This is the official Go SDK for Oracle Cloud Infrastructure Refer to https://github.com/oracle/oci-go-sdk/blob/master/README.md#installing for installation instructions. Refer to https://github.com/oracle/oci-go-sdk/blob/master/README.md#configuring for configuration instructions. The following example shows how to get started with the SDK. The example belows creates an identityClient struct with the default configuration. It then utilizes the identityClient to list availability domains and prints them out to stdout More examples can be found in the SDK Github repo: https://github.com/oracle/oci-go-sdk/tree/master/example Optional fields are represented with the `mandatory:"false"` tag on input structs. The SDK will omit all optional fields that are nil when making requests. In the case of enum-type fields, the SDK will omit fields whose value is an empty string. The SDK uses pointers for primitive types in many input structs. To aid in the construction of such structs, the SDK provides functions that return a pointer for a given value. For example: The SDK exposes functionality that allows the user to customize any http request before is sent to the service. You can do so by setting the `Interceptor` field in any of the `Client` structs. For example: The Interceptor closure gets called before the signing process, thus any changes done to the request will be properly signed and submitted to the service. The SDK exposes a stand-alone signer that can be used to signing custom requests. Related code can be found here: https://github.com/oracle/oci-go-sdk/blob/master/common/http_signer.go. The example below shows how to create a default signer. The signer also allows more granular control on the headers used for signing. For example: You can combine a custom signer with the exposed clients in the SDK. This allows you to add custom signed headers to the request. Following is an example: Bear in mind that some services have a white list of headers that it expects to be signed. Therefore, adding an arbitrary header can result in authentications errors. To see a runnable example, see https://github.com/oracle/oci-go-sdk/blob/master/example/example_identity_test.go For more information on the signing algorithm refer to: https://docs.cloud.oracle.com/Content/API/Concepts/signingrequests.htm Some operations accept or return polymorphic JSON objects. The SDK models such objects as interfaces. Further the SDK provides structs that implement such interfaces. Thus, for all operations that expect interfaces as input, pass the struct in the SDK that satisfies such interface. For example: In the case of a polymorphic response you can type assert the interface to the expected type. For example: An example of polymorphic JSON request handling can be found here: https://github.com/oracle/oci-go-sdk/blob/master/example/example_core_test.go#L63 When calling a list operation, the operation will retrieve a page of results. To retrieve more data, call the list operation again, passing in the value of the most recent response's OpcNextPage as the value of Page in the next list operation call. When there is no more data the OpcNextPage field will be nil. An example of pagination using this logic can be found here: https://github.com/oracle/oci-go-sdk/blob/master/example/example_core_pagination_test.go The SDK has a built-in logging mechanism used internally. The internal logging logic is used to record the raw http requests, responses and potential errors when (un)marshalling request and responses. Built-in logging in the SDK is controlled via the environment variable "OCI_GO_SDK_DEBUG" and its contents. The below are possible values for the "OCI_GO_SDK_DEBUG" variable 1. "info" or "i" enables all info logging messages 2. "debug" or "d" enables all debug and info logging messages 3. "verbose" or "v" or "1" enables all verbose, debug and info logging messages 4. "null" turns all logging messages off. If the value of the environment variable does not match any of the above then default logging level is "info". If the environment variable is not present then no logging messages are emitted. The default destination for logging is Stderr and if you want to output log to a file you can set via environment variable "OCI_GO_SDK_LOG_OUTPUT_MODE". The below are possible values 1. "file" or "f" enables all logging output saved to file 2. "combine" or "c" enables all logging output to both stderr and file You can also customize the log file location and name via "OCI_GO_SDK_LOG_FILE" environment variable, the value should be the path to a specific file If this environment variable is not present, the default location will be the project root path Sometimes you may need to wait until an attribute of a resource, such as an instance or a VCN, reaches a certain state. An example of this would be launching an instance and then waiting for the instance to become available, or waiting until a subnet in a VCN has been terminated. You might also want to retry the same operation again if there's network issue etc... This can be accomplished by using the RequestMetadata.RetryPolicy. You can find the examples here: https://github.com/oracle/oci-go-sdk/blob/master/example/example_retry_test.go The GO SDK uses the net/http package to make calls to OCI services. If your environment requires you to use a proxy server for outgoing HTTP requests then you can set this up in the following ways: 1. Configuring environment variable as described here https://golang.org/pkg/net/http/#ProxyFromEnvironment 2. Modifying the underlying Transport struct for a service client In order to modify the underlying Transport struct in HttpClient, you can do something similar to (sample code for audit service client): The Object Storage service supports multipart uploads to make large object uploads easier by splitting the large object into parts. The Go SDK supports raw multipart upload operations for advanced use cases, as well as a higher level upload class that uses the multipart upload APIs. For links to the APIs used for multipart upload operations, see Managing Multipart Uploads (https://docs.cloud.oracle.com/iaas/Content/Object/Tasks/usingmultipartuploads.htm). Higher level multipart uploads are implemented using the UploadManager, which will: split a large object into parts for you, upload the parts in parallel, and then recombine and commit the parts as a single object in storage. This code sample shows how to use the UploadManager to automatically split an object into parts for upload to simplify interaction with the Object Storage service: https://github.com/oracle/oci-go-sdk/blob/master/example/example_objectstorage_test.go Some response fields are enum-typed. In the future, individual services may return values not covered by existing enums for that field. To address this possibility, every enum-type response field is a modeled as a type that supports any string. Thus if a service returns a value that is not recognized by your version of the SDK, then the response field will be set to this value. When individual services return a polymorphic JSON response not available as a concrete struct, the SDK will return an implementation that only satisfies the interface modeling the polymorphic JSON response. If you are using a version of the SDK released prior to the announcement of a new region, you may need to use a workaround to reach it, depending on whether the region is in the oraclecloud.com realm. A region is a localized geographic area. For more information on regions and how to identify them, see Regions and Availability Domains(https://docs.cloud.oracle.com/iaas/Content/General/Concepts/regions.htm). A realm is a set of regions that share entities. You can identify your realm by looking at the domain name at the end of the network address. For example, the realm for xyz.abc.123.oraclecloud.com is oraclecloud.com. oraclecloud.com Realm: For regions in the oraclecloud.com realm, even if common.Region does not contain the new region, the forward compatibility of the SDK can automatically handle it. You can pass new region names just as you would pass ones that are already defined. For more information on passing region names in the configuration, see Configuring (https://github.com/oracle/oci-go-sdk/blob/master/README.md#configuring). For details on common.Region, see (https://github.com/oracle/oci-go-sdk/blob/master/common/common.go). Other Realms: For regions in realms other than oraclecloud.com, you can use the following workarounds to reach new regions with earlier versions of the SDK. NOTE: Be sure to supply the appropriate endpoints for your region. You can overwrite the target host with client.Host: If you are authenticating via instance principals, you can set the authentication endpoint in an environment variable: Got a fix for a bug, or a new feature you'd like to contribute? The SDK is open source and accepting pull requests on GitHub https://github.com/oracle/oci-go-sdk Licensing information available at: https://github.com/oracle/oci-go-sdk/blob/master/LICENSE.txt To be notified when a new version of the Go SDK is released, subscribe to the following feed: https://github.com/oracle/oci-go-sdk/releases.atom Please refer to this link: https://github.com/oracle/oci-go-sdk#help
This is the official Go SDK for Oracle Cloud Infrastructure Refer to https://github.com/oracle/oci-go-sdk/blob/master/README.md#installing for installation instructions. Refer to https://github.com/oracle/oci-go-sdk/blob/master/README.md#configuring for configuration instructions. The following example shows how to get started with the SDK. The example belows creates an identityClient struct with the default configuration. It then utilizes the identityClient to list availability domains and prints them out to stdout More examples can be found in the SDK Github repo: https://github.com/oracle/oci-go-sdk/tree/master/example Optional fields are represented with the `mandatory:"false"` tag on input structs. The SDK will omit all optional fields that are nil when making requests. In the case of enum-type fields, the SDK will omit fields whose value is an empty string. The SDK uses pointers for primitive types in many input structs. To aid in the construction of such structs, the SDK provides functions that return a pointer for a given value. For example: The SDK exposes functionality that allows the user to customize any http request before is sent to the service. You can do so by setting the `Interceptor` field in any of the `Client` structs. For example: The Interceptor closure gets called before the signing process, thus any changes done to the request will be properly signed and submitted to the service. The SDK exposes a stand-alone signer that can be used to signing custom requests. Related code can be found here: https://github.com/oracle/oci-go-sdk/blob/master/common/http_signer.go. The example below shows how to create a default signer. The signer also allows more granular control on the headers used for signing. For example: You can combine a custom signer with the exposed clients in the SDK. This allows you to add custom signed headers to the request. Following is an example: Bear in mind that some services have a white list of headers that it expects to be signed. Therefore, adding an arbitrary header can result in authentications errors. To see a runnable example, see https://github.com/oracle/oci-go-sdk/blob/master/example/example_identity_test.go For more information on the signing algorithm refer to: https://docs.cloud.oracle.com/Content/API/Concepts/signingrequests.htm Some operations accept or return polymorphic JSON objects. The SDK models such objects as interfaces. Further the SDK provides structs that implement such interfaces. Thus, for all operations that expect interfaces as input, pass the struct in the SDK that satisfies such interface. For example: In the case of a polymorphic response you can type assert the interface to the expected type. For example: An example of polymorphic JSON request handling can be found here: https://github.com/oracle/oci-go-sdk/blob/master/example/example_core_test.go#L63 When calling a list operation, the operation will retrieve a page of results. To retrieve more data, call the list operation again, passing in the value of the most recent response's OpcNextPage as the value of Page in the next list operation call. When there is no more data the OpcNextPage field will be nil. An example of pagination using this logic can be found here: https://github.com/oracle/oci-go-sdk/blob/master/example/example_core_pagination_test.go The SDK has a built-in logging mechanism used internally. The internal logging logic is used to record the raw http requests, responses and potential errors when (un)marshalling request and responses. Built-in logging in the SDK is controlled via the environment variable "OCI_GO_SDK_DEBUG" and its contents. The below are possible values for the "OCI_GO_SDK_DEBUG" variable 1. "info" or "i" enables all info logging messages 2. "debug" or "d" enables all debug and info logging messages 3. "verbose" or "v" or "1" enables all verbose, debug and info logging messages 4. "null" turns all logging messages off. If the value of the environment variable does not match any of the above then default logging level is "info". If the environment variable is not present then no logging messages are emitted. The default destination for logging is Stderr and if you want to output log to a file you can set via environment variable "OCI_GO_SDK_LOG_OUTPUT_MODE". The below are possible values 1. "file" or "f" enables all logging output saved to file 2. "combine" or "c" enables all logging output to both stderr and file You can also customize the log file location and name via "OCI_GO_SDK_LOG_FILE" environment variable, the value should be the path to a specific file If this environment variable is not present, the default location will be the project root path Sometimes you may need to wait until an attribute of a resource, such as an instance or a VCN, reaches a certain state. An example of this would be launching an instance and then waiting for the instance to become available, or waiting until a subnet in a VCN has been terminated. You might also want to retry the same operation again if there's network issue etc... This can be accomplished by using the RequestMetadata.RetryPolicy. You can find the examples here: https://github.com/oracle/oci-go-sdk/blob/master/example/example_retry_test.go If you are trying to make a PUT/POST API call with binary request body, please make sure the binary request body is resettable, which means the request body should inherit Seeker interface. The GO SDK uses the net/http package to make calls to OCI services. If your environment requires you to use a proxy server for outgoing HTTP requests then you can set this up in the following ways: 1. Configuring environment variable as described here https://golang.org/pkg/net/http/#ProxyFromEnvironment 2. Modifying the underlying Transport struct for a service client In order to modify the underlying Transport struct in HttpClient, you can do something similar to (sample code for audit service client): The Object Storage service supports multipart uploads to make large object uploads easier by splitting the large object into parts. The Go SDK supports raw multipart upload operations for advanced use cases, as well as a higher level upload class that uses the multipart upload APIs. For links to the APIs used for multipart upload operations, see Managing Multipart Uploads (https://docs.cloud.oracle.com/iaas/Content/Object/Tasks/usingmultipartuploads.htm). Higher level multipart uploads are implemented using the UploadManager, which will: split a large object into parts for you, upload the parts in parallel, and then recombine and commit the parts as a single object in storage. This code sample shows how to use the UploadManager to automatically split an object into parts for upload to simplify interaction with the Object Storage service: https://github.com/oracle/oci-go-sdk/blob/master/example/example_objectstorage_test.go Some response fields are enum-typed. In the future, individual services may return values not covered by existing enums for that field. To address this possibility, every enum-type response field is a modeled as a type that supports any string. Thus if a service returns a value that is not recognized by your version of the SDK, then the response field will be set to this value. When individual services return a polymorphic JSON response not available as a concrete struct, the SDK will return an implementation that only satisfies the interface modeling the polymorphic JSON response. If you are using a version of the SDK released prior to the announcement of a new region, you may need to use a workaround to reach it, depending on whether the region is in the oraclecloud.com realm. A region is a localized geographic area. For more information on regions and how to identify them, see Regions and Availability Domains(https://docs.cloud.oracle.com/iaas/Content/General/Concepts/regions.htm). A realm is a set of regions that share entities. You can identify your realm by looking at the domain name at the end of the network address. For example, the realm for xyz.abc.123.oraclecloud.com is oraclecloud.com. oraclecloud.com Realm: For regions in the oraclecloud.com realm, even if common.Region does not contain the new region, the forward compatibility of the SDK can automatically handle it. You can pass new region names just as you would pass ones that are already defined. For more information on passing region names in the configuration, see Configuring (https://github.com/oracle/oci-go-sdk/blob/master/README.md#configuring). For details on common.Region, see (https://github.com/oracle/oci-go-sdk/blob/master/common/common.go). Other Realms: For regions in realms other than oraclecloud.com, you can use the following workarounds to reach new regions with earlier versions of the SDK. NOTE: Be sure to supply the appropriate endpoints for your region. You can overwrite the target host with client.Host: If you are authenticating via instance principals, you can set the authentication endpoint in an environment variable: Got a fix for a bug, or a new feature you'd like to contribute? The SDK is open source and accepting pull requests on GitHub https://github.com/oracle/oci-go-sdk Licensing information available at: https://github.com/oracle/oci-go-sdk/blob/master/LICENSE.txt To be notified when a new version of the Go SDK is released, subscribe to the following feed: https://github.com/oracle/oci-go-sdk/releases.atom Please refer to this link: https://github.com/oracle/oci-go-sdk#help
This is the official Go SDK for Oracle Cloud Infrastructure Refer to https://github.com/oracle/oci-go-sdk/blob/master/README.md#installing for installation instructions. Refer to https://github.com/oracle/oci-go-sdk/blob/master/README.md#configuring for configuration instructions. The following example shows how to get started with the SDK. The example belows creates an identityClient struct with the default configuration. It then utilizes the identityClient to list availability domains and prints them out to stdout More examples can be found in the SDK Github repo: https://github.com/oracle/oci-go-sdk/tree/master/example Optional fields are represented with the `mandatory:"false"` tag on input structs. The SDK will omit all optional fields that are nil when making requests. In the case of enum-type fields, the SDK will omit fields whose value is an empty string. The SDK uses pointers for primitive types in many input structs. To aid in the construction of such structs, the SDK provides functions that return a pointer for a given value. For example: The SDK exposes functionality that allows the user to customize any http request before is sent to the service. You can do so by setting the `Interceptor` field in any of the `Client` structs. For example: The Interceptor closure gets called before the signing process, thus any changes done to the request will be properly signed and submitted to the service. The SDK exposes a stand-alone signer that can be used to signing custom requests. Related code can be found here: https://github.com/oracle/oci-go-sdk/blob/master/common/http_signer.go. The example below shows how to create a default signer. The signer also allows more granular control on the headers used for signing. For example: You can combine a custom signer with the exposed clients in the SDK. This allows you to add custom signed headers to the request. Following is an example: Bear in mind that some services have a white list of headers that it expects to be signed. Therefore, adding an arbitrary header can result in authentications errors. To see a runnable example, see https://github.com/oracle/oci-go-sdk/blob/master/example/example_identity_test.go For more information on the signing algorithm refer to: https://docs.cloud.oracle.com/Content/API/Concepts/signingrequests.htm Some operations accept or return polymorphic JSON objects. The SDK models such objects as interfaces. Further the SDK provides structs that implement such interfaces. Thus, for all operations that expect interfaces as input, pass the struct in the SDK that satisfies such interface. For example: In the case of a polymorphic response you can type assert the interface to the expected type. For example: An example of polymorphic JSON request handling can be found here: https://github.com/oracle/oci-go-sdk/blob/master/example/example_core_test.go#L63 When calling a list operation, the operation will retrieve a page of results. To retrieve more data, call the list operation again, passing in the value of the most recent response's OpcNextPage as the value of Page in the next list operation call. When there is no more data the OpcNextPage field will be nil. An example of pagination using this logic can be found here: https://github.com/oracle/oci-go-sdk/blob/master/example/example_core_pagination_test.go The SDK has a built-in logging mechanism used internally. The internal logging logic is used to record the raw http requests, responses and potential errors when (un)marshalling request and responses. Built-in logging in the SDK is controlled via the environment variable "OCI_GO_SDK_DEBUG" and its contents. The below are possible values for the "OCI_GO_SDK_DEBUG" variable 1. "info" or "i" enables all info logging messages 2. "debug" or "d" enables all debug and info logging messages 3. "verbose" or "v" or "1" enables all verbose, debug and info logging messages 4. "null" turns all logging messages off. If the value of the environment variable does not match any of the above then default logging level is "info". If the environment variable is not present then no logging messages are emitted. The default destination for logging is Stderr and if you want to output log to a file you can set via environment variable "OCI_GO_SDK_LOG_OUTPUT_MODE". The below are possible values 1. "file" or "f" enables all logging output saved to file 2. "combine" or "c" enables all logging output to both stderr and file You can also customize the log file location and name via "OCI_GO_SDK_LOG_FILE" environment variable, the value should