calls won't mutate the object. By default, gopacket will copy the slice passed to NewPacket and store the copy within the packet, so future mutations to the bytes underlying the slice don't affect the packet and its layers. If you can guarantee that the underlying slice bytes won't be changed, you can use NoCopy to tell gopacket.NewPacket, and it'll use the passed-in slice itself. The fastest method of decoding is to use both Lazy and NoCopy, but note from the many caveats above that for some implementations either or both may be dangerous. During decoding, certain layers are stored in the packet as well-known layer types. For example, IPv4 and IPv6 are both considered NetworkLayer layers, while TCP and UDP are both TransportLayer layers. We support 4 layers, corresponding to the 4 layers of the TCP/IP layering scheme (roughly anagalous to layers 2, 3, 4, and 7 of the OSI model). To access these, you can use the packet.LinkLayer, packet.NetworkLayer, packet.TransportLayer, and packet.ApplicationLayer functions. Each of these functions returns a corresponding interface (gopacket.{Link,Network,Transport,Application}Layer). The first three provide methods for getting src/dst addresses for that particular layer, while the final layer provides a Payload function to get payload data. This is helpful, for example, to get payloads for all packets regardless of their underlying data type: A particularly useful layer is ErrorLayer, which is set whenever there's an error parsing part of the packet. Note that we don't return an error from NewPacket because we may have decoded a number of layers successfully before running into our erroneous layer. You may still be able to get your Ethernet and IPv4 layers correctly, even if your TCP layer is malformed. gopacket has two useful objects, Flow and Endpoint, for communicating in a protocol independent manner the fact that a packet is coming from A and going to B. The general layer types LinkLayer, NetworkLayer, and TransportLayer all provide methods for extracting their flow information, without worrying about the type of the underlying Layer. A Flow is a simple object made up of a set of two Endpoints, one source and one destination. It details the sender and receiver of the Layer of the Packet. An Endpoint is a hashable representation of a source or destination. For example, for LayerTypeIPv4, an Endpoint contains the IP address bytes for a v4 IP packet. A Flow can be broken into Endpoints, and Endpoints can be combined into Flows: Both Endpoint and Flow objects can be used as map keys, and the equality operator can compare them, so you can easily group together all packets based on endpoint criteria: For load-balancing purposes, both Flow and Endpoint have FastHash() functions, which provide quick, non-cryptographic hashes of their contents. Of particular importance is the fact that Flow FastHash() is symmetric: A->B will have the same hash as B->A. An example usage could be: This allows us to split up a packet stream while still making sure that each stream sees all packets for a flow (and its bidirectional opposite). If your network has some strange encapsulation, you can implement your own decoder. In this example, we handle Ethernet packets which are encapsulated in a 4-byte header. See the docs for Decoder and PacketBuilder for more details on how coding decoders works, or look at RegisterLayerType and RegisterEndpointType to see how to add layer/endpoint types to gopacket. TLDR: DecodingLayerParser takes about 10% of the time as NewPacket to decode packet data, but only for known packet stacks. Basic decoding using gopacket.NewPacket or PacketSource.Packets is somewhat slow due to its need to allocate a new packet and every respective layer. It's very versatile and can handle all known layer types, but sometimes you really only care about a specific set of layers regardless, so that versatility is wasted. DecodingLayerParser avoids memory allocation altogether by decoding packet layers directly into preallocated objects, which you can then reference to get the packet's information. A quick example: The important thing to note here is that the parser is modifying the passed in layers (eth, ip4, ip6, tcp) instead of allocating new ones, thus greatly speeding up the decoding process. It's even branching based on layer type... it'll handle an (eth, ip4, tcp) or (eth, ip6, tcp) stack. However, it won't handle any other type... since no other decoders were passed in, an (eth, ip4, udp) stack will stop decoding after ip4, and only pass back [LayerTypeEthernet, LayerTypeIPv4] through the 'decoded' slice (along with an error saying it can't decode a UDP packet). Unfortunately, not all layers can be used by DecodingLayerParser... only those implementing the DecodingLayer interface are usable. Also, it's possible to create DecodingLayers that are not themselves Layers... see layers.IPv6ExtensionSkipper for an example of this. By default, DecodingLayerParser uses native map to store and search for a layer to decode. Though being versatile, in some cases this solution may be not so optimal. For example, if you have only few layers faster operations may be provided by sparse array indexing or linear array scan. To accomodate these scenarios, DecodingLayerContainer interface is introduced along with its implementations: DecodingLayerSparse, DecodingLayerArray and DecodingLayerMap. You can specify a container implementation to DecodingLayerParser with SetDecodingLayerContainer method. Example: To skip one level of indirection (though sacrificing some capabilities) you may also use DecodingLayerContainer as a decoding tool as it is. In this case you have to handle unknown layer types and layer panics by yourself. Example: DecodingLayerSparse