
Security News
The Changelog Podcast: Practical Steps to Stay Safe on npm
Learn the essential steps every developer should take to stay secure on npm and reduce exposure to supply chain attacks.
@azure-rest/ai-document-intelligence
Advanced tools
Extracts content, layout, and structured data from documents.
Please rely heavily on our REST client docs to use this library
NOTE: Form Recognizer has been rebranded to Document Intelligence. Please check the Migration Guide from
@azure/ai-form-recognizerto@azure-rest/ai-document-intelligence.
Key links:
This version of the client library defaults to the
"2024-11-30"version of the service.
This table shows the relationship between SDK versions and supported API versions of the service:
| SDK version | Supported API version of service |
|---|---|
| 1.0.0 | 2024-11-30 |
Please rely on the older
@azure/ai-form-recognizerlibrary through the older service API versions for retired models, such as"prebuilt-businessCard"and"prebuilt-document". For more information, see Changelog.
The below table describes the relationship of each client and its supported API version(s):
| Service API version | Supported clients | Package |
|---|---|---|
| 2024-11-30 | DocumentIntelligenceClient | @azure-rest/ai-document-intelligence version 1.0.0 |
| 2023-07-31 | DocumentAnalysisClient and DocumentModelAdministrationClient | @azure/ai-form-recognizer version ^5.0.0 |
| 2022-08-01 | DocumentAnalysisClient and DocumentModelAdministrationClient | @azure/ai-form-recognizer version ^4.0.0 |
@azure-rest/ai-document-intelligence packageInstall the Azure DocumentIntelligence(formerlyFormRecognizer) REST client REST client library for JavaScript with npm:
npm install @azure-rest/ai-document-intelligence
DocumentIntelligenceClientTo use an Azure Active Directory (AAD) token credential, provide an instance of the desired credential type obtained from the @azure/identity library.
To authenticate with AAD, you must first npm install @azure/identity
After setup, you can choose which type of credential from @azure/identity to use.
As an example, DefaultAzureCredential
can be used to authenticate the client.
Set the values of the client ID, tenant ID, and client secret of the AAD application as environment variables: AZURE_CLIENT_ID, AZURE_TENANT_ID, AZURE_CLIENT_SECRET
import DocumentIntelligence from "@azure-rest/ai-document-intelligence";
const client = DocumentIntelligence(
process.env["DOCUMENT_INTELLIGENCE_ENDPOINT"],
new DefaultAzureCredential(),
);
import DocumentIntelligence from "@azure-rest/ai-document-intelligence";
const client = DocumentIntelligence(process.env["DOCUMENT_INTELLIGENCE_ENDPOINT"], {
key: process.env["DOCUMENT_INTELLIGENCE_API_KEY"],
});
const initialResponse = await client
.path("/documentModels/{modelId}:analyze", "prebuilt-layout")
.post({
contentType: "application/json",
body: {
urlSource:
"https://raw.githubusercontent.com/Azure/azure-sdk-for-js/6704eff082aaaf2d97c1371a28461f512f8d748a/sdk/formrecognizer/ai-form-recognizer/assets/forms/Invoice_1.pdf",
},
queryParameters: { locale: "en-IN" },
});
import fs from "fs";
import path from "path";
const filePath = path.join(ASSET_PATH, "forms", "Invoice_1.pdf");
const base64Source = fs.readFileSync(filePath, { encoding: "base64" });
const initialResponse = await client
.path("/documentModels/{modelId}:analyze", "prebuilt-layout")
.post({
contentType: "application/json",
body: {
base64Source,
},
queryParameters: { locale: "en-IN" },
});
Continue creating the poller from initial response
import {
getLongRunningPoller,
AnalyzeOperationOutput,
isUnexpected,
} from "@azure-rest/ai-document-intelligence";
if (isUnexpected(initialResponse)) {
throw initialResponse.body.error;
}
const poller = getLongRunningPoller(client, initialResponse);
const result = (await poller.pollUntilDone()).body as AnalyzeOperationOutput;
console.log(result);
// {
// status: 'succeeded',
// createdDateTime: '2023-11-10T13:31:31Z',
// lastUpdatedDateTime: '2023-11-10T13:31:34Z',
// analyzeResult: {
// apiVersion: '2023-10-31-preview',
// .
// .
// .