be the path to a specific file If this environment variable is not present, the default location will be the project root path Sometimes you may need to wait until an attribute of a resource, such as an instance or a VCN, reaches a certain state. An example of this would be launching an instance and then waiting for the instance to become available, or waiting until a subnet in a VCN has been terminated. You might also want to retry the same operation again if there's network issue etc... This can be accomplished by using the RequestMetadata.RetryPolicy. You can find the examples here: https://github.com/oracle/oci-go-sdk/blob/master/example/example_retry_test.go The GO SDK uses the net/http package to make calls to OCI services. If your environment requires you to use a proxy server for outgoing HTTP requests then you can set this up in the following ways: 1. Configuring environment variable as described here https://golang.org/pkg/net/http/#ProxyFromEnvironment 2. Modifying the underlying Transport struct for a service client In order to modify the underlying Transport struct in HttpClient, you can do something similar to (sample code for audit service client): The Object Storage service supports multipart uploads to make large object uploads easier by splitting the large object into parts. The Go SDK supports raw multipart upload operations for advanced use cases, as well as a higher level upload class that uses the multipart upload APIs. For links to the APIs used for multipart upload operations, see Managing Multipart Uploads (https://docs.cloud.oracle.com/iaas/Content/Object/Tasks/usingmultipartuploads.htm). Higher level multipart uploads are implemented using the UploadManager, which will: split a large object into parts for you, upload the parts in parallel, and then recombine and commit the parts as a single object in storage. This code sample shows how to use the UploadManager to automatically split an object into parts for upload to simplify interaction with the Object Storage service: https://github.com/oracle/oci-go-sdk/blob/master/example/example_objectstorage_test.go Some response fields are enum-typed. In the future, individual services may return values not covered by existing enums for that field. To address this possibility, every enum-type response field is a modeled as a type that supports any string. Thus if a service returns a value that is not recognized by your version of the SDK, then the response field will be set to this value. When individual services return a polymorphic JSON response not available as a concrete struct, the SDK will return an implementation that only satisfies the interface modeling the polymorphic JSON response. If you are using a version of the SDK released prior to the announcement of a new region, you may need to use a workaround to reach it, depending on whether the region is in the oraclecloud.com realm. A region is a localized geographic area. For more information on regions and how to identify them, see Regions and Availability Domains(https://docs.cloud.oracle.com/iaas/Content/General/Concepts/regions.htm). A realm is a set of regions that share entities. You can identify your realm by looking at the domain name at the end of the network address. For example, the realm for xyz.abc.123.oraclecloud.com is oraclecloud.com. oraclecloud.com Realm: For regions in the oraclecloud.com realm, even if common.Region does not contain the new region, the forward compatibility of the SDK can automatically handle it. You can pass new region names just as you would pass ones that are already defined. For more information on passing region names in the configuration, see Configuring (https://github.com/oracle/oci-go-sdk/blob/master/README.md#configuring). For details on common.Region, see (https://github.com/oracle/oci-go-sdk/blob/master/common/common.go). Other Realms: For regions in realms other than oraclecloud.com, you can use the following workarounds to reach new regions with earlier versions of the SDK. NOTE: Be sure to supply the appropriate endpoints for your region. You can overwrite the target host with client.Host: If you are authenticating via instance principals, you can set the authentication endpoint in an environment variable: Got a fix for a bug, or a new feature you'd like to contribute? The SDK is open source and accepting pull requests on GitHub https://github.com/oracle/oci-go-sdk Licensing information available at: https://github.com/oracle/oci-go-sdk/blob/master/LICENSE.txt To be notified when a new version of the Go SDK is released, subscribe to the following feed: https://github.com/oracle/oci-go-sdk/releases.atom Please refer to this link: https://github.com/oracle/oci-go-sdk#help
This is the official Go SDK for Oracle Cloud Infrastructure Refer to https://github.com/oracle/oci-go-sdk/blob/master/README.md#installing for installation instructions. Refer to https://github.com/oracle/oci-go-sdk/blob/master/README.md#configuring for configuration instructions. The following example shows how to get started with the SDK. The example belows creates an identityClient struct with the default configuration. It then utilizes the identityClient to list availability domains and prints them out to stdout More examples can be found in the SDK Github repo: https://github.com/oracle/oci-go-sdk/tree/master/example Optional fields are represented with the `mandatory:"false"` tag on input structs. The SDK will omit all optional fields that are nil when making requests. In the case of enum-type fields, the SDK will omit fields whose value is an empty string. The SDK uses pointers for primitive types in many input structs. To aid in the construction of such structs, the SDK provides functions that return a pointer for a given value. For example: The SDK exposes functionality that allows the user to customize any http request before is sent to the service. You can do so by setting the `Interceptor` field in any of the `Client` structs. For example: The Interceptor closure gets called before the signing process, thus any changes done to the request will be properly signed and submitted to the service. The SDK exposes a stand-alone signer that can be used to signing custom requests. Related code can be found here: https://github.com/oracle/oci-go-sdk/blob/master/common/http_signer.go. The example below shows how to create a default signer. The signer also allows more granular control on the headers used for signing. For example: You can combine a custom signer with the exposed clients in the SDK. This allows you to add custom signed headers to the request. Following is an example: Bear in mind that some services have a white list of headers that it expects to be signed. Therefore, adding an arbitrary header can result in authentications errors. To see a runnable example, see https://github.com/oracle/oci-go-sdk/blob/master/example/example_identity_test.go For more information on the signing algorithm refer to: https://docs.cloud.oracle.com/Content/API/Concepts/signingrequests.htm Some operations accept or return polymorphic JSON objects. The SDK models such objects as interfaces. Further the SDK provides structs that implement such interfaces. Thus, for all operations that expect interfaces as input, pass the struct in the SDK that satisfies such interface. For example: In the case of a polymorphic response you can type assert the interface to the expected type. For example: An example of polymorphic JSON request handling can be found here: https://github.com/oracle/oci-go-sdk/blob/master/example/example_core_test.go#L63 When calling a list operation, the operation will retrieve a page of results. To retrieve more data, call the list operation again, passing in the value of the most recent response's OpcNextPage as the value of Page in the next list operation call. When there is no more data the OpcNextPage field will be nil. An example of pagination using this logic can be found here: https://github.com/oracle/oci-go-sdk/blob/master/example/example_core_pagination_test.go The SDK has a built-in logging mechanism used internally. The internal logging logic is used to record the raw http requests, responses and potential errors when (un)marshalling request and responses. Built-in logging in the SDK is controlled via the environment variable "OCI_GO_SDK_DEBUG" and its contents. The below are possible values for the "OCI_GO_SDK_DEBUG" variable 1. "info" or "i" enables all info logging messages 2. "debug" or "d" enables all debug and info logging messages 3. "verbose" or "v" or "1" enables all verbose, debug and info logging messages 4. "null" turns all logging messages off. If the value of the environment variable does not match any of the above then default logging level is "info". If the environment variable is not present then no logging messages are emitted. The default destination for logging is Stderr and if you want to output log to a file you can set via environment variable "OCI_GO_SDK_LOG_OUTPUT_MODE". The below are possible values 1. "file" or "f" enables all logging output saved to file 2. "combine" or "c" enables all logging output to both stderr and file You can also customize the log file location and name via "OCI_GO_SDK_LOG_FILE" environment variable, the value should be the path to a specific file If this environment variable is not present, the default location will be the project root path Sometimes you may need to wait until an attribute of a resource, such as an instance or a VCN, reaches a certain state. An example of this would be launching an instance and then waiting for the instance to become available, or waiting until a subnet in a VCN has been terminated. You might also want to retry the same operation again if there's network issue etc... This can be accomplished by using the RequestMetadata.RetryPolicy. You can find the examples here: https://github.com/oracle/oci-go-sdk/blob/master/example/example_retry_test.go The GO SDK uses the net/http package to make calls to OCI services. If your environment requires you to use a proxy server for outgoing HTTP requests then you can set this up in the following ways: 1. Configuring environment variable as described here https://golang.org/pkg/net/http/#ProxyFromEnvironment 2. Modifying the underlying Transport struct for a service client In order to modify the underlying Transport struct in HttpClient, you can do something similar to (sample code for audit service client): The Object Storage service supports multipart uploads to make large object uploads easier by splitting the large object into parts. The Go SDK supports raw multipart upload operations for advanced use cases, as well as a higher level upload class that uses the multipart upload APIs. For links to the APIs used for multipart upload operations, see Managing Multipart Uploads (https://docs.cloud.oracle.com/iaas/Content/Object/Tasks/usingmultipartuploads.htm). Higher level multipart uploads are implemented using the UploadManager, which will: split a large object into parts for you, upload the parts in parallel, and then recombine and commit the parts as a single object in storage. This code sample shows how to use the UploadManager to automatically split an object into parts for upload to simplify interaction with the Object Storage service: https://github.com/oracle/oci-go-sdk/blob/master/example/example_objectstorage_test.go Some response fields are enum-typed. In the future, individual services may return values not covered by existing enums for that field. To address this possibility, every enum-type response field is a modeled as a type that supports any string. Thus if a service returns a value that is not recognized by your version of the SDK, then the response field will be set to this value. When individual services return a polymorphic JSON response not available as a concrete struct, the SDK will return an implementation that only satisfies the interface modeling the polymorphic JSON response. If you are using a version of the SDK released prior to the announcement of a new region, you may need to use a workaround to reach it, depending on whether the region is in the oraclecloud.com realm. A region is a localized geographic area. For more information on regions and how to identify them, see Regions and Availability Domains(https://docs.cloud.oracle.com/iaas/Content/General/Concepts/regions.htm). A realm is a set of regions that share entities. You can identify your realm by looking at the domain name at the end of the network address. For example, the realm for xyz.abc.123.oraclecloud.com is oraclecloud.com. oraclecloud.com Realm: For regions in the oraclecloud.com realm, even if common.Region does not contain the new region, the forward compatibility of the SDK can automatically handle it. You can pass new region names just as you would pass ones that are already defined. For more information on passing region names in the configuration, see Configuring (https://github.com/oracle/oci-go-sdk/blob/master/README.md#configuring). For details on common.Region, see (https://github.com/oracle/oci-go-sdk/blob/master/common/common.go). Other Realms: For regions in realms other than oraclecloud.com, you can use the following workarounds to reach new regions with earlier versions of the SDK. NOTE: Be sure to supply the appropriate endpoints for your region. You can overwrite the target host with client.Host: If you are authenticating via instance principals, you can set the authentication endpoint in an environment variable: Got a fix for a bug, or a new feature you'd like to contribute? The SDK is open source and accepting pull requests on GitHub https://github.com/oracle/oci-go-sdk Licensing information available at: https://github.com/oracle/oci-go-sdk/blob/master/LICENSE.txt To be notified when a new version of the Go SDK is released, subscribe to the following feed: https://github.com/oracle/oci-go-sdk/releases.atom Please refer to this link: https://github.com/oracle/oci-go-sdk#help
This is the official Go SDK for Oracle Cloud Infrastructure Refer to https://github.com/oracle/oci-go-sdk/blob/master/README.md#installing for installation instructions. Refer to https://github.com/oracle/oci-go-sdk/blob/master/README.md#configuring for configuration instructions. The following example shows how to get started with the SDK. The example belows creates an identityClient struct with the default configuration. It then utilizes the identityClient to list availability domains and prints them out to stdout More examples can be found in the SDK Github repo: https://github.com/oracle/oci-go-sdk/tree/master/example Optional fields are represented with the `mandatory:"false"` tag on input structs. The SDK will omit all optional fields that are nil when making requests. In the case of enum-type fields, the SDK will omit fields whose value is an empty string. The SDK uses pointers for primitive types in many input structs. To aid in the construction of such structs, the SDK provides functions that return a pointer for a given value. For example: The SDK exposes functionality that allows the user to customize any http request before is sent to the service. You can do so by setting the `Interceptor` field in any of the `Client` structs. For example: The Interceptor closure gets called before the signing process, thus any changes done to the request will be properly signed and submitted to the service. The SDK exposes a stand-alone signer that can be used to signing custom requests. Related code can be found here: https://github.com/oracle/oci-go-sdk/blob/master/common/http_signer.go. The example below shows how to create a default signer. The signer also allows more granular control on the headers used for signing. For example: You can combine a custom signer with the exposed clients in the SDK. This allows you to add custom signed headers to the request. Following is an example: Bear in mind that some services have a white list of headers that it expects to be signed. Therefore, adding an arbitrary header can result in authentications errors. To see a runnable example, see https://github.com/oracle/oci-go-sdk/blob/master/example/example_identity_test.go For more information on the signing algorithm refer to: https://docs.cloud.oracle.com/Content/API/Concepts/signingrequests.htm Some operations accept or return polymorphic JSON objects. The SDK models such objects as interfaces. Further the SDK provides structs that implement such interfaces. Thus, for all operations that expect interfaces as input, pass the struct in the SDK that satisfies such interface. For example: In the case of a polymorphic response you can type assert the interface to the expected type. For example: An example of polymorphic JSON request handling can be found here: https://github.com/oracle/oci-go-sdk/blob/master/example/example_core_test.go#L63 When calling a list operation, the operation will retrieve a page of results. To retrieve more data, call the list operation again, passing in the value of the most recent response's OpcNextPage as the value of Page in the next list operation call. When there is no more data the OpcNextPage field will be nil. An example of pagination using this logic can be found here: https://github.com/oracle/oci-go-sdk/blob/master/example/example_core_pagination_test.go The SDK has a built-in logging mechanism used internally. The internal logging logic is used to record the raw http requests, responses and potential errors when (un)marshalling request and responses. Built-in logging in the SDK is controlled via the environment variable "OCI_GO_SDK_DEBUG" and its contents. The below are possible values for the "OCI_GO_SDK_DEBUG" variable 1. "info" or "i" enables all info logging messages 2. "debug" or "d" enables all debug and info logging messages 3. "verbose" or "v" or "1" enables all verbose, debug and info logging messages 4. "null" turns all logging messages off. If the value of the environment variable does not match any of the above then default logging level is "info". If the environment variable is not present then no logging messages are emitted. The default destination for logging is Stderr and if you want to output log to a file you can set via environment variable "OCI_GO_SDK_LOG_OUTPUT_MODE". The below are possible values 1. "file" or "f" enables all logging output saved to file 2. "combine" or "c" enables all logging output to both stderr and file You can also customize the log file location and name via "OCI_GO_SDK_LOG_FILE" environment variable, the value should be the path to a specific file If this environment variable is not present, the default location will be the project root path Sometimes you may need to wait until an attribute of a resource, such as an instance or a VCN, reaches a certain state. An example of this would be launching an instance and then waiting for the instance to become available, or waiting until a subnet in a VCN has been terminated. You might also want to retry the same operation again if there's network issue etc... This can be accomplished by using the RequestMetadata.RetryPolicy. You can find the examples here: https://github.com/oracle/oci-go-sdk/blob/master/example/example_retry_test.go The GO SDK uses the net/http package to make calls to OCI services. If your environment requires you to use a proxy server for outgoing HTTP requests then you can set this up in the following ways: 1. Configuring environment variable as described here https://golang.org/pkg/net/http/#ProxyFromEnvironment 2. Modifying the underlying Transport struct for a service client In order to modify the underlying Transport struct in HttpClient, you can do something similar to (sample code for audit service client): The Object Storage service supports multipart uploads to make large object uploads easier by splitting the large object into parts. The Go SDK supports raw multipart upload operations for advanced use cases, as well as a higher level upload class that uses the multipart upload APIs. For links to the APIs used for multipart upload operations, see Managing Multipart Uploads (https://docs.cloud.oracle.com/iaas/Content/Object/Tasks/usingmultipartuploads.htm). Higher level multipart uploads are implemented using the UploadManager, which will: split a large object into parts for you, upload the parts in parallel, and then recombine and commit the parts as a single object in storage. This code sample shows how to use the UploadManager to automatically split an object into parts for upload to simplify interaction with the Object Storage service: https://github.com/oracle/oci-go-sdk/blob/master/example/example_objectstorage_test.go Some response fields are enum-typed. In the future, individual services may return values not covered by existing enums for that field. To address this possibility, every enum-type response field is a modeled as a type that supports any string. Thus if a service returns a value that is not recognized by your version of the SDK, then the response field will be set to this value. When individual services return a polymorphic JSON response not available as a concrete struct, the SDK will return an implementation that only satisfies the interface modeling the polymorphic JSON response. If you are using a version of the SDK released prior to the announcement of a new region, you may need to use a workaround to reach it, depending on whether the region is in the oraclecloud.com realm. A region is a localized geographic area. For more information on regions and how to identify them, see Regions and Availability Domains(https://docs.cloud.oracle.com/iaas/Content/General/Concepts/regions.htm). A realm is a set of regions that share entities. You can identify your realm by looking at the domain name at the end of the network address. For example, the realm for xyz.abc.123.oraclecloud.com is oraclecloud.com. oraclecloud.com Realm: For regions in the oraclecloud.com realm, even if common.Region does not contain the new region, the forward compatibility of the SDK can automatically handle it. You can pass new region names just as you would pass ones that are already defined. For more information on passing region names in the configuration, see Configuring (https://github.com/oracle/oci-go-sdk/blob/master/README.md#configuring). For details on common.Region, see (https://github.com/oracle/oci-go-sdk/blob/master/common/common.go). Other Realms: For regions in realms other than oraclecloud.com, you can use the following workarounds to reach new regions with earlier versions of the SDK. NOTE: Be sure to supply the appropriate endpoints for your region. You can overwrite the target host with client.Host: If you are authenticating via instance principals, you can set the authentication endpoint in an environment variable: Got a fix for a bug, or a new feature you'd like to contribute? The SDK is open source and accepting pull requests on GitHub https://github.com/oracle/oci-go-sdk Licensing information available at: https://github.com/oracle/oci-go-sdk/blob/master/LICENSE.txt To be notified when a new version of the Go SDK is released, subscribe to the following feed: https://github.com/oracle/oci-go-sdk/releases.atom Please refer to this link: https://github.com/oracle/oci-go-sdk#help