is the fastest but most effective when LayerType values that layers in use can decode are not large because otherwise that would lead to bigger memory footprint. DecodingLayerArray is very compact and primarily usable if the number of decoding layers is not big (up to ~10-15, but please do your own benchmarks). DecodingLayerMap is the most versatile one and used by DecodingLayerParser by default. Please refer to tests and benchmarks in layers subpackage to further examine usage examples and performance measurements. You may also choose to implement your own DecodingLayerContainer if you want to make use of your own internal packet decoding logic. As well as offering the ability to decode packet data, gopacket will allow you to create packets from scratch, as well. A number of gopacket layers implement the SerializableLayer interface; these layers can be serialized to a []byte in the following manner: SerializeTo PREPENDS the given layer onto the SerializeBuffer, and they treat the current buffer's Bytes() slice as the payload of the serializing layer. Therefore, you can serialize an entire packet by serializing a set of layers in reverse order (Payload, then TCP, then IP, then Ethernet, for example). The SerializeBuffer's SerializeLayers function is a helper that does exactly that. To generate a (empty and useless, because no fields are set) Ethernet(IPv4(TCP(Payload))) packet, for example, you can run: If you use gopacket, you'll almost definitely want to make sure gopacket/layers is imported, since when imported it sets all the LayerType variables and fills in a lot of interesting variables/maps (DecodersByLayerName, etc). Therefore, it's recommended that even if you don't use any layers functions directly, you still import with:
Package chainhash provides abstracted hash functionality. This package provides a generic hash type and associated functions that allows the specific hash algorithm to be abstracted.
Package tview implements rich widgets for terminal based user interfaces. The widgets provided with this package are useful for data exploration and data entry. The package implements the following widgets: The package also provides Application which is used to poll the event queue and draw widgets on screen. The following is a very basic example showing a box with the title "Hello, world!": First, we create a box primitive with a border and a title. Then we create an application, set the box as its root primitive, and run the event loop. The application exits when the application's Application.Stop function is called or when Ctrl-C is pressed. You will find more demos in the "demos" subdirectory. It also contains a presentation (written using tview) which gives an overview of the different widgets and how they can be used. Throughout this package, styles are specified using the tcell.Style type. Styles specify colors with the tcell.Color type. Functions such as tcell.GetColor, tcell.NewHexColor, and tcell.NewRGBColor can be used to create colors from W3C color names or RGB values. The tcell.Style type also allows you to specify text attributes such as "bold" or "underline" or a URL which some terminals use to display hyperlinks. Almost all strings which are displayed may contain style tags. A style tag's content is always wrapped in square brackets. In its simplest form, a style tag specifies the foreground color of the text. Colors in these tags are W3C color names or six hexadecimal digits following a hash tag. Examples: A style tag changes the style of the characters following that style tag. There is no style stack and no nesting of style tags. Style tags are used in almost everything from box titles, list text, form item labels, to table cells. In a TextView, this functionality has to be switched on explicitly. See the TextView documentation for more information. A style tag's full format looks like this: Each of the four fields can be left blank and trailing fields can be omitted. (Empty square brackets "[]", however, are not considered style tags.) Fields that are not specified will be left unchanged. A field with just a dash ("-") means "reset to default". You can specify the following flags to turn on certain attributes (some flags may not be supported by your terminal): Use uppercase letters to turn off the corresponding attribute, for example, "B" to turn off bold. Uppercase letters have no effect if the attribute was not previously set. Setting a URL allows you to turn a piece of text into a hyperlink in some terminals. Specify a dash ("-") to specify the end of the hyperlink. Hyperlinks must only contain single-byte characters (e.g. ASCII) and they may not contain bracket characters ("[" or "]"). Examples: In the rare event that you want to display a string such as "[red]" or "[#00ff1a]" without applying its effect, you need to put an opening square bracket before the closing square bracket. Note that the text inside the brackets will be matched less strictly than region or colors tags. I.e. any character that may be used in color or region tags will be recognized. Examples: You can use the Escape() function to insert brackets automatically where needed. When primitives are instantiated, they are initialized with colors taken from the global Styles variable. You may change this variable to adapt the look and feel of the primitives to your preferred style. Note that most terminals will not report information about their color theme. This package therefore does not support using the terminal's color theme. The default style is a dark theme and you must change the Styles variable to switch to a light (or other) theme. This package supports all unicode characters supported by your terminal. If your terminal supports mouse events, you can