// contentFormat: 'text'
// }
// }
import { parseResultIdFromResponse, isUnexpected } from "@azure-rest/ai-document-intelligence";
// 1. Analyze a batch of documents
const initialResponse = await client
.path("/documentModels/{modelId}:analyzeBatch", "prebuilt-layout")
.post({
contentType: "application/json",
body: {
azureBlobSource: {
containerUrl: batchTrainingFilesContainerUrl(),
},
resultContainerUrl: batchTrainingFilesResultContainerUrl(),
resultPrefix: "result",
},
});
if (isUnexpected(initialResponse)) {
throw initialResponse.body.error;
}
const resultId = parseResultIdFromResponse(initialResponse);
console.log("resultId: ", resultId);
// (Optional) You can poll for the batch analysis result but be aware that a job may take unexpectedly long time, and polling could incur additional costs.
// const poller = getLongRunningPoller(client, initialResponse);
// await poller.pollUntilDone();
// 2. At a later time, you can retrieve the operation result using the resultId
const output = await client
.path("/documentModels/{modelId}/analyzeResults/{resultId}", "prebuilt-layout", resultId)
.get();
console.log(output);
Supports output with Markdown content format along with the default plain text. For now, this is only supported for "prebuilt-layout". Markdown content format is deemed a more friendly format for LLM consumption in a chat or automation use scenario.
Service follows the GFM spec (GitHub Flavored Markdown) for the Markdown format. Also introduces a new contentFormat property with value "text" or "markdown" to indicate the result content format.
import DocumentIntelligence from "@azure-rest/ai-document-intelligence";
const client = DocumentIntelligence(process.env["DOCUMENT_INTELLIGENCE_ENDPOINT"], {
key: process.env["DOCUMENT_INTELLIGENCE_API_KEY"],
});
const initialResponse = await client
.path("/documentModels/{modelId}:analyze", "prebuilt-layout")
.post({
contentType: "application/json",
body: {
urlSource:
"https://raw.githubusercontent.com/Azure/azure-sdk-for-js/6704eff082aaaf2d97c1371a28461f512f8d748a/sdk/formrecognizer/ai-form-recognizer/assets/forms/Invoice_1.pdf",
},
queryParameters: { outputContentFormat: "markdown" }, // <-- new query parameter
});
When this feature flag is specified, the service will further extract the values of the fields specified via the queryFields query parameter to supplement any existing fields defined by the model as fallback.
await client.path("/documentModels/{modelId}:analyze", "prebuilt-layout").post({
contentType: "application/json",
body: { urlSource: "..." },
queryParameters: {
features: ["queryFields"],
queryFields: ["NumberOfGuests", "StoreNumber"],
}, // <-- new query parameter
});
In the previous API versions supported by the older @azure/ai-form-recognizer library, document splitting and classification operation ("/documentClassifiers/{classifierId}:analyze") always tried to split the input file into multiple documents.
To enable a wider set of scenarios, service introduces a "split" query parameter with the new "2023-10-31-preview" service version. The following values are supported:
split: "auto"
Let service determine where to split.
split: "none"
The entire file is treated as a single document. No splitting is performed.
split: "perPage"
Each page is treated as a separate document. Each empty page is kept as its own document.
import {
DocumentClassifierBuildOperationDetailsOutput,
getLongRunningPoller,
isUnexpected,
} from "@azure-rest/ai-document-intelligence";
const containerSasUrl = (): string =>
process.env["DOCUMENT_INTELLIGENCE_TRAINING_CONTAINER_SAS_URL"];
const initialResponse = await client.path("/documentClassifiers:build").post({
body: {
classifierId: `customClassifier${getRandomNumber()}`,
description: "Custom classifier description",
docTypes: {
foo: {
azureBlobSource: {
containerUrl: containerSasUrl(),
},
},
bar: {
azureBlobSource: {
containerUrl: containerSasUrl(),
},
},
},
},
});
if (isUnexpected(initialResponse)) {
throw initialResponse.body.error;
}
const poller = getLongRunningPoller(client, initialResponse);
const response = (await poller.pollUntilDone())
.body as DocumentClassifierBuildOperationDetailsOutput;
console.log(response);
// {
// operationId: '31466834048_f3ee629e-73fb-48ab-993b-1d55d73ca460',
// kind: 'documentClassifierBuild',
// status: 'succeeded',
// .
// .