This is the official Go SDK for Oracle Cloud Infrastructure Refer to https://github.com/oracle/oci-go-sdk/blob/master/README.md#installing for installation instructions. Refer to https://github.com/oracle/oci-go-sdk/blob/master/README.md#configuring for configuration instructions. The following example shows how to get started with the SDK. The example belows creates an identityClient struct with the default configuration. It then utilizes the identityClient to list availability domains and prints them out to stdout More examples can be found in the SDK Github repo: https://github.com/oracle/oci-go-sdk/tree/master/example Optional fields are represented with the `mandatory:"false"` tag on input structs. The SDK will omit all optional fields that are nil when making requests. In the case of enum-type fields, the SDK will omit fields whose value is an empty string. The SDK uses pointers for primitive types in many input structs. To aid in the construction of such structs, the SDK provides functions that return a pointer for a given value. For example: The SDK exposes functionality that allows the user to customize any http request before is sent to the service. You can do so by setting the `Interceptor` field in any of the `Client` structs. For example: The Interceptor closure gets called before the signing process, thus any changes done to the request will be properly signed and submitted to the service. The SDK exposes a stand-alone signer that can be used to signing custom requests. Related code can be found here: https://github.com/oracle/oci-go-sdk/blob/master/common/http_signer.go. The example below shows how to create a default signer. The signer also allows more granular control on the headers used for signing. For example: You can combine a custom signer with the exposed clients in the SDK. This allows you to add custom signed headers to the request. Following is an example: Bear in mind that some services have a white list of headers that it expects to be signed. Therefore, adding an arbitrary header can result in authentications errors. To see a runnable example, see https://github.com/oracle/oci-go-sdk/blob/master/example/example_identity_test.go For more information on the signing algorithm refer to: https://docs.cloud.oracle.com/Content/API/Concepts/signingrequests.htm Some operations accept or return polymorphic JSON objects. The SDK models such objects as interfaces. Further the SDK provides structs that implement such interfaces. Thus, for all operations that expect interfaces as input, pass the struct in the SDK that satisfies such interface. For example: In the case of a polymorphic response you can type assert the interface to the expected type. For example: An example of polymorphic JSON request handling can be found here: https://github.com/oracle/oci-go-sdk/blob/master/example/example_core_test.go#L63 When calling a list operation, the operation will retrieve a page of results. To retrieve more data, call the list operation again, passing in the value of the most recent response's OpcNextPage as the value of Page in the next list operation call. When there is no more data the OpcNextPage field will be nil. An example of pagination using this logic can be found here: https://github.com/oracle/oci-go-sdk/blob/master/example/example_core_pagination_test.go The SDK has a built-in logging mechanism used internally. The internal logging logic is used to record the raw http requests, responses and potential errors when (un)marshalling request and responses. Built-in logging in the SDK is controlled via the environment variable "OCI_GO_SDK_DEBUG" and its contents. The below are possible values for the "OCI_GO_SDK_DEBUG" variable 1. "info" or "i" enables all info logging messages 2. "debug" or "d" enables all debug and info logging messages 3. "verbose" or "v" or "1" enables all verbose, debug and info logging messages 4. "null" turns all logging messages off. If the value of the environment variable does not match any of the above then default logging level is "info". If the environment variable is not present then no logging messages are emitted. The default destination for logging is Stderr and if you want to output log to a file you can set via environment variable "OCI_GO_SDK_LOG_OUTPUT_MODE". The below are possible values 1. "file" or "f" enables all logging output saved to file 2. "combine" or "c" enables all logging output to both stderr and file You can also customize the log file location and name via "OCI_GO_SDK_LOG_FILE" environment variable, the value should be the path to a specific file If this environment variable is not present, the default location will be the project root path Sometimes you may need to wait until an attribute of a resource, such as an instance or a VCN, reaches a certain state. An example of this would be launching an instance and then waiting for the instance to become available, or waiting until a subnet in a VCN has been terminated. You might also want to retry the same operation again if there's network issue etc... This can be accomplished by using the RequestMetadata.RetryPolicy(request level configuration), alternatively, global(all services) or client level RetryPolicy configration is also possible. You can find the examples here: https://github.com/oracle/oci-go-sdk/blob/master/example/example_retry_test.go If you are trying to make a PUT/POST API call with binary request body, please make sure the binary request body is resettable, which means the request body should inherit Seeker interface. The Retry behavior Precedence (Highest to lowest) is defined as below:- The OCI Go SDK defines a default retry policy that retries on the errors suitable for retries (see https://docs.oracle.com/en-us/iaas/Content/API/References/apierrors.htm), for a recommended period of time (up to 7 attempts spread out over at most approximately 1.5 minutes). The default retry policy is defined by : Default Retry-able Errors Below is the list of default retry-able errors for which retry attempts should be made. The following errors should be retried (with backoff). HTTP Code Customer-facing Error Code Apart from the above errors, retries should also be attempted in the following Client Side errors : 1. HTTP Connection timeout 2. Request Connection Errors 3. Request Exceptions 4. Other timeouts (like Read Timeout) The above errors can be avoided through retrying and hence, are classified as the default retry-able errors. Additionally, retries should also be made for Circuit Breaker exceptions (Exceptions raised by Circuit Breaker in an open state) Default Termination Strategy The termination strategy defines when SDKs should stop attempting to retry. In other words, it's the deadline for retries. The OCI SDKs should stop retrying the operation after 7 retry attempts. This means the SDKs will have retried for ~98 seconds or ~1.5 minutes have elapsed due to total delays. SDKs will make a total of 8 attempts. (1 initial request + 7 retries) Default Delay Strategy Default Delay Strategy - The delay strategy defines the amount of time to wait between each of the retry attempts. The default delay strategy chosen for the SDK – Exponential backoff with jitter, using: 1. The base time to use in retry calculations will be 1 second 2. An exponent of 2. When calculating the next retry time, the SDK will raise this to the power of the number of attempts 3. A maximum wait time between calls of 30 seconds (Capped) 4. Added jitter value between 0-1000 milliseconds to spread out the requests Configure and use default retry policy You can set this retry policy for a single request: or for all requests made by a client: or for all requests made by all clients: or setting default retry via environment varaible, which is a global switch for all services: Some services enable retry for operations by default, this can be overridden using any alternatives mentioned above. To know which service operations have retries enabled by default, look at the operation's description in the SDK - it will say whether that it has retries enabled by default Some resources may have to be replicated across regions and are only eventually consistent. That means the request to create, update, or delete the resource succeeded, but the resource is not available everywhere immediately. Creating, updating, or deleting any resource in the Identity service is affected by eventual consistency, and doing so may cause other operations in other services to fail until the Identity resource has been replicated. For example, the request to CreateTag in the Identity service in the home region succeeds, but immediately using that created tag in another region in a request to LaunchInstance in the Compute service may fail. If you are creating, updating, or deleting resources in the Identity service, we recommend using an eventually consistent retry policy for any service you access. The default retry policy already deals with eventual consistency. Example: This retry policy will use a different strategy if an eventually consistent change was made in the recent past (called the "eventually consistent window", currently defined to be 4 minutes after the eventually consistent change). This special retry policy for eventual consistency will: 1. make up to 9 attempts (including the initial attempt); if an attempt is successful, no more attempts will be made 2. retry at most until (a) approximately the end of the eventually consistent window or (b) the end of the default retry period of about 1.5 minutes, whichever is farther in the future; if an attempt is successful, no more attempts will be made, and the OCI Go SDK will not wait any longer 3. retry on the error codes 400-RelatedResourceNotAuthorizedOrNotFound, 404-NotAuthorizedOrNotFound, and 409-NotAuthorizedOrResourceAlreadyExists, for which the default retry policy does not retry, in addition to the errors the default retry policy retries on (see https://docs.oracle.com/en-us/iaas/Content/API/References/apierrors.htm) If there were no eventually consistent actions within the recent past, then this special retry strategy is not used. If you want a retry policy that does not handle eventual consistency in a special way, for example because you retry on all error responses, you can use DefaultRetryPolicyWithoutEventualConsistency or NewRetryPolicyWithOptions with the common.ReplaceWithValuesFromRetryPolicy(common.DefaultRetryPolicyWithoutEventualConsistency()) option: The NewRetryPolicy function also creates a retry policy without eventual consistency. Circuit Breaker can prevent an application repeatedly trying to execute an operation that is likely to fail, allowing it to continue without waiting for the fault to be rectified or wasting CPU cycles, of course, it also enables an application to detect whether the fault has been resolved. If the problem appears to have been rectified, the application can attempt to invoke the operation. Go SDK intergrates sony/gobreaker solution, wraps in a circuit breaker object, which monitors for failures. Once the failures reach a certain threshold, the circuit breaker trips, and all further calls to the circuit breaker return with an error, this also saves the service from being overwhelmed with network calls in case of an outage. Circuit Breaker Configuration Definitions 1. Failure Rate Threshold - The state of the CircuitBreaker changes from CLOSED to OPEN when the failure rate is equal or greater than a configurable threshold. For example when more than 50% of the recorded calls have failed. 2. Reset Timeout - The timeout after which an open circuit breaker will attempt a request if a request is made 3. Failure Exceptions - The list of Exceptions that will be regarded as failures for the circuit. 4. Minimum number of calls/ Volume threshold - Configures the minimum number of calls which are required (per sliding window period) before the CircuitBreaker can calculate the error rate. 1. Failure Rate Threshold - 80% - This means when 80% of the requests calculated for a time window of 120 seconds have failed then the circuit will transition from closed to open. 2. Minimum number of calls/ Volume threshold - A value of 10, for the above defined time window of 120 seconds. 3. Reset Timeout - 30 seconds to wait before setting the breaker to halfOpen state, and trying the action again. 4. Failure Exceptions - The failures for the circuit will only be recorded for the retryable/transient exceptions. This means only the following exceptions will be regarded as failure for the circuit. HTTP Code Customer-facing Error Code Apart from the above, the following client side exceptions will also be treated as a failure for the circuit : 1. HTTP Connection timeout 2. Request Connection Errors 3. Request Exceptions 4. Other timeouts (like Read Timeout) Go SDK enable circuit breaker with default configuration for most of the service clients, if you don't want to enable the solution, can disable the functionality before your application running Go SDK also supports customize Circuit Breaker with specified configurations. You can find the examples here: https://github.com/oracle/oci-go-sdk/blob/master/example/example_circuitbreaker_test.go To know which service clients have circuit breakers enabled, look at the service client's description in the SDK - it will say whether that it has circuit breakers enabled by default The GO SDK uses the net/http package to make calls to OCI services. If your environment requires you to use a proxy server for outgoing HTTP requests then you can set this up in the following ways: 1. Configuring environment variable as described here https://golang.org/pkg/net/http/#ProxyFromEnvironment 2. Modifying the underlying Transport struct for a service client In order to modify the underlying Transport struct in HttpClient, you can do something similar to (sample code for audit service client): The Object Storage service supports multipart uploads to make large object uploads easier by splitting the large object into parts. The Go SDK supports raw multipart upload operations for advanced use cases, as well as a higher level upload class that uses the multipart upload APIs. For links to the APIs used for multipart upload operations, see Managing Multipart Uploads (https://docs.cloud.oracle.com/iaas/Content/Object/Tasks/usingmultipartuploads.htm). Higher level multipart uploads are implemented using the UploadManager, which will: split a large object into parts for you, upload the parts in parallel, and then recombine and commit the parts as a single object in storage. This code sample shows how to use the UploadManager to automatically split an object into parts for upload to simplify interaction with the Object Storage service: https://github.com/oracle/oci-go-sdk/blob/master/example/example_objectstorage_test.go Some response fields are enum-typed. In the future, individual services may return values not covered by existing enums for that field. To address this possibility, every enum-type response field is a modeled as a type that supports any string. Thus if a service returns a value that is not recognized by your version of the SDK, then the response field will be set to this value. When individual services return a polymorphic JSON response not available as a concrete struct, the SDK will return an implementation that only satisfies the interface modeling the polymorphic JSON response. If you are using a version of the SDK released prior to the announcement of a new region, you may need to use a workaround to reach it, depending on whether the region is in the oraclecloud.com realm. A region is a localized geographic area. For more information on regions and how to identify them, see Regions and Availability Domains(https://docs.cloud.oracle.com/iaas/Content/General/Concepts/regions.htm). A realm is a set of regions that share entities. You can identify your realm by looking at the domain name at the end of the network address. For example, the realm for xyz.abc.123.oraclecloud.com is oraclecloud.com. oraclecloud.com Realm: For regions in the oraclecloud.com realm, even if common.Region does not contain the new region, the forward compatibility of the SDK can automatically handle it. You can pass new region names just as you would pass ones that are already defined. For more information on passing region names in the configuration, see Configuring (https://github.com/oracle/oci-go-sdk/blob/master/README.md#configuring). For details on common.Region, see (https://github.com/oracle/oci-go-sdk/blob/master/common/common.go). Other Realms: For regions in realms other than oraclecloud.com, you can use the following workarounds to reach new regions with earlier versions of the SDK. NOTE: Be sure to supply the appropriate endpoints for your region. You can overwrite the target host with client.Host: If you are authenticating via instance principals, you can set the authentication endpoint in an environment variable: Got a fix for a bug, or a new feature you'd like to contribute? The SDK is open source and accepting pull requests on GitHub https://github.com/oracle/oci-go-sdk Licensing information available at: https://github.com/oracle/oci-go-sdk/blob/master/LICENSE.txt To be notified when a new version of the Go SDK is released, subscribe to the following feed: https://github.com/oracle/oci-go-sdk/releases.atom Please refer to this link: https://github.com/oracle/oci-go-sdk#help
This is the official Go SDK for Oracle Cloud Infrastructure Refer to https://github.com/oracle/oci-go-sdk/blob/master/README.md#installing for installation instructions. Refer to https://github.com/oracle/oci-go-sdk/blob/master/README.md#configuring for configuration instructions. The following example shows how to get started with the SDK. The example belows creates an identityClient struct with the default configuration. It then utilizes the identityClient to list availability domains and prints them out to stdout More examples can be found in the SDK Github repo: https://github.com/oracle/oci-go-sdk/tree/master/example Optional fields are represented with the `mandatory:"false"` tag on input structs. The SDK will omit all optional fields that are nil when making requests. In the case of enum-type fields, the SDK will omit fields whose value is an empty string. The SDK uses pointers for primitive types in many input structs. To aid in the construction of such structs, the SDK provides functions that return a pointer for a given value. For example: The SDK exposes functionality that allows the user to customize any http request before is sent to the service. You can do so by setting the `Interceptor` field in any of the `Client` structs. For example: The Interceptor closure gets called before the signing process, thus any changes done to the request will be properly signed and submitted to the service. The SDK exposes a stand-alone signer that can be used to signing custom requests. Related code can be found here: https://github.com/oracle/oci-go-sdk/blob/master/common/http_signer.go. The example below shows how to create a default signer. The signer also allows more granular control on the headers used for signing. For example: You can combine a custom signer with the exposed clients in the SDK. This allows you to add custom signed headers to the request. Following is an example: Bear in mind that some services have a white list of headers that it expects to be signed. Therefore, adding an arbitrary header can result in authentications errors. To see a runnable example, see https://github.com/oracle/oci-go-sdk/blob/master/example/example_identity_test.go For more information on the signing algorithm refer to: https://docs.cloud.oracle.com/Content/API/Concepts/signingrequests.htm Some operations accept or return polymorphic JSON objects. The SDK models such objects as interfaces. Further the SDK provides structs that implement such interfaces. Thus, for all operations that expect interfaces as input, pass the struct in the SDK that satisfies such interface. For example: In the case of a polymorphic response you can type assert the interface to the expected type. For example: An example of polymorphic JSON request handling can be found here: https://github.com/oracle/oci-go-sdk/blob/master/example/example_core_test.go#L63 When calling a list operation, the operation will retrieve a page of results. To retrieve more data, call the list operation again, passing in the value of the most recent response's OpcNextPage as the value of Page in the next list operation call. When there is no more data the OpcNextPage field will be nil. An example of pagination using this logic can be found here: https://github.com/oracle/oci-go-sdk/blob/master/example/example_core_pagination_test.go The SDK has a built-in logging mechanism used internally. The internal logging logic is used to record the raw http requests, responses and potential errors when (un)marshalling request and responses. Built-in logging in the SDK is controlled via the environment variable "OCI_GO_SDK_DEBUG" and its contents. The below are possible values for the "OCI_GO_SDK_DEBUG" variable 1. "info" or "i" enables all info logging messages 2. "debug" or "d" enables all debug and info logging messages 3. "verbose" or "v" or "1" enables all verbose, debug and info logging messages 4. "null" turns all logging messages off. If the value of the environment variable does not match any of the above then default logging level is "info". If the environment variable is not present then no logging messages are emitted. The default destination for logging is Stderr and if you want to output log to a file you can set via environment variable "OCI_GO_SDK_LOG_OUTPUT_MODE". The below are possible values 1. "file" or "f" enables all logging output saved to file 2. "combine" or "c" enables all logging output to both stderr and file You can also customize the log file location and name via "OCI_GO_SDK_LOG_FILE" environment variable, the value should be the path to a specific file If this environment variable is not present, the default location will be the project root path Sometimes you may need to wait until an attribute of a resource, such as an instance or a VCN, reaches a certain state. An example of this would be launching an instance and then waiting for the instance to become available, or waiting until a subnet in a VCN has been terminated. You might also want to retry the same operation again if there's network issue etc... This can be accomplished by using the RequestMetadata.RetryPolicy. You can find the examples here: https://github.com/oracle/oci-go-sdk/blob/master/example/example_retry_test.go The GO SDK uses the net/http package to make calls to OCI services. If your environment requires you to use a proxy server for outgoing HTTP requests then you can set this up in the following ways: 1. Configuring environment variable as described here https://golang.org/pkg/net/http/#ProxyFromEnvironment 2. Modifying the underlying Transport struct for a service client In order to modify the underlying Transport struct in HttpClient, you can do something similar to (sample code for audit service client): The Object Storage service supports multipart uploads to make large object uploads easier by splitting the large object into parts. The Go SDK supports raw multipart upload operations for advanced use cases, as well as a higher level upload class that uses the multipart upload APIs. For links to the APIs used for multipart upload operations, see Managing Multipart Uploads (https://docs.cloud.oracle.com/iaas/Content/Object/Tasks/usingmultipartuploads.htm). Higher level multipart uploads are implemented using the UploadManager, which will: split a large object into parts for you, upload the parts in parallel, and then recombine and commit the parts as a single object in storage. This code sample shows how to use the UploadManager to automatically split an object into parts for upload to simplify interaction with the Object Storage service: https://github.com/oracle/oci-go-sdk/blob/master/example/example_objectstorage_test.go Some response fields are enum-typed. In the future, individual services may return values not covered by existing enums for that field. To address this possibility, every enum-type response field is a modeled as a type that supports any string. Thus if a service returns a value that is not recognized by your version of the SDK, then the response field will be set to this value. When individual services return a polymorphic JSON response not available as a concrete struct, the SDK will return an implementation that only satisfies the interface modeling the polymorphic JSON response. If you are using a version of the SDK released prior to the announcement of a new region, you may need to use a workaround to reach it, depending on whether the region is in the oraclecloud.com realm. A region is a localized geographic area. For more information on regions and how to identify them, see Regions and Availability Domains(https://docs.cloud.oracle.com/iaas/Content/General/Concepts/regions.htm). A realm is a set of regions that share entities. You can identify your realm by looking at the domain name at the end of the network address. For example, the realm for xyz.abc.123.oraclecloud.com is oraclecloud.com. oraclecloud.com Realm: For regions in the oraclecloud.com realm, even if common.Region does not contain the new region, the forward compatibility of the SDK can automatically handle it. You can pass new region names just as you would pass ones that are already defined. For more information on passing region names in the configuration, see Configuring (https://github.com/oracle/oci-go-sdk/blob/master/README.md#configuring). For details on common.Region, see (https://github.com/oracle/oci-go-sdk/blob/master/common/common.go). Other Realms: For regions in realms other than oraclecloud.com, you can use the following workarounds to reach new regions with earlier versions of the SDK. NOTE: Be sure to supply the appropriate endpoints for your region. You can overwrite the target host with client.Host: If you are authenticating via instance principals, you can set the authentication endpoint in an environment variable: Got a fix for a bug, or a new feature you'd like to contribute? The SDK is open source and accepting pull requests on GitHub https://github.com/oracle/oci-go-sdk Licensing information available at: https://github.com/oracle/oci-go-sdk/blob/master/LICENSE.txt To be notified when a new version of the Go SDK is released, subscribe to the following feed: https://github.com/oracle/oci-go-sdk/releases.atom Please refer to this link: https://github.com/oracle/oci-go-sdk#help