enable mouse support for your application by calling Application.EnableMouse. Note that this may interfere with your terminal's default mouse behavior. Mouse support is disabled by default. Many functions in this package are not thread-safe. For many applications, this is not an issue: If your code makes changes in response to key events, the corresponding callback function will execute in the main goroutine and thus will not cause any race conditions. (Exceptions to this are documented.) If you access your primitives from other goroutines, however, you will need to synchronize execution. The easiest way to do this is to call Application.QueueUpdate or Application.QueueUpdateDraw (see the function documentation for details): One exception to this is the io.Writer interface implemented by TextView. You can safely write to a TextView from any goroutine. See the TextView documentation for details. You can also call Application.Draw from any goroutine without having to wrap it in Application.QueueUpdate. And, as mentioned above, key event callbacks are executed in the main goroutine and thus should not use Application.QueueUpdate as that may lead to deadlocks. It is also not necessary to call Application.Draw from such callbacks as it will be called automatically. All widgets listed above contain the Box type. All of Box's functions are therefore available for all widgets, too. Please note that if you are using the functions of Box on a subclass, they will return a *Box, not the subclass. This is a Golang limitation. So while tview supports method chaining in many places, these chains must be broken when using Box's functions. Example: You will need to call Box.SetBorder separately: All widgets also implement the Primitive interface. The tview package's rendering is based on version 2 of https://github.com/gdamore/tcell. It uses types and constants from that package (e.g. colors, styles, and keyboard values).
Package btcutil provides bitcoin-specific convenience functions and types. A Block defines a bitcoin block that provides easier and more efficient manipulation of raw wire protocol blocks. It also memoizes hashes for the block and its transactions on their first access so subsequent accesses don't have to repeat the relatively expensive hashing operations. A Tx defines a bitcoin transaction that provides more efficient manipulation of raw wire protocol transactions. It memoizes the hash for the transaction on its first access so subsequent accesses don't have to repeat the relatively expensive hashing operations. The Address interface provides an abstraction for a Bitcoin address. While the most common type is a pay-to-pubkey-hash, Bitcoin already supports others and may well support more in the future. This package currently provides implementations for the pay-to-pubkey, pay-to-pubkey-hash, and pay-to-script-hash address types. To decode/encode an address:
Package update provides functionality to implement secure, self-updating Go programs (or other single-file targets). For complete updating solutions please see Equinox (https://equinox.io) and go-tuf (https://github.com/flynn/go-tuf). This example shows how to update a program remotely from a URL. Go binaries can often be large. It can be advantageous to only ship a binary patch to a client instead of the complete program text of a new version. This example shows how to update a program with a bsdiff binary patch. Other patch formats may be applied by implementing the Patcher interface. Updating executable code on a computer can be a dangerous operation unless you take the appropriate steps to guarantee the authenticity of the new code. While checksum verification is important, it should always be combined with signature verification (next section) to guarantee that the code came from a trusted party. go-update validates SHA256 checksums by default, but this is pluggable via the Hash property on the Options struct. This example shows how to guarantee that the newly-updated binary is verified to have an appropriate checksum (that was otherwise retrived via a secure channel) specified as a hex string. Cryptographic verification of new code from an update is an extremely important way to guarantee the security and integrity of your updates. Verification is performed by validating the signature of a hash of the new file. This means nothing changes if you apply your update with a patch. This example shows how to add signature verification to your updates. To make all of this work an application distributor must first create a public/private key pair and embed the public key into their application. When they issue a new release, the issuer must sign the new executable file with the private key and distribute the signature along with the update. In order to update a Go application with go-update, you must distributed it as a single executable. This is often easy, but some applications require static assets (like HTML and CSS asset files or TLS certificates). In order to update applications like these, you'll want to make sure to embed those asset files into the distributed binary with a tool like go-bindata (my favorite): https://github.com/jteeuwen/go-bindata Mechanisms and protocols for determining whether an update should be applied and, if so, which one are out of scope for this package. Please consult go-tuf (https://github.com/flynn/go-tuf) or Equinox (https://equinox.io) for more complete solutions. go-update only works for self-updating applications that are distributed as a single binary, i.e. applications that do not have additional assets or dependency files. Updating application that are distributed as mutliple on-disk files is out of scope, although this may change in future versions of this library.