// result: {
// classifierId: 'customClassifier10978',
// createdDateTime: '2023-11-09T12:45:56Z',
// .
// .
// description: 'Custom classifier description'
// },
// apiVersion: '2023-10-31-preview'
// }
const filePath = path.join(ASSET_PATH, "layout-pageobject.pdf");
const base64Source = await fs.readFile(filePath, { encoding: "base64" });
const initialResponse = await client
.path("/documentModels/{modelId}:analyze", "prebuilt-read")
.post({
contentType: "application/json",
body: {
base64Source,
},
queryParameters: { output: ["pdf"] },
});
if (isUnexpected(initialResponse)) {
throw initialResponse.body.error;
}
const poller = getLongRunningPoller(client, initialResponse);
await poller.pollUntilDone();
const output = await client
.path(
"/documentModels/{modelId}/analyzeResults/{resultId}/pdf",
"prebuilt-read",
parseResultIdFromResponse(initialResponse),
)
.get()
.asNodeStream(); // output.body would be NodeJS.ReadableStream
if (output.status !== "200" || !output.body) {
throw new Error("The response was unexpected, expected NodeJS.ReadableStream in the body.");
}
const pdfData = await streamToUint8Array(output.body);
fs.promises.writeFile(`./output.pdf`, pdfData);
// Or you can consume the NodeJS.ReadableStream directly
const filePath = path.join(ASSET_PATH, "layout-pageobject.pdf");
const base64Source = fs.readFileSync(filePath, { encoding: "base64" });
const initialResponse = await client
.path("/documentModels/{modelId}:analyze", "prebuilt-layout")
.post({
contentType: "application/json",
body: {
base64Source,
},
queryParameters: { output: ["figures"] },
});
if (isUnexpected(initialResponse)) {
throw initialResponse.body.error;
}
const poller = getLongRunningPoller(client, initialResponse, { ...testPollingOptions });
const result = (await poller.pollUntilDone()).body as AnalyzeOperationOutput;
const figures = result.analyzeResult?.figures;
assert.isArray(figures);
assert.isNotEmpty(figures?.[0]);
const figureId = figures?.[0].id || "";
assert.isDefined(figureId);
const output = await client
.path(
"/documentModels/{modelId}/analyzeResults/{resultId}/figures/{figureId}",
"prebuilt-layout",
parseResultIdFromResponse(initialResponse),
figureId,
)
.get()
.asNodeStream(); // output.body would be NodeJS.ReadableStream
if (output.status !== "200" || !output.body) {
throw new Error("The response was unexpected, expected NodeJS.ReadableStream in the body.");
}
const imageData = await streamToUint8Array(output.body);
fs.promises.writeFile(`./figures/${figureId}.png`, imageData);
// Or you can consume the NodeJS.ReadableStream directly
const response = await client.path("/info").get();
if (isUnexpected(response)) {
throw response.body.error;
}
console.log(response.body.customDocumentModels.limit);
// 20000
import { paginate } from "@azure-rest/ai-document-intelligence";
const response = await client.path("/documentModels").get();
if (isUnexpected(response)) {
throw response.body.error;
}
const modelsInAccount: string[] = [];
for await (const model of paginate(client, response)) {
console.log(model.modelId);
}
Enabling logging may help uncover useful information about failures. In order to see a log of HTTP requests and responses, set the AZURE_LOG_LEVEL environment variable to info. Alternatively, logging can be enabled at runtime by calling setLogLevel in the @azure/logger:
const { setLogLevel } = require("@azure/logger");
setLogLevel("info");
For more detailed instructions on how to enable logs, you can look at the @azure/logger package docs.
FAQs
Document Intelligence Rest Client
The npm package @azure-rest/ai-document-intelligence receives a total of 39,133 weekly downloads. As such, @azure-rest/ai-document-intelligence popularity was classified as popular.
We found that @azure-rest/ai-document-intelligence demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago. It has 2 open source maintainers collaborating on the project.
Did you know?

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Security News
Learn the essential steps every developer should take to stay secure on npm and reduce exposure to supply chain attacks.

Security News
Experts push back on new claims about AI-driven ransomware, warning that hype and sponsored research are distorting how the threat is understood.

Security News
Ruby's creator Matz assumes control of RubyGems and Bundler repositories while former maintainers agree to step back and transfer all rights to end the dispute.