This is the official Go SDK for Oracle Cloud Infrastructure Refer to https://github.com/oracle/oci-go-sdk/blob/master/README.md#installing for installation instructions. Refer to https://github.com/oracle/oci-go-sdk/blob/master/README.md#configuring for configuration instructions. The following example shows how to get started with the SDK. The example belows creates an identityClient struct with the default configuration. It then utilizes the identityClient to list availability domains and prints them out to stdout More examples can be found in the SDK Github repo: https://github.com/oracle/oci-go-sdk/tree/master/example Optional fields are represented with the `mandatory:"false"` tag on input structs. The SDK will omit all optional fields that are nil when making requests. In the case of enum-type fields, the SDK will omit fields whose value is an empty string. The SDK uses pointers for primitive types in many input structs. To aid in the construction of such structs, the SDK provides functions that return a pointer for a given value. For example: The SDK exposes functionality that allows the user to customize any http request before is sent to the service. You can do so by setting the `Interceptor` field in any of the `Client` structs. For example: The Interceptor closure gets called before the signing process, thus any changes done to the request will be properly signed and submitted to the service. The SDK exposes a stand-alone signer that can be used to signing custom requests. Related code can be found here: https://github.com/oracle/oci-go-sdk/blob/master/common/http_signer.go. The example below shows how to create a default signer. The signer also allows more granular control on the headers used for signing. For example: You can combine a custom signer with the exposed clients in the SDK. This allows you to add custom signed headers to the request. Following is an example: Bear in mind that some services have a white list of headers that it expects to be signed. Therefore, adding an arbitrary header can result in authentications errors. To see a runnable example, see https://github.com/oracle/oci-go-sdk/blob/master/example/example_identity_test.go For more information on the signing algorithm refer to: https://docs.cloud.oracle.com/Content/API/Concepts/signingrequests.htm Some operations accept or return polymorphic JSON objects. The SDK models such objects as interfaces. Further the SDK provides structs that implement such interfaces. Thus, for all operations that expect interfaces as input, pass the struct in the SDK that satisfies such interface. For example: In the case of a polymorphic response you can type assert the interface to the expected type. For example: An example of polymorphic JSON request handling can be found here: https://github.com/oracle/oci-go-sdk/blob/master/example/example_core_test.go#L63 When calling a list operation, the operation will retrieve a page of results. To retrieve more data, call the list operation again, passing in the value of the most recent response's OpcNextPage as the value of Page in the next list operation call. When there is no more data the OpcNextPage field will be nil. An example of pagination using this logic can be found here: https://github.com/oracle/oci-go-sdk/blob/master/example/example_core_pagination_test.go The SDK has a built-in logging mechanism used internally. The internal logging logic is used to record the raw http requests, responses and potential errors when (un)marshalling request and responses. Built-in logging in the SDK is controlled via the environment variable "OCI_GO_SDK_DEBUG" and its contents. The below are possible values for the "OCI_GO_SDK_DEBUG" variable 1. "info" or "i" enables all info logging messages 2. "debug" or "d" enables all debug and info logging messages 3. "verbose" or "v" or "1" enables all verbose, debug and info logging messages 4. "null" turns all logging messages off. If the value of the environment variable does not match any of the above then default logging level is "info". If the environment variable is not present then no logging messages are emitted. The default destination for logging is Stderr and if you want to output log to a file you can set via environment variable "OCI_GO_SDK_LOG_OUTPUT_MODE". The below are possible values 1. "file" or "f" enables all logging output saved to file 2. "combine" or "c" enables all logging output to both stderr and file You can also customize the log file location and name via "OCI_GO_SDK_LOG_FILE" environment variable, the value should be the path to a specific file If this environment variable is not present, the default location will be the project root path Sometimes you may need to wait until an attribute of a resource, such as an instance or a VCN, reaches a certain state. An example of this would be launching an instance and then waiting for the instance to become available, or waiting until a subnet in a VCN has been terminated. You might also want to retry the same operation again if there's network issue etc... This can be accomplished by using the RequestMetadata.RetryPolicy. You can find the examples here: https://github.com/oracle/oci-go-sdk/blob/master/example/example_retry_test.go The GO SDK uses the net/http package to make calls to OCI services. If your environment requires you to use a proxy server for outgoing HTTP requests then you can set this up in the following ways: 1. Configuring environment variable as described here https://golang.org/pkg/net/http/#ProxyFromEnvironment 2. Modifying the underlying Transport struct for a service client In order to modify the underlying Transport struct in HttpClient, you can do something similar to (sample code for audit service client): The Object Storage service supports multipart uploads to make large object uploads easier by splitting the large object into parts. The Go SDK supports raw multipart upload operations for advanced use cases, as well as a higher level upload class that uses the multipart upload APIs. For links to the APIs used for multipart upload operations, see Managing Multipart Uploads (https://docs.cloud.oracle.com/iaas/Content/Object/Tasks/usingmultipartuploads.htm). Higher level multipart uploads are implemented using the UploadManager, which will: split a large object into parts for you, upload the parts in parallel, and then recombine and commit the parts as a single object in storage. This code sample shows how to use the UploadManager to automatically split an object into parts for upload to simplify interaction with the Object Storage service: https://github.com/oracle/oci-go-sdk/blob/master/example/example_objectstorage_test.go Some response fields are enum-typed. In the future, individual services may return values not covered by existing enums for that field. To address this possibility, every enum-type response field is a modeled as a type that supports any string. Thus if a service returns a value that is not recognized by your version of the SDK, then the response field will be set to this value. When individual services return a polymorphic JSON response not available as a concrete struct, the SDK will return an implementation that only satisfies the interface modeling the polymorphic JSON response. If you are using a version of the SDK released prior to the announcement of a new region, you may need to use a workaround to reach it, depending on whether the region is in the oraclecloud.com realm. A region is a localized geographic area. For more information on regions and how to identify them, see Regions and Availability Domains(https://docs.cloud.oracle.com/iaas/Content/General/Concepts/regions.htm). A realm is a set of regions that share entities. You can identify your realm by looking at the domain name at the end of the network address. For example, the realm for xyz.abc.123.oraclecloud.com is oraclecloud.com. oraclecloud.com Realm: For regions in the oraclecloud.com realm, even if common.Region does not contain the new region, the forward compatibility of the SDK can automatically handle it. You can pass new region names just as you would pass ones that are already defined. For more information on passing region names in the configuration, see Configuring (https://github.com/oracle/oci-go-sdk/blob/master/README.md#configuring). For details on common.Region, see (https://github.com/oracle/oci-go-sdk/blob/master/common/common.go). Other Realms: For regions in realms other than oraclecloud.com, you can use the following workarounds to reach new regions with earlier versions of the SDK. NOTE: Be sure to supply the appropriate endpoints for your region. You can overwrite the target host with client.Host: If you are authenticating via instance principals, you can set the authentication endpoint in an environment variable: Got a fix for a bug, or a new feature you'd like to contribute? The SDK is open source and accepting pull requests on GitHub https://github.com/oracle/oci-go-sdk Licensing information available at: https://github.com/oracle/oci-go-sdk/blob/master/LICENSE.txt To be notified when a new version of the Go SDK is released, subscribe to the following feed: https://github.com/oracle/oci-go-sdk/releases.atom Please refer to this link: https://github.com/oracle/oci-go-sdk#help
Gebug is a tool that makes debugging of Dockerized Go applications super easy by enabling Debugger and Hot-Reload features, seamlessly. The implementation is based on utilizing Docker and Docker-Compose to manage the debugging environment. In order to get a consistent and clean environment, the application build is taking place inside a Docker container. This make the debugging process agnostic to the host's libraries and tools versions. For instance, you can choose to work a specific version of Go on your host, but use another one when debugging your application. During the `init` process, the user sets the desired configuration to the project including Docker base, environment variables and expose ports. When the user runs `start` (unless explicitly asked) a `Dockerfile` and `docker-compose.yml` with the relevant configuration including one-direction source files synchronization between the host and the runtime container and auto-build on each change detected. Configurations Notes & Tips
Package p9p implements a compliant 9P2000 client and server library for use in modern, production Go services. This package differentiates itself in that is has departed from the plan 9 implementation primitives and better follows idiomatic Go style. The package revolves around the session type, which is an enumeration of raw 9p message calls. A few calls, such as flush and version, have been elided, deferring their usage to the server implementation. Sessions can be trivially proxied through clients and servers. The best place to get started is with Serve. Serve can be provided a connection and a handler. A typical implementation will call Serve as part of a listen/accept loop. As each network connection is created, Serve can be called with a handler for the specific connection. The handler can be implemented with a Session via the Dispatch function or can generate sessions for dispatch in response to client messages. (See cmd/9ps for an example) On the client side, NewSession provides a 9p session from a connection. After a version negotiation, methods can be called on the session, in parallel, and calls will be sent over the connection. Call timeouts can be controlled via the context provided to each method call. This package has the beginning of a nice client-server framework for working with 9p. Some of the abstractions aren't entirely fleshed out, but most of this can center around the Handler. Missing from this are a number of tools for implementing 9p servers. The most glaring are directory read and walk helpers. Other, more complex additions might be a system to manage in memory filesystem trees that expose multi-user sessions. The largest difference between this package and other 9p packages is simplification of the types needed to implement a server. To avoid confusing bugs and odd behavior, the components are separated by each level of the protocol. One example is that requests and responses are separated and they no longer hold mutable state. This means that framing, transport management, encoding, and dispatching are componentized. Little work will be required to swap out encodings, transports or connection implementations. This package has been wired from top to bottom to support context-based resource management. Everything from startup to shutdown can have timeouts using contexts. Not all close methods are fully in place, but we are very close to having controlled, predictable cleanup for both servers and clients. Timeouts can be very granular or very course, depending on the context of the timeout. For example, it is very easy to set a short timeout for a stat call but a long timeout for reading data. Currently, there is not multiversion support. The hooks and functionality are in place to add multi-version support. Generally, the correct space to do this is in the codec. Types, such as Dir, simply need to be extended to support the possibility of extra fields. The real question to ask here is what is the role of the version number in the 9p protocol. It really comes down to the level of support required. Do we just need it at the protocol level, or do handlers and sessions need to be have differently based on negotiated versions? This package has a number of TODOs to make it easier to use. Most of the existing code provides a solid base to work from. Don't be discouraged by the sawdust. In addition, the testing is embarassingly lacking. With time, we can get full testing going and ensure we have confidence in the implementation.
Package gotui allows to create console user interfaces. Create a new GUI: Set GUI managers: Managers are in charge of GUI's layout and can be used to build widgets. On each iteration of the GUI's main loop, the Layout function of each configured manager is executed. Managers are used to set-up and update the application's main views, being possible to freely change them during execution. Also, it is important to mention that a main loop iteration is executed on each reported event (key-press, mouse event, window resize, etc). GUIs are composed by Views, you can think of it as buffers. Views implement the io.ReadWriter interface, so you can just write to them if you want to modify their content. The same is valid for reading. Create and initialize a view with absolute coordinates: Views can also be created using relative coordinates: Configure keybindings: gotui implements full mouse support that can be enabled with: Mouse events are handled like any other keybinding: IMPORTANT: Views can only be created, destroyed or updated in three ways: from the Layout function within managers, from keybinding callbacks or via *Gui.Update(). The reason for this is that it allows gotui to be concurrent-safe. So, if you want to update your GUI from a goroutine, you must use *Gui.Update(). For example: By default, gotui provides a basic edition mode. This mode can be extended and customized creating a new Editor and assigning it to *View.Editor: DefaultEditor can be taken as example to create your own custom Editor: Colored text: Views allow to add colored text using ANSI colors. For example: For more information, see the examples in folder "_examples/".
Package machine defines interfaces to manage a variety of docker instances deployed on different backends (VMs, baremetal). The goal is to allow users get from zero to docker as fast as possible.
Package sessions provides tools to manage cookie-based web sessions. Special emphasis is placed on security by implementing OWASP recommendations, specifically the following features: In addition, the package provides the following functionality: While simple to use, the package offers a number of extensively documented configuration variables. It also does not assume specific backend technologies. That is, any session storage system may be used simply by implementing the PersistenceLayer interface (or parts of it). This package is currently not written to be run on multiple machines in a distributed fashion without a load balancer that implements sticky sessions. This may change in the future. Although some more configuration needs to happen for production readiness, the package's defaults allow you to get started very quickly. To get access to the current session, simply call Start(): By providing "true" instead of "false" to the Start() function, you can force the creation of a session, even if there previously was none. Once you have a session, you can identify a user across multiple HTTP requests. You may add values to the session, attach a user to it, cause its session ID to change, or destroy it again. For more extensive user-centered functions (for example, signing up, logging in and out, changing passwords etc.), see the subdirectory "users". Before putting your application into production, you must implement the NewSessionCookie function: You may choose a different expiry date, domain, and path but the other fields are mandatory (given that you are using TLS which you certainly should). You can change the name of the cookie by changing the SessionCookie variable. The default is the inconspicuous string "id". The following timeout values may be adjusted according to the requirements of your application: To further reduce the risk of session hijacking attacks, this package checks client IP addresses as well as user agent strings and destroys sessions if changes in these properties were detected. Refer to the AcceptRemoteIP and AcceptChangingUserAgent variables for more information. Sessions are stored in a local RAM cache (which is a simpe map) whose size is defined by the MaxSessionCacheSize variable. If you set this variable to 0, no sessions are held locally. The SessionCacheExpiry controls when a session will be purged from the cache based on the last time it was used. The cache is write-through (except for session last access times). That is, every time a change was made to a session, that change is forwarded to the package's persistence layer to be saved. The persistence layer is a collection of functions which allow the storage and retrieval of objects from a permanent data store. For example, you may use an SQL database or a key-value store. See the documentation of PersistenceLayer for details on the functions to be implemented. If you need to implement only some of the functions, you may use ExtendablePersistenceLayer instead of creating your own class. The package default is to do nothing. That is, sessions are not persisted and therefore will get lost when purged from the local cache or when the application exits. Session objects implement gob.GobEncoder/gob.GobDecoder and json.Marshaler/json.Unmarshaler. While encoding to JSON allows you to easily inspect session attributes in your database, GOB serialization is preferred as it will restore session objects precisely. (For example, the JSON package always unmarshals numbers into floats even if they were originally integers.) It is recommended that you purge your data store from expired sessions from time to time, e.g. by using a cron job, because users may abandon your website which will leave old sessions in your store. It is recommended to call PurgeSessions() before exiting the program. This will cause session last access times to be updated. This package provides a number of utility functions which may be useful in the context of session and user management. The CUID() function generates Base-62 "compact unique identifiers" suitable for user IDs. The RandomID() function generates random Base-62 strings of any length. The ReasonablePassword() function checks the strength of a password based on the recommendations of NIST SP 800-63B.