Package otp implements both HOTP and TOTP based one time passcodes in a Google Authenticator compatible manner. When adding a TOTP for a user, you must store the "secret" value persistently. It is recommended to store the secret in an encrypted field in your datastore. Due to how TOTP works, it is not possible to store a hash for the secret value like you would a password. To enroll a user, you must first generate an OTP for them. Google Authenticator supports using a QR code as an enrollment method: Validating a TOTP passcode is very easy, just prompt the user for a passcode and retrieve the associated user's previously stored secret.
Package bloom provides data structures and methods for creating Bloom filters. A Bloom filter is a representation of a set of _n_ items, where the main requirement is to make membership queries; _i.e._, whether an item is a member of a set. A Bloom filter has two parameters: _m_, a maximum size (typically a reasonably large multiple of the cardinality of the set to represent) and _k_, the number of hashing functions on elements of the set. (The actual hashing functions are important, too, but this is not a parameter for this implementation). A Bloom filter is backed by a BitSet; a key is represented in the filter by setting the bits at each value of the hashing functions (modulo _m_). Set membership is done by _testing_ whether the bits at each value of the hashing functions (again, modulo _m_) are set. If so, the item is in the set. If the item is actually in the set, a Bloom filter will never fail (the true positive rate is 1.0); but it is susceptible to false positives. The art is to choose _k_ and _m_ correctly. In this implementation, the hashing functions used is murmurhash, a non-cryptographic hashing function. This implementation accepts keys for setting as testing as []byte. Thus, to add a string item, "Love": Similarly, to test if "Love" is in bloom: For numeric data, I recommend that you look into the binary/encoding library. But, for example, to add a uint32 to the filter: Finally, there is a method to estimate the false positive rate of a particular Bloom filter for a set of size _n_: Given the particular hashing scheme, it's best to be empirical about this. Note that estimating the FP rate will clear the Bloom filter.
Package bloom provides data structures and methods for creating Bloom filters. A Bloom filter is a representation of a set of _n_ items, where the main requirement is to make membership queries; _i.e._, whether an item is a member of a set. A Bloom filter has two parameters: _m_, a maximum size (typically a reasonably large multiple of the cardinality of the set to represent) and _k_, the number of hashing functions on elements of the set. (The actual hashing functions are important, too, but this is not a parameter for this implementation). A Bloom filter is backed by a BitSet; a key is represented in the filter by setting the bits at each value of the hashing functions (modulo _m_). Set membership is done by _testing_ whether the bits at each value of the hashing functions (again, modulo _m_) are set. If so, the item is in the set. If the item is actually in the set, a Bloom filter will never fail (the true positive rate is 1.0); but it is susceptible to false positives. The art is to choose _k_ and _m_ correctly. In this implementation, the hashing functions used is murmurhash, a non-cryptographic hashing function. This implementation accepts keys for setting as testing as []byte. Thus, to add a string item, "Love": Similarly, to test if "Love" is in bloom: For numeric data, I recommend that you look into the binary/encoding library. But, for example, to add a uint32 to the filter: Finally, there is a method to estimate the false positive rate of a Bloom filter with _m_ bits and _k_ hashing functions for a set of size _n_: You can use it to validate the computed m, k parameters: or You would expect ActualfpRate to be close to the desired fp in these cases. The EstimateFalsePositiveRate function creates a temporary Bloom filter. It is also relatively expensive and only meant for validation.