Package tea implements a high-level framework for building web user interfaces, using the Elm architecture. The user interface consists of an App, which manages a model representing application state. The app responds to messages by updating its model, and re-renders via a virtual dom when the model changes. Messages are processed sequentially in a single goroutine. Applications should define a model type M which implements AppModel[M], and some number of types that implement Message[M]. The app can then be constructed by passing the initial model to NewApp, and then attached to the DOM and executed with App.Run().
package icinga provides a client to the Icinga2 HTTP API. A Client manages interaction with an Icinga2 server. It is created using Dial: Icinga2 servers in the wild often serve self-signed certificates which fail verification by Go's tls client. To ignore the errors, Dial the server with a modified http.Client: Methods on Client provide API actions like looking up users and creating hosts: Since Client wraps http.Client, exported methods of http.Client such as Get and PostForm can be used to implement any extra functionality not provided by this package. For example:
Package gocui allows to create console user interfaces. Create a new GUI: Set GUI managers: Managers are in charge of GUI's layout and can be used to build widgets. On each iteration of the GUI's main loop, the Layout function of each configured manager is executed. Managers are used to set-up and update the application's main views, being possible to freely change them during execution. Also, it is important to mention that a main loop iteration is executed on each reported event (key-press, mouse event, window resize, etc). GUIs are composed by Views, you can think of it as buffers. Views implement the io.ReadWriter interface, so you can just write to them if you want to modify their content. The same is valid for reading. Create and initialize a view with absolute coordinates: Views can also be created using relative coordinates: Configure keybindings: gocui implements full mouse support that can be enabled with: Mouse events are handled like any other keybinding: IMPORTANT: Views can only be created, destroyed or updated in three ways: from the Layout function within managers, from keybinding callbacks or via *Gui.Update(). The reason for this is that it allows gocui to be concurrent-safe. So, if you want to update your GUI from a goroutine, you must use *Gui.Update(). For example: By default, gocui provides a basic edition mode. This mode can be extended and customized creating a new Editor and assigning it to *View.Editor: DefaultEditor can be taken as example to create your own custom Editor: Colored text: Views allow to add colored text using ANSI colors. For example: For more information, see the examples in folder "_examples/".
Package gosaas contains helper functions, middlewares, user management and billing functionalities commonly used in typical Software as a Service web application. The primary goal of this library is to handle repetitive components letting you focus on the core part of your project. You use the NewServer function to get a working server MUX. You need to pass the top level routes to the NewServer function to get the initial routing working. For instance if your web application handles the following routes: You only pass the "task" and "ping" routes to the server. Anything after the top-level will be handled by your code. You will be interested in ShiftPath, Respond, ParseBody and ServePage functions to get started. The most important aspect of a route is the Handler field which corresponds to the code to execute. The Handler is a standard http.Handler meaning that your code will need to implement the ServeHTTP function. The remaining fields for a route control if specific middlewares are part of the request life-cycle or not. For instance, the Logger flag will output request information to stdout when enabled.
Package dataset includes the operations needed for processing collections of JSON documents and their attachments. Authors R. S. Doiel, <rsdoiel@library.caltech.edu> and Tom Morrel, <tmorrell@library.caltech.edu> Copyright (c) 2021, Caltech All rights not granted herein are expressly reserved by Caltech. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. Package dataset includes the operations needed for processing collections of JSON documents and their attachments. Authors R. S. Doiel, <rsdoiel@library.caltech.edu> and Tom Morrel, <tmorrell@library.caltech.edu> Copyright (c) 2021, Caltech All rights not granted herein are expressly reserved by Caltech. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. Package dataset provides a common approach for storing JSON object documents on local disc. It is intended as a single user system for intermediate processing of JSON content for analysis or batch processing. It is not a database management system (if you need a JSON database system I would suggest looking at Couchdb, Mongo and Redis as a starting point). The approach dataset takes is to store JSON documents in a pairtree structure under the collection folder. The keys are the JSON document names. JSON documents (and possibly their attachments) are then stored based on that assignment in the pairtree. Conversely the collection.json document is used to find and retrieve documents from the collection. The layout of the metadata is as follows + Collection - a directory A key feature of dataset is to be Posix shell friendly. This has lead to storing the JSON documents in a directory structure that standard Posix tooling can traverse. It has also mean that the JSON documents themselves remain on "disc" as plain text. This has facilitated integration with many other applications, programming langauages and systems. Attachments are non-JSON documents explicitly "attached" that share the same pairtree path but are placed in a sub directory called "_". If the document name is "Jane.Doe.json" and the attachment is photo.jpg the JSON document is "pairtree/Ja/ne/.D/e./Jane.Doe.json" and the photo is in "pairtree/Ja/ne/.D/e./_/photo.jpg". Additional operations beside storing and reading JSON documents are also supported. These include creating lists (arrays) of JSON documents from a list of keys, listing keys in the collection, counting documents in the collection, indexing and searching by indexes. The primary use case driving the development of dataset is harvesting API content for library systems (e.g. EPrints, Invenio, ArchivesSpace, ORCID, CrossRef, OCLC). The harvesting needed to be done in such a way as to leverage existing Posix tooling (e.g. grep, sed, etc) for processing and analysis. Initial use case: Caltech Library has many repository, catelog and record management systems (e.g. EPrints, Invenion, ArchivesSpace, Islandora, Invenio). It is common practice to harvest data from these systems for analysis or processing. Harvested records typically come in XML or JSON format. JSON has proven a flexibly way for working with the data and in our more modern tools the common format we use to move data around. We needed a way to standardize how we stored these JSON records for intermediate processing to allow us to use the growing ecosystem of JSON related tooling available under Posix/Unix compatible systems. Package dataset includes the operations needed for processing collections of JSON documents and their attachments. Authors R. S. Doiel, <rsdoiel@library.caltech.edu> and Tom Morrel, <tmorrell@library.caltech.edu> Copyright (c) 2021, Caltech All rights not granted herein are expressly reserved by Caltech. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. Package dataset includes the operations needed for processing collections of JSON documents and their attachments. Authors R. S. Doiel, <rsdoiel@library.caltech.edu> and Tom Morrel, <tmorrell@library.caltech.edu> Copyright (c) 2021, Caltech All rights not granted herein are expressly reserved by Caltech. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. Package dataset includes the operations needed for processing collections of JSON documents and their attachments. Authors R. S. Doiel, <rsdoiel@library.caltech.edu> and Tom Morrel, <tmorrell@library.caltech.edu> Copyright (c) 2021, Caltech All rights not granted herein are expressly reserved by Caltech. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. Package dataset includes the operations needed for processing collections of JSON documents and their attachments. Authors R. S. Doiel, <rsdoiel@library.caltech.edu> and Tom Morrel, <tmorrell@library.caltech.edu> Copyright (c) 2021, Caltech All rights not granted herein are expressly reserved by Caltech. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. Package dataset includes the operations needed for processing collections of JSON documents and their attachments. Authors R. S. Doiel, <rsdoiel@library.caltech.edu> and Tom Morrel, <tmorrell@library.caltech.edu> Copyright (c) 2021, Caltech All rights not granted herein are expressly reserved by Caltech. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
Package spg provides 1Password's Strong Password Generator engine for uniform and flexible password generation. The Strong Password Generator package offers the underlying engine for flexible specification of generated password requirements and ensuring that the generated passwords it returns follow a uniform distribution. The clients of this package are expected to manage what is presented to users. This engine offers far greater flexibility than should normally be exposed to users. 1. The user will create either a character recipe, r, with NewCharRecipe() or a word (or syllable) list recipe, r, with NewWLRecipe(). 2. The user will call the r.Generate() method of a recipe, r, to generate a password, pwd. 3. The returned password, pwd, has a String() method, which does the obvious thing and Entropy field, which contains the min-Entropy based on the recipe. The word list generator produces things like "correct horse battery staple", but when the list is of pronounceable syllables, it can also be set up to produce things like Lengths for these are specified in terms of the number of elements drawn from the list to be included in these passwords (not counting the separators). Although the above examples all have different lengths in terms of number of characters, they were all specified as Length 4. The passwords that one gets depend on the word list recipe, WLRecipe, and the actual word list provided. Character-based are your typical notion of generated password, however these can be specified in ways to produce only numeric PINs if desired. The passwords generated are a function of the CharRecipe. The word list and character recipes (WLRecipe, CharRecipe) implement a Generator interface with two methods, Generate and Entropy. Generate returns a Password. There is a fair amount of internal structure to a Password object, but the ones you are most after is available through the Password.String() method and the Entropy field. Entropy returns the entropy of a password that would be generated given the current recipe. Entropy is a highly misleading concept when applied to passwords. In the general case it is either an incoherent concept or the wrong concept to use when talking about the strength of a password. It does, however, make sense when a password is drawn uniformly from a space of possible passwords. When the distribution is uniform, the (Shannon) entropy is the same as the min-entropy (based on probability of getting the most likely result). This package does ensure that passwords are generated uniformly given the recipe passed to the generator, with the exception of the interaction of capitalizaton for some wordlists. In those cases, min-entropy is reported. That is, where min-entropy is not the same as Shannon Entropy Entropy() returns the min-entropy. Entropy is a function solely of the recipe. This package is Copyright 2017, 2018 by AgileBits, Inc and is licensed under the Apache 2.0 agreement.
Package siris is a fully-featured HTTP/2 backend web framework written entirely in Google’s Go Language. Source code and other details for the project are available at GitHub: The only requirement is the Go Programming Language, at least version 1.8 Example code: All HTTP methods are supported, developers can also register handlers for same paths for different methods. The first parameter is the HTTP Method, second parameter is the request path of the route, third variadic parameter should contains one or more context.Handler executed by the registered order when a user requests for that specific resouce path from the server. Example code: In order to make things easier for the user, Siris provides functions for all HTTP Methods. The first parameter is the request path of the route, second variadic parameter should contains one or more context.Handler executed by the registered order when a user requests for that specific resouce path from the server. Example code: A set of routes that are being groupped by path prefix can (optionally) share the same middleware handlers and template layout. A group can have a nested group too. `.Party` is being used to group routes, developers can declare an unlimited number of (nested) groups. Example code: Siris developers are able to register their own handlers for http statuses like 404 not found, 500 internal server error and so on. Example code: With the help of Siris's expressionist router you can build any form of API you desire, with safety. Example code: At the previous example, we've seen static routes, group of routes, subdomains, wildcard subdomains, a small example of parameterized path with a single known paramete and custom http errors, now it's time to see wildcard parameters and macros. Siris, like net/http std package registers route's handlers by a Handler, the Siris' type of handler is just a func(ctx context.Context) where context comes from github.com/go-siris/siris/context. Until go 1.9 you will have to import that package too, after go 1.9 this will be not be necessary. Siris has the easiest and the most powerful routing process you have ever meet. At the same time, Siris has its own interpeter(yes like a programming language) for route's path syntax and their dynamic path parameters parsing and evaluation, I am calling them "macros" for shortcut. How? It calculates its needs and if not any special regexp needed then it just registers the route with the low-level path syntax, otherwise it pre-compiles the regexp and adds the necessary middleware(s). Standard macro types for parameters: if type is missing then parameter's type is defaulted to string, so {param} == {param:string}. If a function not found on that type then the "string"'s types functions are being used. i.e: Besides the fact that Siris provides the basic types and some default "macro funcs" you are able to register your own too!. Register a named path parameter function: at the func(argument ...) you can have any standard type, it will be validated before the server starts so don't care about performance here, the only thing it runs at serve time is the returning func(paramValue string) bool. Example code: A path parameter name should contain only alphabetical letters, symbols, containing '_' and numbers are NOT allowed. If route failed to be registered, the app will panic without any warnings if you didn't catch the second return value(error) on .Handle/.Get.... Last, do not confuse ctx.Values() with ctx.Params(). Path parameter's values goes to ctx.Params() and context's local storage that can be used to communicate between handlers and middleware(s) goes to ctx.Values(), path parameters and the rest of any custom values are separated for your own good. Run Static Files Example code: More examples can be found here: https://github.com/go-siris/siris/tree/master/_examples/beginner/file-server Middleware is just a concept of ordered chain of handlers. Middleware can be registered globally, per-party, per-subdomain and per-route. Example code: Siris is able to wrap and convert any external, third-party Handler you used to use to your web application. Let's convert the https://github.com/rs/cors net/http external middleware which returns a `next form` handler. Example code: Siris supports 5 template engines out-of-the-box, developers can still use any external golang template engine, as `context.ResponseWriter()` is an `io.Writer`. All of these five template engines have common features with common API, like Layout, Template Funcs, Party-specific layout, partial rendering and more. Example code: View engine supports bundled(https://github.com/jteeuwen/go-bindata) template files too. go-bindata gives you two functions, asset and assetNames, these can be setted to each of the template engines using the `.Binary` func. Example code: A real example can be found here: https://github.com/go-siris/siris/tree/master/_examples/intermediate/view/embedding-templates-into-app. Enable auto-reloading of templates on each request. Useful while developers are in dev mode as they no neeed to restart their app on every template edit. Example code: Each one of these template engines has different options located here: https://github.com/go-siris/siris/tree/master/view . This example will show how to store and access data from a session. You don’t need any third-party library, but If you want you can use any session manager compatible or not. In this example we will only allow authenticated users to view our secret message on the /secret page. To get access to it, the will first have to visit /login to get a valid session cookie, which logs him in. Additionally he can visit /logout to revoke his access to our secret message. Example code: Running the example: But you should have a basic idea of the framework by now, we just scratched the surface. If you enjoy what you just saw and want to learn more, please follow the below links: Examples: Built'n Middleware: Community Middleware: Home Page:
Package siris is a fully-featured HTTP/2 backend web framework written entirely in Google’s Go Language. Source code and other details for the project are available at GitHub: The only requirement is the Go Programming Language, at least version 1.8 Example code: All HTTP methods are supported, developers can also register handlers for same paths for different methods. The first parameter is the HTTP Method, second parameter is the request path of the route, third variadic parameter should contains one or more context.Handler executed by the registered order when a user requests for that specific resouce path from the server. Example code: In order to make things easier for the user, Siris provides functions for all HTTP Methods. The first parameter is the request path of the route, second variadic parameter should contains one or more context.Handler executed by the registered order when a user requests for that specific resouce path from the server. Example code: A set of routes that are being groupped by path prefix can (optionally) share the same middleware handlers and template layout. A group can have a nested group too. `.Party` is being used to group routes, developers can declare an unlimited number of (nested) groups. Example code: Siris developers are able to register their own handlers for http statuses like 404 not found, 500 internal server error and so on. Example code: With the help of Siris's expressionist router you can build any form of API you desire, with safety. Example code: At the previous example, we've seen static routes, group of routes, subdomains, wildcard subdomains, a small example of parameterized path with a single known paramete and custom http errors, now it's time to see wildcard parameters and macros. Siris, like net/http std package registers route's handlers by a Handler, the Siris' type of handler is just a func(ctx context.Context) where context comes from github.com/go-siris/siris/context. Until go 1.9 you will have to import that package too, after go 1.9 this will be not be necessary. Siris has the easiest and the most powerful routing process you have ever meet. At the same time, Siris has its own interpeter(yes like a programming language) for route's path syntax and their dynamic path parameters parsing and evaluation, I am calling them "macros" for shortcut. How? It calculates its needs and if not any special regexp needed then it just registers the route with the low-level path syntax, otherwise it pre-compiles the regexp and adds the necessary middleware(s). Standard macro types for parameters: if type is missing then parameter's type is defaulted to string, so {param} == {param:string}. If a function not found on that type then the "string"'s types functions are being used. i.e: Besides the fact that Siris provides the basic types and some default "macro funcs" you are able to register your own too!. Register a named path parameter function: at the func(argument ...) you can have any standard type, it will be validated before the server starts so don't care about performance here, the only thing it runs at serve time is the returning func(paramValue string) bool. Example code: A path parameter name should contain only alphabetical letters, symbols, containing '_' and numbers are NOT allowed. If route failed to be registered, the app will panic without any warnings if you didn't catch the second return value(error) on .Handle/.Get.... Last, do not confuse ctx.Values() with ctx.Params(). Path parameter's values goes to ctx.Params() and context's local storage that can be used to communicate between handlers and middleware(s) goes to ctx.Values(), path parameters and the rest of any custom values are separated for your own good. Run Static Files Example code: More examples can be found here: https://github.com/go-siris/siris/tree/master/_examples/beginner/file-server Middleware is just a concept of ordered chain of handlers. Middleware can be registered globally, per-party, per-subdomain and per-route. Example code: Siris is able to wrap and convert any external, third-party Handler you used to use to your web application. Let's convert the https://github.com/rs/cors net/http external middleware which returns a `next form` handler. Example code: Siris supports 5 template engines out-of-the-box, developers can still use any external golang template engine, as `context.ResponseWriter()` is an `io.Writer`. All of these five template engines have common features with common API, like Layout, Template Funcs, Party-specific layout, partial rendering and more. Example code: View engine supports bundled(https://github.com/jteeuwen/go-bindata) template files too. go-bindata gives you two functions, asset and assetNames, these can be setted to each of the template engines using the `.Binary` func. Example code: A real example can be found here: https://github.com/go-siris/siris/tree/master/_examples/intermediate/view/embedding-templates-into-app. Enable auto-reloading of templates on each request. Useful while developers are in dev mode as they no neeed to restart their app on every template edit. Example code: Each one of these template engines has different options located here: https://github.com/go-siris/siris/tree/master/view . This example will show how to store and access data from a session. You don’t need any third-party library, but If you want you can use any session manager compatible or not. In this example we will only allow authenticated users to view our secret message on the /secret page. To get access to it, the will first have to visit /login to get a valid session cookie, which logs him in. Additionally he can visit /logout to revoke his access to our secret message. Example code: Running the example: But you should have a basic idea of the framework by now, we just scratched the surface. If you enjoy what you just saw and want to learn more, please follow the below links: Examples: Built'n Middleware: Community Middleware: Home Page:
Package golangsdk provides a multi-vendor interface to OpenStack-compatible clouds. The library has a three-level hierarchy: providers, services, and resources. Provider structs represent the cloud providers that offer and manage a collection of services. You will generally want to create one Provider client per OpenStack cloud. Use your OpenStack credentials to create a Provider client. The IdentityEndpoint is typically refered to as "auth_url" or "OS_AUTH_URL" in information provided by the cloud operator. Additionally, the cloud may refer to TenantID or TenantName as project_id and project_name. Credentials are specified like so: You may also use the openstack.AuthOptionsFromEnv() helper function. This function reads in standard environment variables frequently found in an OpenStack `openrc` file. Again note that Gophercloud currently uses "tenant" instead of "project". Service structs are specific to a provider and handle all of the logic and operations for a particular OpenStack service. Examples of services include: Compute, Object Storage, Block Storage. In order to define one, you need to pass in the parent provider, like so: Resource structs are the domain models that services make use of in order to work with and represent the state of API resources: Intermediate Result structs are returned for API operations, which allow generic access to the HTTP headers, response body, and any errors associated with the network transaction. To turn a result into a usable resource struct, you must call the Extract method which is chained to the response, or an Extract function from an applicable extension: All requests that enumerate a collection return a Pager struct that is used to iterate through the results one page at a time. Use the EachPage method on that Pager to handle each successive Page in a closure, then use the appropriate extraction method from that request's package to interpret that Page as a slice of results: If you want to obtain the entire collection of pages without doing any intermediary processing on each page, you can use the AllPages method: This top-level package contains utility functions and data types that are used throughout the provider and service packages. Of particular note for end users are the AuthOptions and EndpointOpts structs.
Package vix API allows you to automate virtual machine operations on most current VMware platform products, especially hosted VMware products such as: vmware workstation, player, fusion and server. vSphere API, starting from 5.0, merged VIX API in the GuestOperationsManager managed object. So, we encourage you to use VMware's official Go package for vSphere. This API supports: In order for Go to find libvix when running your compiled binary, a govix path has to be added to the LD_LIBRARY_PATH environment variable. Example: Be aware that the previous example assumes $GOPATH only has a path set. In order to enable VIX debugging in VMware, you have set the following setting: For logging, the following are the paths in each operating system: The Vix library is intended for use by multi-threaded clients. Vix shared objects are managed by the Vix library to avoid conflicts between threads. Clients need only be responsible for protecting user-defined shared data. As noted in the End User License Agreement, the VIX API allows you to build and distribute your own applications. To facilitate this, the following files are designated as redistributable for the purpose of that agreement: Redistribution of the open source libraries included with the VIX API is governed by their respective open source license agreements. http://blogs.vmware.com/vix/2010/05/redistibutable-vix-api-client-libraries.html
Package appfabric provides the API client, operations, and parameter types for AppFabric. Amazon Web Services AppFabric quickly connects software as a service (SaaS) applications across your organization. This allows IT and security teams to easily manage and secure applications using a standard schema, and employees can complete everyday tasks faster using generative artificial intelligence (AI). You can use these APIs to complete AppFabric tasks, such as setting up audit log ingestions or viewing user access. For more information about AppFabric, including the required permissions to use the service, see the Amazon Web Services AppFabric Administration Guide. For more information about using the Command Line Interface (CLI) to manage your AppFabric resources, see the AppFabric section of the CLI Reference.
Package paymentcryptographydata provides the API client, operations, and parameter types for Payment Cryptography Data Plane. You use the Amazon Web Services Payment Cryptography Data Plane to manage how encryption keys are used for payment-related transaction processing and associated cryptographic operations. You can encrypt, decrypt, generate, verify, and translate payment-related cryptographic operations in Amazon Web Services Payment Cryptography. For more information, see Data operationsin the Amazon Web Services Payment Cryptography User Guide. To manage your encryption keys, you use the Amazon Web Services Payment Cryptography Control Plane. You can create, import, export, share, manage, and delete keys. You can also manage Identity and Access Management (IAM) policies for keys.
Package paymentcryptography provides the API client, operations, and parameter types for Payment Cryptography Control Plane. Amazon Web Services Payment Cryptography Control Plane APIs manage encryption keys for use during payment-related cryptographic operations. You can create, import, export, share, manage, and delete keys. You can also manage Identity and Access Management (IAM) policies for keys. For more information, see Identity and access managementin the Amazon Web Services Payment Cryptography User Guide. To use encryption keys for payment-related transaction processing and associated cryptographic operations, you use the Amazon Web Services Payment Cryptography Data Plane. You can perform actions like encrypt, decrypt, generate, and verify payment-related data. All Amazon Web Services Payment Cryptography API calls must be signed and transmitted using Transport Layer Security (TLS). We recommend you always use the latest supported TLS version for logging API requests. Amazon Web Services Payment Cryptography supports CloudTrail for control plane operations, a service that logs Amazon Web Services API calls and related events for your Amazon Web Services account and delivers them to an Amazon S3 bucket you specify. By using the information collected by CloudTrail, you can determine what requests were made to Amazon Web Services Payment Cryptography, who made the request, when it was made, and so on. If you don't configure a trail, you can still view the most recent events in the CloudTrail console. For more information, see the CloudTrail User Guide.
Package entityresolution provides the API client, operations, and parameter types for AWS EntityResolution. Welcome to the Entity Resolution API Reference. Entity Resolution is an Amazon Web Services service that provides pre-configured entity resolution capabilities that enable developers and analysts at advertising and marketing companies to build an accurate and complete view of their consumers. With Entity Resolution, you can match source records containing consumer identifiers, such as name, email address, and phone number. This is true even when these records have incomplete or conflicting identifiers. For example, Entity Resolution can effectively match a source record from a customer relationship management (CRM) system with a source record from a marketing system containing campaign information. To learn more about Entity Resolution concepts, procedures, and best practices, see the Entity Resolution User Guide.
Package session provides a convenient way to store session data (such as a user ID) securely in a web browser cookie or other authentication token. Cookie values generated by this package use modern authenticated encryption, so they can't be inspected or altered by client processes. Most users of this package will use functions Set and Get, which manage cookies directly. An analogous pair of functions, Encode and Decode, help when the session data will be stored somewhere other than a browser cookie; for example, an API token configured by hand in an API client process.
Package snd provides methods and types for sound processing and synthesis. Audio hardware is accessed via package snd/al which in turn manages the dispatching of sound synthesis via golang.org/x/mobile/audio/al. Start the dispatcher as follows: Once running, add a source for sound synthesis. For example: This results in a 440Hz tone being played back through the audio hardware. Synthesis types in package snd implement the Sound interface and many type methods accept a Sound argument that can affect sampling. For example, one may modulate an oscillator by passing in a third argument to NewOscil. The above results in a lower frequency sound that may require decent speakers to hear properly. Note the sine argument in the previous example. There are two conceptual types of sounds, ContinuousFunc and Discrete. ContinuousFunc represents an indefinite series over time. Discrete is the sampling of a ContinuousFunc over an interval. Functions such as Sine, Triangle, and Square (non-exhaustive) return Discretes created by sampling a ContinuousFunc such as SineFunc, TriangleFunc, and SquareFunc. Discrete signals serve as a lookup table to efficiently synthesize sound. A Discrete is a []float64 and can sample any ContinuousFunc, within the package or user defined which is a func(t float64) float64. Discrete signals may be further modified with intent or arbitrarily. For example, Discrete.Add(Discrete, int) performs additive synthesis and is used by functions such as SquareSynthesis(int) to return an approximation of a square signal based on a sinusoidal. Functions that take a time.Duration argument approximate the value to the closest number of frames. For example, if sample rate is 44.1kHz and duration is 75ms, this results in the argument representing 3307 frames which is approximately 74.99ms.
Package uplink is the main entrypoint to interacting with Storj Labs' decentralized storage network. Sign up for an account on a Satellite today! https://storj.io/ The fundamental unit of access in the Storj Labs storage network is the Access Grant. An access grant is a serialized structure that is internally comprised of an API Key, a set of encryption key information, and information about which Storj Labs or Tardigrade network Satellite is responsible for the metadata. An access grant is always associated with exactly one Project on one Satellite. If you don't already have an access grant, you will need make an account on a Satellite, generate an API Key, and encapsulate that API Key with encryption information into an access grant. If you don't already have an account on a Satellite, first make one at https://storj.io/ and note the Satellite you choose (such as us1.storj.io, eu1.storj.io, etc). Then, make an API Key in the web interface. The first step to any project is to generate a restricted access grant with the minimal permissions that are needed. Access grants contains all encryption information and they should be restricted as much as possible. To make an access grant, you can create one using our Uplink CLI tool's 'share' subcommand (after setting up the Uplink CLI tool), or you can make one as follows: In the above example, 'serializedAccess' is a human-readable string that represents read-only access to just the "logs" bucket, and is only able to decrypt that one bucket thanks to hierarchical deterministic key derivation. Note: RequestAccessWithPassphrase is CPU-intensive, and your application's normal lifecycle should avoid it and use ParseAccess where possible instead. To revoke an access grant see the Project.RevokeAccess method. A common architecture for building applications is to have a single bucket for the entire application to store the objects of all users. In such architecture, it is of utmost importance to guarantee that users can access only their objects but not the objects of other users. This can be achieved by implementing an app-specific authentication service that generates an access grant for each user by restricting the main access grant of the application. This user-specific access grant is restricted to access the objects only within a specific key prefix defined for the user. When initialized, the authentication server creates the main application access grant with an empty passphrase as follows. The authentication service does not hold any encryption information about users, so the passphrase used to request the main application access grant does not matter. The encryption keys related to user objects will be overridden in a next step on the client-side. It is important that once set to a specific value, this passphrase never changes in the future. Therefore, the best practice is to use an empty passphrase. Whenever a user is authenticated, the authentication service generates the user-specific access grant as follows: The userID is something that uniquely identifies the users in the application and must never change. Along with the user access grant, the authentication service should return a user-specific salt. The salt must be always the same for this user. The salt size is 16-byte or 32-byte. Once the application receives the user-specific access grant and the user-specific salt from the authentication service, it has to override the encryption key in the access grant, so users can encrypt and decrypt their files with encryption keys derived from their passphrase. The user-specific access grant is now ready to use by the application. Once you have a valid access grant, you can open a Project with the access that access grant allows for. Projects allow you to manage buckets and objects within buckets. A bucket represents a collection of objects. You can upload, download, list, and delete objects of any size or shape. Objects within buckets are represented by keys, where keys can optionally be listed using the "/" delimiter. Note: Objects and object keys within buckets are end-to-end encrypted, but bucket names themselves are not encrypted, so the billing interface on the Satellite can show you bucket line items. Objects support a couple kilobytes of arbitrary key/value metadata, and arbitrary-size primary data streams with the ability to read at arbitrary offsets. If you want to access only a small subrange of the data you uploaded, you can use `uplink.DownloadOptions` to specify the download range. Listing objects returns an iterator that allows to walk through all the items:
Package rc0go provides an official client for interaction with the rcode0 Anycast DNS API in Go. This client is highly inspired by google/go-github. The main advantage of the usage is that predefined and API-coordinated methods are already available and the further evolution of the rcode0 API is to be transparently aligned by the client so that the end users can focus on their own products or business logic without always having to maintain the interaction with the rcode0 API. Usage: Using your API token construct a new rcode0 client, then use the various services on the client to access different parts of the rcode0 Anycast DNS API. For example: Some code snippets are provided within the https://github.com/nic-at/rc0go/tree/master/example directory. As defined in rcode0 docs the API is structured in different groups. These are: Each of the groups is aimed to be implemented by a Go service object (f.e. rc0go.ZoneManagementService) which in turn provides the corresponding methods of the group. DNSSEC, however, is defined as separate service object. Each method contains the reference to original docs to maintain a consistent content. The API is rate limited. Additional client support will be added soon. Some endpoints (like adding a new zone to rcode0) return a 201 Created status code with a status response. Status response is defined in rc0go.StatusResponse struct and contains only two fields - status and message. Some requests (like listing managed zones or rrsets) support pagination. Pagination is defined in the rc0go.Page struct (with original data returned within rc0go.Page.Data field). Pagination options will be supported soon.
Package marketplaceagreement provides the API client, operations, and parameter types for AWS Marketplace Agreement Service. AWS Marketplace is a curated digital catalog that customers can use to find, buy, deploy, and manage third-party software, data, and services to build solutions and run their businesses. The AWS Marketplace Agreement Service provides an API interface that helps AWS Marketplace sellers manage their product-related agreements, including listing, searching, and filtering agreements. To manage agreements in AWS Marketplace, you must ensure that your AWS Identity and Access Management (IAM) policies and roles are set up. The user must have the required policies/permissions that allow them to carry out the actions in AWS: DescribeAgreement – Grants permission to users to obtain detailed meta data about any of their agreements. GetAgreementTerms – Grants permission to users to obtain details about the terms of an agreement. SearchAgreements – Grants permission to users to search through all their agreements.
Package qbusiness provides the API client, operations, and parameter types for QBusiness. This is the Amazon Q Business API Reference. Amazon Q Business is a fully managed, generative-AI powered enterprise chat assistant that you can deploy within your organization. Amazon Q Business enhances employee productivity by supporting key tasks such as question-answering, knowledge discovery, writing email messages, summarizing text, drafting document outlines, and brainstorming ideas. Users ask questions of Amazon Q Business and get answers that are presented in a conversational manner. For an introduction to the service, see the Amazon Q Business User Guide. For an overview of the Amazon Q Business APIs, see Overview of Amazon Q Business API operations. For information about the IAM access control permissions you need to use this API, see IAM roles for Amazon Q Businessin the Amazon Q Business User Guide. The following resources provide additional information about using the Amazon Q Business API: Setting up for Amazon Q Business Amazon Q Business CLI Reference Amazon Web Services General Reference
Package peer provides a common base for creating and managing Bitcoin network peers. This package builds upon the wire package, which provides the fundamental primitives necessary to speak the bitcoin wire protocol, in order to simplify the process of creating fully functional peers. In essence, it provides a common base for creating concurrent safe fully validating nodes, Simplified Payment Verification (SPV) nodes, proxies, etc. A quick overview of the major features peer provides are as follows: Provides a basic concurrent safe bitcoin peer for handling bitcoin communications via the peer-to-peer protocol Full duplex reading and writing of bitcoin protocol messages Automatic handling of the initial handshake process including protocol version negotiation Asynchronous message queuing of outbound messages with optional channel for notification when the message is actually sent Flexible peer configuration Caller is responsible for creating outgoing connections and listening for incoming connections so they have flexibility to establish connections asthey see fit (proxies, etc) User agent name and version Bitcoin network Service support signalling (full nodes, bloom filters, etc) Maximum supported protocol version Ability to register callbacks for handling bitcoin protocol messages Inventory message batching and send trickling with known inventory detection and avoidance Automatic periodic keep-alive pinging and pong responses Random Nonce generation and self connection detection Proper handling of bloom filter related commands when the caller does not specify the related flag to signal support Disconnects the peer when the protocol version is high enough Does not invoke the related callbacks for older protocol versions Snapshottable peer statistics such as the total number of bytes read and written, the remote address, user agent, and negotiated protocol version Helper functions pushing addresses, getblocks, getheaders, and reject messages These could all be sent manually via the standard message output function, but the helpers provide additional nice functionality such as duplicate filtering and address randomization Ability to wait for shutdown/disconnect Comprehensive test coverage All peer configuration is handled with the Config struct. This allows the caller to specify things such as the user agent name and version, the bitcoin network to use, which services it supports, and callbacks to invoke when bitcoin messages are received. See the documentation for each field of the Config struct for more details. A peer can either be inbound or outbound. The caller is responsible for establishing the connection to remote peers and listening for incoming peers. This provides high flexibility for things such as connecting via proxies, acting as a proxy, creating bridge peers, choosing whether to listen for inbound peers, etc. NewOutboundPeer and NewInboundPeer functions must be followed by calling Connect with a net.Conn instance to the peer. This will start all async I/O goroutines and initiate the protocol negotiation process. Once finished with the peer call Disconnect to disconnect from the peer and clean up all resources. WaitForDisconnect can be used to block until peer disconnection and resource cleanup has completed. In order to do anything useful with a peer, it is necessary to react to bitcoin messages. This is accomplished by creating an instance of the MessageListeners struct with the callbacks to be invoke specified and setting the Listeners field of the Config struct specified when creating a peer to it. For convenience, a callback hook for all of the currently supported bitcoin messages is exposed which receives the peer instance and the concrete message type. In addition, a hook for OnRead is provided so even custom messages types for which this package does not directly provide a hook, as long as they implement the wire.Message interface, can be used. Finally, the OnWrite hook is provided, which in conjunction with OnRead, can be used to track server-wide byte counts. It is often useful to use closures which encapsulate state when specifying the callback handlers. This provides a clean method for accessing that state when callbacks are invoked. The QueueMessage function provides the fundamental means to send messages to the remote peer. As the name implies, this employs a non-blocking queue. A done channel which will be notified when the message is actually sent can optionally be specified. There are certain message types which are better sent using other functions which provide additional functionality. Of special interest are inventory messages. Rather than manually sending MsgInv messages via Queuemessage, the inventory vectors should be queued using the QueueInventory function. It employs batching and trickling along with intelligent known remote peer inventory detection and avoidance through the use of a most-recently used algorithm. In addition to the bare QueueMessage function previously described, the PushAddrMsg, PushGetBlocksMsg, PushGetHeadersMsg, and PushRejectMsg functions are provided as a convenience. While it is of course possible to create and send these message manually via QueueMessage, these helper functions provided additional useful functionality that is typically desired. For example, the PushAddrMsg function automatically limits the addresses to the maximum number allowed by the message and randomizes the chosen addresses when there are too many. This allows the caller to simply provide a slice of known addresses, such as that returned by the addrmgr package, without having to worry about the details. Next, the PushGetBlocksMsg and PushGetHeadersMsg functions will construct proper messages using a block locator and ignore back to back duplicate requests. Finally, the PushRejectMsg function can be used to easily create and send an appropriate reject message based on the provided parameters as well as optionally provides a flag to cause it to block until the message is actually sent. A snapshot of the current peer statistics can be obtained with the StatsSnapshot function. This includes statistics such as the total number of bytes read and written, the remote address, user agent, and negotiated protocol version. This package provides extensive logging capabilities through the UseLogger function which allows a btclog.Logger to be specified. For example, logging at the debug level provides summaries of every message sent and received, and logging at the trace level provides full dumps of parsed messages as well as the raw message bytes using a format similar to hexdump -C. This package supports all BIPS supported by the wire package. (https://godoc.org/github.com/p9c/pod/wire#hdr-Bitcoin_Improvement_Proposals) This example demonstrates the basic process for initializing and creating an outbound peer. Peers negotiate by exchanging version and verack messages. For demonstration, a simple handler for version message is attached to the peer.