Package btcutil provides bitcoin-specific convenience functions and types. A Block defines a bitcoin block that provides easier and more efficient manipulation of raw wire protocol blocks. It also memoizes hashes for the block and its transactions on their first access so subsequent accesses don't have to repeat the relatively expensive hashing operations. A Tx defines a bitcoin transaction that provides more efficient manipulation of raw wire protocol transactions. It memoizes the hash for the transaction on its first access so subsequent accesses don't have to repeat the relatively expensive hashing operations. The Address interface provides an abstraction for a Bitcoin address. While the most common type is a pay-to-pubkey-hash, Bitcoin already supports others and may well support more in the future. This package currently provides implementations for the pay-to-pubkey, pay-to-pubkey-hash, and pay-to-script-hash address types. To decode/encode an address:
Package jsonapi provides a serializer and deserializer for jsonapi.org spec payloads. You can keep your model structs as is and use struct field tags to indicate to jsonapi how you want your response built or your request deserialized. What about my relationships? jsonapi supports relationships out of the box and will even side load them in your response into an "included" array--that contains associated objects. jsonapi uses StructField tags to annotate the structs fields that you already have and use in your app and then reads and writes jsonapi.org output based on the instructions you give the library in your jsonapi tags. Example structs using a Blog > Post > Comment structure, jsonapi Tag Reference Value, primary: "primary,<type field output>" This indicates that this is the primary key field for this struct type. Tag value arguments are comma separated. The first argument must be, "primary", and the second must be the name that should appear in the "type" field for all data objects that represent this type of model. Value, attr: "attr,<key name in attributes hash>[,<extra arguments>]" These fields' values should end up in the "attribute" hash for a record. The first argument must be, "attr', and the second should be the name for the key to display in the "attributes" hash for that record. The following extra arguments are also supported: "omitempty": excludes the fields value from the "attribute" hash. "iso8601": uses the ISO8601 timestamp format when serialising or deserialising the time.Time value. Value, relation: "relation,<key name in relationships hash>" Relations are struct fields that represent a one-to-one or one-to-many to other structs. jsonapi will traverse the graph of relationships and marshal or unmarshal records. The first argument must be, "relation", and the second should be the name of the relationship, used as the key in the "relationships" hash for the record. Use the methods below to Marshal and Unmarshal jsonapi.org json payloads. Visit the readme at https://github.com/google/jsonapi
Package walletdb provides a namespaced database interface for btcwallet. A wallet essentially consists of a multitude of stored data such as private and public keys, key derivation bits, pay-to-script-hash scripts, and various metadata. One of the issues with many wallets is they are tightly integrated. Designing a wallet with loosely coupled components that provide specific functionality is ideal, however it presents a challenge in regards to data storage since each component needs to store its own data without knowing the internals of other components or breaking atomicity. This package solves this issue by providing a pluggable driver, namespaced database interface that is intended to be used by the main wallet daemon. This allows the potential for any backend database type with a suitable driver. Each component, which will typically be a package, can then implement various functionality such as address management, voting pools, and colored coin metadata in their own namespace without having to worry about conflicts with other packages even though they are sharing the same database that is managed by the wallet. A quick overview of the features walletdb provides are as follows: The main entry point is the DB interface. It exposes functionality for creating, retrieving, and removing namespaces. It is obtained via the Create and Open functions which take a database type string that identifies the specific database driver (backend) to use as well as arguments specific to the specified driver. The Namespace interface is an abstraction that provides facilities for obtaining transactions (the Tx interface) that are the basis of all database reads and writes. Unlike some database interfaces that support reading and writing without transactions, this interface requires transactions even when only reading or writing a single key. The Begin function provides an unmanaged transaction while the View and Update functions provide a managed transaction. These are described in more detail below. The Tx interface provides facilities for rolling back or commiting changes that took place while the transaction was active. It also provides the root bucket under which all keys, values, and nested buckets are stored. A transaction can either be read-only or read-write and managed or unmanaged. A managed transaction is one where the caller provides a function to execute within the context of the transaction and the commit or rollback is handled automatically depending on whether or not the provided function returns an error. Attempting to manually call Rollback or Commit on the managed transaction will result in a panic. An unmanaged transaction, on the other hand, requires the caller to manually call Commit or Rollback when they are finished with it. Leaving transactions open for long periods of time can have several adverse effects, so it is recommended that managed transactions are used instead. The Bucket interface provides the ability to manipulate key/value pairs and nested buckets as well as iterate through them. The Get, Put, and Delete functions work with key/value pairs, while the Bucket, CreateBucket, CreateBucketIfNotExists, and DeleteBucket functions work with buckets. The ForEach function allows the caller to provide a function to be called with each key/value pair and nested bucket in the current bucket. As discussed above, all of the functions which are used to manipulate key/value pairs and nested buckets exist on the Bucket interface. The root bucket is the upper-most bucket in a namespace under which data is stored and is created at the same time as the namespace. Use the RootBucket function on the Tx interface to retrieve it. The CreateBucket and CreateBucketIfNotExists functions on the Bucket interface provide the ability to create an arbitrary number of nested buckets. It is a good idea to avoid a lot of buckets with little data in them as it could lead to poor page utilization depending on the specific driver in use. This example demonstrates creating a new database, getting a namespace from it, and using a managed read-write transaction against the namespace to store and retrieve data.