Package getoptions - Go option parser inspired on the flexibility of Perl’s GetOpt::Long. It will operate on any given slice of strings and return the remaining (non used) command line arguments. This allows to easily subcommand. The following is a basic example: • Allow passing options and non-options in any order. • Support for `--long` options. • Support for short (`-s`) options with flexible behaviour (see https://github.com/DavidGamba/go-getoptions#operation_modes for details): • Boolean, String, Int and Float64 type options. • Multiple aliases for the same option. e.g. `help`, `man`. • Negatable Boolean options. For example: `--verbose`, `--no-verbose` or `--noverbose`. • Options with Array arguments. The same option can be used multiple times with different arguments. The list of arguments will be saved into an Array like structure inside the program. • Options with array arguments and multiple entries. • When using integer array options with multiple arguments, positive integer ranges are allowed. For example: `1..3` to indicate `1 2 3`. • Options with key value arguments and multiple entries. • Options with Key Value arguments. This allows the same option to be used multiple times with arguments of key value type. For example: `rpmbuild --define name=myrpm --define version=123`. • Supports passing `--` to stop parsing arguments (everything after will be left in the `remaining []string`). • Supports subcommands (stop parsing arguments when non option is passed). • Supports command line options with '='. For example: You can use `--string=mystring` and `--string mystring`. • Allows passing arguments to options that start with dash `-` when passed after equal. For example: `--string=--hello` and `--int=-123`. • Options with optional arguments. If the default argument is not passed the default is set. • Allows abbreviations when the provided option is not ambiguous. • Called method indicates if the option was passed on the command line. • Errors exposed as public variables to allow overriding them for internationalization. • Multiple ways of managing unknown options: • Require order: Allows for subcommands. Stop parsing arguments when the first non-option is found. When mixed with Pass through, it also stops parsing arguments when the first unmatched option is found. • Support for the lonesome dash "-". To indicate, for example, when to read input from STDIO. • Incremental options. Allows the same option to be called multiple times to increment a counter. • Supports case sensitive options. For example, you can use `v` to define `verbose` and `V` to define `Version`. The library will panic if it finds that the programmer (not end user): • Defined the same alias twice. • Defined wrong min and max values for SliceMulti methods.
Inertia is the command line interface that helps you set up your remote for continuous deployment and allows you to manage your deployment through configuration options and various commands. This document contains basic usage instructions, but a new usage guide is also available here: https://inertia.ubclaunchpad.com/ Inertia can be installed in several ways: Users of other platforms can install the Inertia CLI from the Releases page, found here: https://github.com/ubclaunchpad/inertia/releases/latest To help with usage, most relevant documentation can be seen by using the --help flag on any command: Documentation can also be triggered by simply entering a command without the prerequisite arguments or additional commands: Inertia has two "core" sets of commands - one that primarily handles local configuration, and one that allows you to control your remote VPS instances and their associated deployments. For local configuration, most commands will build off of the root "inertia ..." command. For example, a typical set of commands to set up a project might look like: The other set of commands are based on a remote VPS configuration, and the available commands can be seen by running: In the previous example, the next steps to set up a deployment might be: Some of these commands offer a --stream flag that allows you to view realtime log feedback from the daemon. More documentation on Inertia, how it works, and how to use it can be found in the project repository: https://github.com/ubclaunchpad/inertia/tree/master
Package alpm implements Go bindings to the libalpm library used by Pacman, the Arch Linux package manager. Libalpm allows the creation of custom front ends to the Arch Linux package ecosystem. Libalpm does not include support for the Arch User Repository (AUR).
Package dot implements data synchronization of user defined types using operational transformation/OT. Please see https://github.com/dotchain/dot for a tutorial on how to use DOT. The core functionality is spread out between dot/changes, dot/streams, dot/refs and dot/ops but this package exposes simple client and server implementations for common use cases: Server example Client example DOT uses immutable values. Every Value must implement the change.Value interface which is a single Apply method that returns the result of applying a mutation (while leaving the original value effectively unchanged). If the underlying type behaves like a collection (such as with Slices), the type must also implement some collection specific methods specified in the changes.Collection interface. Most actual types are likely to be structs or slices with boilerplate implementaations of the interfaces. The x/dotc package has a code generator which can emit such boilerplate implementations simplifying this task. The changes package implements a set of simple changes (Replace, Splice and Move). Richer changes are expected to be built up by composition via changes.ChangeSet (which is a sequence of changes) and changes.PathChange (which modifies a value at a path). Changes are immutable too and generally are meant to not maintain any reference to the value they apply on. While custom changes are possible (they have to implement the changes.Custom interface), they are expected to be rare as the default set of chnange types cover a vast variety of scenarios. The core logic of DOT is in the Merge methods of changes: they guaranteee that if two independent changes are done to a value, the deviation in the values can be converged. The basic property of any two changes (on the same value) is that: Care must be taken with custom changes to ensure that this property is preserved. Streams represent the sequence of changes associated with a single value. Stream instances behave like they are immutable: when a change happens, a new stream instance captures the change. Streams also support multiple-writers: it is possible for two independent changes to the same stream instance. In this case, the newly-created stream instances only capture the respective changes but these both have a "Next" value that converges to the same value. That is, the two separate streams implicitly have the changes from each other (but after transforming through the Merge) method. This allows streams to perform quite nicely as convergent data structures without much syntax overhead: The streams package provides a generic Stream implementation (via the New function) which implements the idea of a sequence of convergent changes. But much of the power of streams is in having strongly type streams where the stream is associated with a strongly typed value. The streams package provides simple text streamss (S8 and S16) as well as Bool and Counter types. Richer types like structs and slices can be converted to their stream equivalent rather mechanically and this is done by the x/dotc package -- using code generation. Substreams are streams that refer into a particular field of a parent stream. For example, if the parent value is a struct with a "Done" field, it is possible to treat the "Done stream" as the changes scoped to this field. This allows code to be written much more cleanly. See the https://github.com/dotchain/dot#toggling-complete section of the documentation for an example. Streams support branching (a la Git) and folding. See the examples! Streams also support references. A typical use case is maintaining the user cursor within a region of text. When remote changes happen to the text, the cursor needs to be updated. In fact, when one takes a substream of an element of an array, the array index needs to be automatically managed (i.e. insertions into the array before the index should automatically update the index etc). This is managed within streams using references. A particular value can be reconstituted from the sequence of changes to that value. In DOT, only these changes are stored and that too in an append-only log. This make the backend rather simple and generally agnostic of application types to a large extent. See https://github.com/dotchain/dot#server for example code.
Help editor to Input cjk language. Author fuhuizn@163.com Package gocui allows to create console user interfaces. Create a new GUI: Set GUI managers: Managers are in charge of GUI's layout and can be used to build widgets. On each iteration of the GUI's main loop, the Layout function of each configured manager is executed. Managers are used to set-up and update the application's main views, being possible to freely change them during execution. Also, it is important to mention that a main loop iteration is executed on each reported event (key-press, mouse event, window resize, etc). GUIs are composed by Views, you can think of it as buffers. Views implement the io.ReadWriter interface, so you can just write to them if you want to modify their content. The same is valid for reading. Create and initialize a view with absolute coordinates: Views can also be created using relative coordinates: Configure keybindings: gocui implements full mouse support that can be enabled with: Mouse events are handled like any other keybinding: IMPORTANT: Views can only be created, destroyed or updated in three ways: from the Layout function within managers, from keybinding callbacks or via *Gui.Update(). The reason for this is that it allows gocui to be concurrent-safe. So, if you want to update your GUI from a goroutine, you must use *Gui.Update(). For example: By default, gocui provides a basic edition mode. This mode can be extended and customized creating a new Editor and assigning it to *View.Editor: DefaultEditor can be taken as example to create your own custom Editor: Colored text: Views allow to add colored text using ANSI colors. For example: For more information, see the examples in folder "_examples/".
Machine defines interfaces to manage a variety of docker instances deployed on different backends (VMs, baremetal). The goal is to allow users get from zero to docker as fast as possible.
Package iris provides a beautifully expressive and easy to use foundation for your next website, API, or distributed app. Source code and other details for the project are available at GitHub: 8.5.9 Final The only requirement is the Go Programming Language, at least version 1.8 but 1.9 is highly recommended. Iris takes advantage of the vendor directory feature wisely: https://docs.google.com/document/d/1Bz5-UB7g2uPBdOx-rw5t9MxJwkfpx90cqG9AFL0JAYo. You get truly reproducible builds, as this method guards against upstream renames and deletes. A simple copy-paste and `go get ./...` to resolve two dependencies: https://github.com/kataras/golog and the https://github.com/iris-contrib/httpexpect will work for ever even for older versions, the newest version can be retrieved by `go get` but this file contains documentation for an older version of Iris. Follow the instructions below: 1. install the Go Programming Language: https://golang.org/dl 2. clear yours previously `$GOPATH/src/github.com/kataras/iris` folder or create new 3. download the Iris v8.5.9 (final): https://github.com/kataras/iris/archive/v8.zip 4. extract the contents of the `iris-v8` folder that's inside the downloaded zip file to your `$GOPATH/src/github.com/kataras/iris` 5. navigate to your `$GOPATH/src/github.com/kataras/iris` folder if you're not already there and open a terminal/command prompt, execute the command: `go get ./...` and you're ready to GO:) Example code: You can start the server(s) listening to any type of `net.Listener` or even `http.Server` instance. The method for initialization of the server should be passed at the end, via `Run` function. Below you'll see some useful examples: UNIX and BSD hosts can take advandage of the reuse port feature. Example code: That's all with listening, you have the full control when you need it. Let's continue by learning how to catch CONTROL+C/COMMAND+C or unix kill command and shutdown the server gracefully. In order to manually manage what to do when app is interrupted, we have to disable the default behavior with the option `WithoutInterruptHandler` and register a new interrupt handler (globally, across all possible hosts). Example code: Access to all hosts that serve your application can be provided by the `Application#Hosts` field, after the `Run` method. But the most common scenario is that you may need access to the host before the `Run` method, there are two ways of gain access to the host supervisor, read below. First way is to use the `app.NewHost` to create a new host and use one of its `Serve` or `Listen` functions to start the application via the `iris#Raw` Runner. Note that this way needs an extra import of the `net/http` package. Example Code: Second, and probably easier way is to use the `host.Configurator`. Note that this method requires an extra import statement of "github.com/kataras/iris/core/host" when using go < 1.9, if you're targeting on go1.9 then you can use the `iris#Supervisor` and omit the extra host import. All common `Runners` we saw earlier (`iris#Addr, iris#Listener, iris#Server, iris#TLS, iris#AutoTLS`) accept a variadic argument of `host.Configurator`, there are just `func(*host.Supervisor)`. Therefore the `Application` gives you the rights to modify the auto-created host supervisor through these. Example Code: Read more about listening and gracefully shutdown by navigating to: All HTTP methods are supported, developers can also register handlers for same paths for different methods. The first parameter is the HTTP Method, second parameter is the request path of the route, third variadic parameter should contains one or more iris.Handler executed by the registered order when a user requests for that specific resouce path from the server. Example code: In order to make things easier for the user, iris provides functions for all HTTP Methods. The first parameter is the request path of the route, second variadic parameter should contains one or more iris.Handler executed by the registered order when a user requests for that specific resouce path from the server. Example code: A set of routes that are being groupped by path prefix can (optionally) share the same middleware handlers and template layout. A group can have a nested group too. `.Party` is being used to group routes, developers can declare an unlimited number of (nested) groups. Example code: iris developers are able to register their own handlers for http statuses like 404 not found, 500 internal server error and so on. Example code: With the help of iris's expressionist router you can build any form of API you desire, with safety. Example code: Iris has first-class support for the MVC pattern, you'll not find these stuff anywhere else in the Go world. Example Code: Iris web framework supports Request data, Models, Persistence Data and Binding with the fastest possible execution. Characteristics: All HTTP Methods are supported, for example if want to serve `GET` then the controller should have a function named `Get()`, you can define more than one method function to serve in the same Controller struct. Persistence data inside your Controller struct (share data between requests) via `iris:"persistence"` tag right to the field or Bind using `app.Controller("/" , new(myController), theBindValue)`. Models inside your Controller struct (set-ed at the Method function and rendered by the View) via `iris:"model"` tag right to the field, i.e User UserModel `iris:"model" name:"user"` view will recognise it as `{{.user}}`. If `name` tag is missing then it takes the field's name, in this case the `"User"`. Access to the request path and its parameters via the `Path and Params` fields. Access to the template file that should be rendered via the `Tmpl` field. Access to the template data that should be rendered inside the template file via `Data` field. Access to the template layout via the `Layout` field. Access to the low-level `iris.Context` via the `Ctx` field. Get the relative request path by using the controller's name via `RelPath()`. Get the relative template path directory by using the controller's name via `RelTmpl()`. Flow as you used to, `Controllers` can be registered to any `Party`, including Subdomains, the Party's begin and done handlers work as expected. Optional `BeginRequest(ctx)` function to perform any initialization before the method execution, useful to call middlewares or when many methods use the same collection of data. Optional `EndRequest(ctx)` function to perform any finalization after any method executed. Inheritance, recursively, see for example our `mvc.SessionController/iris.SessionController`, it has the `mvc.Controller/iris.Controller` as an embedded field and it adds its logic to its `BeginRequest`. Source file: https://github.com/kataras/iris/blob/v8/mvc/session_controller.go. Read access to the current route via the `Route` field. Support for more than one input arguments (map to dynamic request path parameters). Register one or more relative paths and able to get path parameters, i.e Response via output arguments, optionally, i.e Where `any` means everything, from custom structs to standard language's types-. `Result` is an interface which contains only that function: Dispatch(ctx iris.Context) and Get where HTTP Method function(Post, Put, Delete...). Iris has a very powerful and blazing fast MVC support, you can return any value of any type from a method function and it will be sent to the client as expected. * if `string` then it's the body. * if `string` is the second output argument then it's the content type. * if `int` then it's the status code. * if `bool` is false then it throws 404 not found http error by skipping everything else. * if `error` and not nil then (any type) response will be omitted and error's text with a 400 bad request will be rendered instead. * if `(int, error)` and error is not nil then the response result will be the error's text with the status code as `int`. * if `custom struct` or `interface{}` or `slice` or `map` then it will be rendered as json, unless a `string` content type is following. * if `mvc.Result` then it executes its `Dispatch` function, so good design patters can be used to split the model's logic where needed. The example below is not intended to be used in production but it's a good showcase of some of the return types we saw before; Another good example with a typical folder structure, that many developers are used to work, can be found at: https://github.com/kataras/iris/tree/v8/_examples/mvc/overview. By creating components that are independent of one another, developers are able to reuse components quickly and easily in other applications. The same (or similar) view for one application can be refactored for another application with different data because the view is simply handling how the data is being displayed to the user. If you're new to back-end web development read about the MVC architectural pattern first, a good start is that wikipedia article: https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller. Follow the examples at: https://github.com/kataras/iris/tree/v8/_examples/#mvc At the previous example, we've seen static routes, group of routes, subdomains, wildcard subdomains, a small example of parameterized path with a single known parameter and custom http errors, now it's time to see wildcard parameters and macros. iris, like net/http std package registers route's handlers by a Handler, the iris' type of handler is just a func(ctx iris.Context) where context comes from github.com/kataras/iris/context. Iris has the easiest and the most powerful routing process you have ever meet. At the same time, iris has its own interpeter(yes like a programming language) for route's path syntax and their dynamic path parameters parsing and evaluation, We call them "macros" for shortcut. How? It calculates its needs and if not any special regexp needed then it just registers the route with the low-level path syntax, otherwise it pre-compiles the regexp and adds the necessary middleware(s). Standard macro types for parameters: if type is missing then parameter's type is defaulted to string, so {param} == {param:string}. If a function not found on that type then the "string"'s types functions are being used. i.e: Besides the fact that iris provides the basic types and some default "macro funcs" you are able to register your own too!. Register a named path parameter function: at the func(argument ...) you can have any standard type, it will be validated before the server starts so don't care about performance here, the only thing it runs at serve time is the returning func(paramValue string) bool. Example Code: A path parameter name should contain only alphabetical letters, symbols, containing '_' and numbers are NOT allowed. If route failed to be registered, the app will panic without any warnings if you didn't catch the second return value(error) on .Handle/.Get.... Last, do not confuse ctx.Values() with ctx.Params(). Path parameter's values goes to ctx.Params() and context's local storage that can be used to communicate between handlers and middleware(s) goes to ctx.Values(), path parameters and the rest of any custom values are separated for your own good. Run Static Files Example code: More examples can be found here: https://github.com/kataras/iris/tree/v8/_examples/beginner/file-server Middleware is just a concept of ordered chain of handlers. Middleware can be registered globally, per-party, per-subdomain and per-route. Example code: iris is able to wrap and convert any external, third-party Handler you used to use to your web application. Let's convert the https://github.com/rs/cors net/http external middleware which returns a `next form` handler. Example code: Iris supports 5 template engines out-of-the-box, developers can still use any external golang template engine, as `context/context#ResponseWriter()` is an `io.Writer`. All of these five template engines have common features with common API, like Layout, Template Funcs, Party-specific layout, partial rendering and more. Example code: View engine supports bundled(https://github.com/jteeuwen/go-bindata) template files too. go-bindata gives you two functions, asset and assetNames, these can be setted to each of the template engines using the `.Binary` func. Example code: A real example can be found here: https://github.com/kataras/iris/tree/v8/_examples/view/embedding-templates-into-app. Enable auto-reloading of templates on each request. Useful while developers are in dev mode as they no neeed to restart their app on every template edit. Example code: Note: In case you're wondering, the code behind the view engines derives from the "github.com/kataras/iris/view" package, access to the engines' variables can be granded by "github.com/kataras/iris" package too. Each one of these template engines has different options located here: https://github.com/kataras/iris/tree/v8/view . This example will show how to store and access data from a session. You don’t need any third-party library, but If you want you can use any session manager compatible or not. In this example we will only allow authenticated users to view our secret message on the /secret page. To get access to it, the will first have to visit /login to get a valid session cookie, which logs him in. Additionally he can visit /logout to revoke his access to our secret message. Example code: Running the example: Sessions persistence can be achieved using one (or more) `sessiondb`. Example Code: More examples: In this example we will create a small chat between web sockets via browser. Example Server Code: Example Client(javascript) Code: Running the example: But you should have a basic idea of the framework by now, we just scratched the surface. If you enjoy what you just saw and want to learn more, please follow the below links: Examples: Middleware: Home Page:
Package iris provides a beautifully expressive and easy to use foundation for your next website, API, or distributed app. Source code and other details for the project are available at GitHub: 11.1.1 The only requirement is the Go Programming Language, at least version 1.8 but 1.11.1 and above is highly recommended. Example code: You can start the server(s) listening to any type of `net.Listener` or even `http.Server` instance. The method for initialization of the server should be passed at the end, via `Run` function. Below you'll see some useful examples: UNIX and BSD hosts can take advantage of the reuse port feature. Example code: That's all with listening, you have the full control when you need it. Let's continue by learning how to catch CONTROL+C/COMMAND+C or unix kill command and shutdown the server gracefully. In order to manually manage what to do when app is interrupted, we have to disable the default behavior with the option `WithoutInterruptHandler` and register a new interrupt handler (globally, across all possible hosts). Example code: Access to all hosts that serve your application can be provided by the `Application#Hosts` field, after the `Run` method. But the most common scenario is that you may need access to the host before the `Run` method, there are two ways of gain access to the host supervisor, read below. First way is to use the `app.NewHost` to create a new host and use one of its `Serve` or `Listen` functions to start the application via the `iris#Raw` Runner. Note that this way needs an extra import of the `net/http` package. Example Code: Second, and probably easier way is to use the `host.Configurator`. Note that this method requires an extra import statement of "github.com/kataras/iris/core/host" when using go < 1.9, if you're targeting on go1.9 then you can use the `iris#Supervisor` and omit the extra host import. All common `Runners` we saw earlier (`iris#Addr, iris#Listener, iris#Server, iris#TLS, iris#AutoTLS`) accept a variadic argument of `host.Configurator`, there are just `func(*host.Supervisor)`. Therefore the `Application` gives you the rights to modify the auto-created host supervisor through these. Example Code: Read more about listening and gracefully shutdown by navigating to: All HTTP methods are supported, developers can also register handlers for same paths for different methods. The first parameter is the HTTP Method, second parameter is the request path of the route, third variadic parameter should contains one or more iris.Handler executed by the registered order when a user requests for that specific resouce path from the server. Example code: In order to make things easier for the user, iris provides functions for all HTTP Methods. The first parameter is the request path of the route, second variadic parameter should contains one or more iris.Handler executed by the registered order when a user requests for that specific resouce path from the server. Example code: A set of routes that are being groupped by path prefix can (optionally) share the same middleware handlers and template layout. A group can have a nested group too. `.Party` is being used to group routes, developers can declare an unlimited number of (nested) groups. Example code: iris developers are able to register their own handlers for http statuses like 404 not found, 500 internal server error and so on. Example code: With the help of iris's expressionist router you can build any form of API you desire, with safety. Example code: At the previous example, we've seen static routes, group of routes, subdomains, wildcard subdomains, a small example of parameterized path with a single known parameter and custom http errors, now it's time to see wildcard parameters and macros. iris, like net/http std package registers route's handlers by a Handler, the iris' type of handler is just a func(ctx iris.Context) where context comes from github.com/kataras/iris/context. Iris has the easiest and the most powerful routing process you have ever meet. At the same time, iris has its own interpeter(yes like a programming language) for route's path syntax and their dynamic path parameters parsing and evaluation, We call them "macros" for shortcut. How? It calculates its needs and if not any special regexp needed then it just registers the route with the low-level path syntax, otherwise it pre-compiles the regexp and adds the necessary middleware(s). Standard macro types for parameters: if type is missing then parameter's type is defaulted to string, so {param} == {param:string}. If a function not found on that type then the "string"'s types functions are being used. i.e: Besides the fact that iris provides the basic types and some default "macro funcs" you are able to register your own too!. Register a named path parameter function: at the func(argument ...) you can have any standard type, it will be validated before the server starts so don't care about performance here, the only thing it runs at serve time is the returning func(paramValue string) bool. Example Code: Last, do not confuse ctx.Values() with ctx.Params(). Path parameter's values goes to ctx.Params() and context's local storage that can be used to communicate between handlers and middleware(s) goes to ctx.Values(), path parameters and the rest of any custom values are separated for your own good. Run Static Files Example code: More examples can be found here: https://github.com/kataras/iris/tree/master/_examples/beginner/file-server Middleware is just a concept of ordered chain of handlers. Middleware can be registered globally, per-party, per-subdomain and per-route. Example code: iris is able to wrap and convert any external, third-party Handler you used to use to your web application. Let's convert the https://github.com/rs/cors net/http external middleware which returns a `next form` handler. Example code: Iris supports 5 template engines out-of-the-box, developers can still use any external golang template engine, as `context/context#ResponseWriter()` is an `io.Writer`. All of these five template engines have common features with common API, like Layout, Template Funcs, Party-specific layout, partial rendering and more. Example code: View engine supports bundled(https://github.com/shuLhan/go-bindata) template files too. go-bindata gives you two functions, asset and assetNames, these can be setted to each of the template engines using the `.Binary` func. Example code: A real example can be found here: https://github.com/kataras/iris/tree/master/_examples/view/embedding-templates-into-app. Enable auto-reloading of templates on each request. Useful while developers are in dev mode as they no neeed to restart their app on every template edit. Example code: Note: In case you're wondering, the code behind the view engines derives from the "github.com/kataras/iris/view" package, access to the engines' variables can be granded by "github.com/kataras/iris" package too. Each one of these template engines has different options located here: https://github.com/kataras/iris/tree/master/view . This example will show how to store and access data from a session. You don’t need any third-party library, but If you want you can use any session manager compatible or not. In this example we will only allow authenticated users to view our secret message on the /secret page. To get access to it, the will first have to visit /login to get a valid session cookie, which logs him in. Additionally he can visit /logout to revoke his access to our secret message. Example code: Running the example: Sessions persistence can be achieved using one (or more) `sessiondb`. Example Code: More examples: In this example we will create a small chat between web sockets via browser. Example Server Code: Example Client(javascript) Code: Running the example: Iris has first-class support for the MVC pattern, you'll not find these stuff anywhere else in the Go world. Example Code: // GetUserBy serves // Method: GET // Resource: http://localhost:8080/user/{username:string} // By is a reserved "keyword" to tell the framework that you're going to // bind path parameters in the function's input arguments, and it also // helps to have "Get" and "GetBy" in the same controller. // // func (c *ExampleController) GetUserBy(username string) mvc.Result { // return mvc.View{ // Name: "user/username.html", // Data: username, // } // } Can use more than one, the factory will make sure that the correct http methods are being registered for each route for this controller, uncomment these if you want: Iris web framework supports Request data, Models, Persistence Data and Binding with the fastest possible execution. Characteristics: All HTTP Methods are supported, for example if want to serve `GET` then the controller should have a function named `Get()`, you can define more than one method function to serve in the same Controller. Register custom controller's struct's methods as handlers with custom paths(even with regex parametermized path) via the `BeforeActivation` custom event callback, per-controller. Example: Persistence data inside your Controller struct (share data between requests) by defining services to the Dependencies or have a `Singleton` controller scope. Share the dependencies between controllers or register them on a parent MVC Application, and ability to modify dependencies per-controller on the `BeforeActivation` optional event callback inside a Controller, i.e Access to the `Context` as a controller's field(no manual binding is neede) i.e `Ctx iris.Context` or via a method's input argument, i.e Models inside your Controller struct (set-ed at the Method function and rendered by the View). You can return models from a controller's method or set a field in the request lifecycle and return that field to another method, in the same request lifecycle. Flow as you used to, mvc application has its own `Router` which is a type of `iris/router.Party`, the standard iris api. `Controllers` can be registered to any `Party`, including Subdomains, the Party's begin and done handlers work as expected. Optional `BeginRequest(ctx)` function to perform any initialization before the method execution, useful to call middlewares or when many methods use the same collection of data. Optional `EndRequest(ctx)` function to perform any finalization after any method executed. Session dynamic dependency via manager's `Start` to the MVC Application, i.e Inheritance, recursively. Access to the dynamic path parameters via the controller's methods' input arguments, no binding is needed. When you use the Iris' default syntax to parse handlers from a controller, you need to suffix the methods with the `By` word, uppercase is a new sub path. Example: Register one or more relative paths and able to get path parameters, i.e Response via output arguments, optionally, i.e Where `any` means everything, from custom structs to standard language's types-. `Result` is an interface which contains only that function: Dispatch(ctx iris.Context) and Get where HTTP Method function(Post, Put, Delete...). Iris has a very powerful and blazing fast MVC support, you can return any value of any type from a method function and it will be sent to the client as expected. * if `string` then it's the body. * if `string` is the second output argument then it's the content type. * if `int` then it's the status code. * if `bool` is false then it throws 404 not found http error by skipping everything else. * if `error` and not nil then (any type) response will be omitted and error's text with a 400 bad request will be rendered instead. * if `(int, error)` and error is not nil then the response result will be the error's text with the status code as `int`. * if `custom struct` or `interface{}` or `slice` or `map` then it will be rendered as json, unless a `string` content type is following. * if `mvc.Result` then it executes its `Dispatch` function, so good design patters can be used to split the model's logic where needed. Examples with good patterns to follow but not intend to be used in production of course can be found at: https://github.com/kataras/iris/tree/master/_examples/#mvc. By creating components that are independent of one another, developers are able to reuse components quickly and easily in other applications. The same (or similar) view for one application can be refactored for another application with different data because the view is simply handling how the data is being displayed to the user. If you're new to back-end web development read about the MVC architectural pattern first, a good start is that wikipedia article: https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller. But you should have a basic idea of the framework by now, we just scratched the surface. If you enjoy what you just saw and want to learn more, please follow the below links: Examples: Middleware: Home Page: Book (in-progress):
Package xgbutil is a utility library designed to make common tasks with the X server easier. The central design choice that has driven development is to hide the complexity of X wherever possible but expose it when necessary. For example, the xevent package provides an implementation of an X event loop that acts as a dispatcher to event handlers set up with the xevent, keybind and mousebind packages. At the same time, the event queue is exposed and can be modified using xevent.Peek and xevent.DequeueAt. The xgbutil package is considerably small, and only contains some type definitions and the initial setup for an X connection. Much of the functionality of xgbutil comes from its sub-packages. Each sub-package is appropriately documented. xgbutil is go-gettable: XGB is the main dependency, and is required for all packages inside xgbutil. graphics-go and freetype-go are also required if using the xgraphics package. A quick example to demonstrate that xgbutil is working correctly: The output will be a list of names of all top-level windows and their geometry including window manager decorations. (Assuming your window manager supports some basic EWMH properties.) The examples directory contains a sizable number of examples demonstrating common tasks with X. They are intended to demonstrate a single thing each, although a few that require setup are necessarily long. Each example is heavily documented. The examples directory should be your first stop when learning how to use xgbutil. xgbutil is also used heavily throughout my (BurntSushi) window manager, Wingo. It may be useful reference material. Wingo project page: https://github.com/BurntSushi/wingo While I am (BurntSushi) fairly confident that XGB is thread safe, I am only somewhat confident that xgbutil is thread safe. It simply has not been tested enough for my confidence to be higher. Note that the xevent package's X event loop is not concurrent. Namely, designing a generally concurrent X event loop is extremely complex. Instead, the onus is on you, the user, to design concurrent callback functions if concurrency is desired.
Package rds provides the client and types for making API requests to Amazon Relational Database Service. Amazon Relational Database Service (Amazon RDS) is a web service that makes it easier to set up, operate, and scale a relational database in the cloud. It provides cost-efficient, resizable capacity for an industry-standard relational database and manages common database administration tasks, freeing up developers to focus on what makes their applications and businesses unique. Amazon RDS gives you access to the capabilities of a MySQL, MariaDB, PostgreSQL, Microsoft SQL Server, Oracle, or Amazon Aurora database server. These capabilities mean that the code, applications, and tools you already use today with your existing databases work with Amazon RDS without modification. Amazon RDS automatically backs up your database and maintains the database software that powers your DB instance. Amazon RDS is flexible: you can scale your DB instance's compute resources and storage capacity to meet your application's demand. As with all Amazon Web Services, there are no up-front investments, and you pay only for the resources you use. This interface reference for Amazon RDS contains documentation for a programming or command line interface you can use to manage Amazon RDS. Note that Amazon RDS is asynchronous, which means that some interfaces might require techniques such as polling or callback functions to determine when a command has been applied. In this reference, the parameter descriptions indicate whether a command is applied immediately, on the next instance reboot, or during the maintenance window. The reference structure is as follows, and we list following some related topics from the user guide. Amazon RDS API Reference For the alphabetical list of API actions, see API Actions (http://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_Operations.html). For the alphabetical list of data types, see Data Types (http://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_Types.html). For a list of common query parameters, see Common Parameters (http://docs.aws.amazon.com/AmazonRDS/latest/APIReference/CommonParameters.html). For descriptions of the error codes, see Common Errors (http://docs.aws.amazon.com/AmazonRDS/latest/APIReference/CommonErrors.html). Amazon RDS User Guide For a summary of the Amazon RDS interfaces, see Available RDS Interfaces (http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Welcome.html#Welcome.Interfaces). For more information about how to use the Query API, see Using the Query API (http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Using_the_Query_API.html). See https://docs.aws.amazon.com/goto/WebAPI/rds-2014-10-31 for more information on this service. See rds package documentation for more information. https://docs.aws.amazon.com/sdk-for-go/api/service/rds/ To Amazon Relational Database Service with the SDK use the New function to create a new service client. With that client you can make API requests to the service. These clients are safe to use concurrently. See the SDK's documentation for more information on how to use the SDK. https://docs.aws.amazon.com/sdk-for-go/api/ See aws.Config documentation for more information on configuring SDK clients. https://docs.aws.amazon.com/sdk-for-go/api/aws/#Config See the Amazon Relational Database Service client RDS for more information on creating client for this service. https://docs.aws.amazon.com/sdk-for-go/api/service/rds/#New The rdsutil package's BuildAuthToken function provides a connection authentication token builder. Given an endpoint of the RDS database, AWS region, DB user, and AWS credentials the function will create an presigned URL to use as the authentication token for the database's connection. The following example shows how to use BuildAuthToken to create an authentication token for connecting to a MySQL database in RDS. See rdsutil package for more information. http://docs.aws.amazon.com/sdk-for-go/api/service/rds/rdsutils/
Package resourcegroupstaggingapi provides the client and types for making API requests to AWS Resource Groups Tagging API. This guide describes the API operations for the resource groups tagging. A tag is a label that you assign to an AWS resource. A tag consists of a key and a value, both of which you define. For example, if you have two Amazon EC2 instances, you might assign both a tag key of "Stack." But the value of "Stack" might be "Testing" for one and "Production" for the other. Tagging can help you organize your resources and enables you to simplify resource management, access management and cost allocation. For more information about tagging, see Working with Tag Editor (http://docs.aws.amazon.com/awsconsolehelpdocs/latest/gsg/tag-editor.html) and Working with Resource Groups (http://docs.aws.amazon.com/awsconsolehelpdocs/latest/gsg/resource-groups.html). For more information about permissions you need to use the resource groups tagging APIs, see Obtaining Permissions for Resource Groups (http://docs.aws.amazon.com/awsconsolehelpdocs/latest/gsg/obtaining-permissions-for-resource-groups.html) and Obtaining Permissions for Tagging (http://docs.aws.amazon.com/awsconsolehelpdocs/latest/gsg/obtaining-permissions-for-tagging.html). You can use the resource groups tagging APIs to complete the following tasks: Tag and untag supported resources located in the specified region for the AWS account Use tag-based filters to search for resources located in the specified region for the AWS account List all existing tag keys in the specified region for the AWS account List all existing values for the specified key in the specified region for the AWS account Not all resources can have tags. For a lists of resources that you can tag, see Supported Resources (http://docs.aws.amazon.com/awsconsolehelpdocs/latest/gsg/supported-resources.html) in the AWS Resource Groups and Tag Editor User Guide. To make full use of the resource groups tagging APIs, you might need additional IAM permissions, including permission to access the resources of individual services as well as permission to view and apply tags to those resources. For more information, see Obtaining Permissions for Tagging (http://docs.aws.amazon.com/awsconsolehelpdocs/latest/gsg/obtaining-permissions-for-tagging.html) in the AWS Resource Groups and Tag Editor User Guide. See https://docs.aws.amazon.com/goto/WebAPI/resourcegroupstaggingapi-2017-01-26 for more information on this service. See resourcegroupstaggingapi package documentation for more information. https://docs.aws.amazon.com/sdk-for-go/api/service/resourcegroupstaggingapi/ To AWS Resource Groups Tagging API with the SDK use the New function to create a new service client. With that client you can make API requests to the service. These clients are safe to use concurrently. See the SDK's documentation for more information on how to use the SDK. https://docs.aws.amazon.com/sdk-for-go/api/ See aws.Config documentation for more information on configuring SDK clients. https://docs.aws.amazon.com/sdk-for-go/api/aws/#Config See the AWS Resource Groups Tagging API client ResourceGroupsTaggingAPI for more information on creating client for this service. https://docs.aws.amazon.com/sdk-for-go/api/service/resourcegroupstaggingapi/#New