Package wtxmgr provides an implementation of a transaction database handling spend tracking for a bitcoin wallet. Its primary purpose is to save transactions with outputs spendable with wallet keys and transactions that are signed by wallet keys in memory, handle spend tracking for unspent outputs and newly-inserted transactions, and report the spendable balance from each unspent transaction output. It uses walletdb as the backend for storing the serialized transaction objects in buckets. Transaction outputs which are spendable by wallet keys are called credits (because they credit to a wallet's total spendable balance). Transaction inputs which spend previously-inserted credits are called debits (because they debit from the wallet's spendable balance). Spend tracking is mostly automatic. When a new transaction is inserted, if it spends from any unspent credits, they are automatically marked spent by the new transaction, and each input which spent a credit is marked as a debit. However, transaction outputs of inserted transactions must manually marked as credits, as this package has no knowledge of wallet keys or addresses, and therefore cannot determine which outputs may be spent. Details regarding individual transactions and their credits and debits may be queried either by just a transaction hash, or by hash and block. When querying for just a transaction hash, the most recent transaction with a matching hash will be queried. However, because transaction hashes may collide with other transaction hashes, methods to query for specific transactions in the chain (or unmined) are provided as well.
Package blake256 implements BLAKE-256 and BLAKE-224 with SSE2, SSE4.1, and AVX acceleration and zero allocations. This example demonstrates the simplest method of hashing an existing serialized data buffer with BLAKE-256. This example demonstrates creating a rolling BLAKE-256 hasher, writing various data types to it, computing the hash, writing more data, and finally computing the cumulative hash. This example demonstrates creating a rolling BLAKE-256 hasher, writing some data to it, making a copy of the intermediate state, restoring the intermediate state in multiple goroutines, writing more data to each of those restored copies, and computing the final hashes.
Package consistent provides a consistent hashing function. Consistent hashing is often used to distribute requests to a changing set of servers. For example, say you have some cache servers cacheA, cacheB, and cacheC. You want to decide which cache server to use to look up information on a user. You could use a typical hash table and hash the user id to one of cacheA, cacheB, or cacheC. But with a typical hash table, if you add or remove a server, almost all keys will get remapped to different results, which basically could bring your service to a grinding halt while the caches get rebuilt. With a consistent hash, adding or removing a server drastically reduces the number of keys that get remapped. Read more about consistent hashing on wikipedia: http://en.wikipedia.org/wiki/Consistent_hashing
Package consistent provides a consistent hashing function. Consistent hashing is often used to distribute requests to a changing set of servers. For example, say you have some cache servers cacheA, cacheB, and cacheC. You want to decide which cache server to use to look up information on a user. You could use a typical hash table and hash the user id to one of cacheA, cacheB, or cacheC. But with a typical hash table, if you add or remove a server, almost all keys will get remapped to different results, which basically could bring your service to a grinding halt while the caches get rebuilt. With a consistent hash, adding or removing a server drastically reduces the number of keys that get remapped. Read more about consistent hashing on wikipedia: http://en.wikipedia.org/wiki/Consistent_hashing
Package dht implements a distributed hash table that satisfies the ipfs routing interface. This DHT is modeled after kademlia with S/Kademlia modifications.