astra-mongoose 
astra-mongoose
is a Mongoose driver for Data API. It supports connecting to DataStax Astra as well as self-hosted Data API on top of Apache Cassandra / DataStax Enterprise.
Quickstart
Prerequisites:
Node.js (>=20.0.0), npm/yarn
- Create a sample project called 'sample-app'
mkdir sample-app
cd sample-app
- Initialize and add required dependencies
npm init -y && npm install express mongoose @datastax/astra-mongoose
OR
yarn init -y && yarn add express mongoose @datastax/astra-mongoose
ESM:
import express from 'express';
import mongoose from 'mongoose';
import { driver, createAstraUri } from '@datastax/astra-mongoose';
const Schema = mongoose.Schema;
mongoose.setDriver(driver);
const uri = createAstraUri(
process.env.ASTRA_API_ENDPOINT,
process.env.ASTRA_APPLICATION_TOKEN
);
await mongoose.connect(uri);
const Product = mongoose.model('Product', new Schema({ name: String, price: Number }));
Object.values(mongoose.connection.models).map(Model => Model.init());
const app = express();
app.get('/addproduct', (req, res) => {
const newProduct = new Product(
{
name: 'product' + Math.floor(Math.random() * 99 + 1),
price: '' + Math.floor(Math.random() * 900 + 100)
});
newProduct.save();
res.send('Added a product!');
});
app.get('/getproducts', (req, res) => {
Product.find()
.then(products => res.json(products));
});
const HOST = '0.0.0.0';
const PORT = 8097;
await app.listen(PORT, HOST);
console.log(`Running on http://${HOST}:${PORT}`);
console.log('http://localhost:' + PORT + '/addproduct');
console.log('http://localhost:' + PORT + '/getproducts');
CommonJS:
const express = require('express');
const mongoose = require('mongoose');
const { driver, createAstraUri } = require('@datastax/astra-mongoose');
const Schema = mongoose.Schema;
mongoose.setDriver(driver);
const uri = createAstraUri(
process.env.ASTRA_API_ENDPOINT,
process.env.ASTRA_APPLICATION_TOKEN
);
mongoose.connect(uri);
const Product = mongoose.model('Product', new Schema({ name: String, price: Number }));
Object.values(mongoose.connection.models).map(Model => Model.init());
const app = express();
app.get('/addproduct', (req, res) => {
const newProduct = new Product(
{
name: 'product' + Math.floor(Math.random() * 99 + 1),
price: '' + Math.floor(Math.random() * 900 + 100)
});
newProduct.save();
res.send('Added a product!');
});
app.get('/getproducts', (req, res) => {
Product.find()
.then(products => res.json(products));
});
const HOST = '0.0.0.0';
const PORT = 8097;
app.listen(PORT, HOST, () => {
console.log(`Running on http://${HOST}:${PORT}`);
console.log('http://localhost:' + PORT + '/addproduct');
console.log('http://localhost:' + PORT + '/getproducts');
});
- Execute below to run the app
node index.js
curl http://localhost:8097/addproduct
- View the newly created product
curl http://localhost:8097/getproducts
Architecture
High level architecture
Components
- Cassandra Cluster - Apache Cassandra / DataStax Enterprise Cluster as backend database.
- Data API - Data API is an open source HTTP API that allows interacting with Apache Cassandra/DSE Cluster.
- JavaScript Clients that use Mongoose - Mongoose is an elegant MongoDB object modeling library for Node.js applications. By implementing a driver required by the Mongoose interface to connect to Data API instead of native MongoDB access layer, now a JavaScript client can store/retrieve documents on an Apache Cassandra/DSE Cluster.
- Astra - Astra is a managed DBaaS service that provides a fully managed Cassandra database service. Astra includes a managed Data API service that allows interacting with data stored in Astra.
- Stargate - Stargate is an open source project that provides a RESTful API for interacting with Apache Cassandra/DSE Cluster. Data API currently relies on Stargate internally.
The current implementation of the Data API uses DataStax Enterprise (DSE) as the backend database.
Version compatibility
Mongoose | ^8.14.0 |
data-api | 1.x |
DataStax Enterprise | 6.8.x |
Astra | Current |
CI tests are run using the Stargate and Data API versions specified in the api-compatibility.versions file.
Sample Applications
Sample applications developed using @datastax/astra-mongoose
driver are available in below repository.
https://github.com/stargate/stargate-mongoose-sample-apps
Connecting to DSE/HCD
Astra-mongoose also supports connecting to self-hosted Data API instances backed by DSE/HCD.
Astra-mongoose has a bin/start_data_api.sh
script that you can run to start a local Data API instance backed by DSE using docker-compose for testing and development purposes.
./bin/start_data_api.sh
You can then connect to your local Data API instance using mongoose.connect()
with isAstra: false
as follows.
const mongoose = require('mongoose');
const { driver } = require('@datastax/astra-mongoose');
mongoose.setDriver(driver);
await mongoose.connect('http://localhost:8181/v1/testks1', {
isAstra: false,
username: 'cassandra',
password: 'cassandra'
});
Features Using Collections
Connection APIs
createDatabase | When flag createNamespaceOnConnect is set to true the keyspace passed on to the mongoose.connect function via the URL, is created automatically. Not supported on Astra. |
dropDatabase | Drops the database (not supported on Astra) |
createCollection | mongoose.model('ModelName',modelSchema) creates a collection as required |
dropCollection | model.dropCollection() drops the collection |
Collection APIs
countDocuments | Model.countDocuments(filter) returns the count of documents |
deleteMany | Model.deleteMany(filter) . |
deleteOne | Model.deleteOne(filter, options) options - sort |
find | Model.find(filter, projection, options) options - limit , pageState , skip , sort (skip works only with sorting) |
findOne | Model.findOne(filter, options) options - sort Example: findOne({}, { sort: { username: -1 } }) |
findOneAndDelete | Model.findOneAndDelete(filter, options) options - sort |
findOneAndReplace | Model.findOneAndReplace(filter, replacement, options) options
upsert: (default false )
true - if a document is not found for the given filter, a new document will be inserted with the values in the filter (eq condition) and the values in the $set and $setOnInsert operators.
false - new document will not be inserted when no match is found for the given filter --------
returnDocument : (default before )
before - Return the document before the changes were applied
after - Return the document after the changes are applied |
findOneAndUpdate | Model.findOneAndUpdate(filter, update, options) options
upsert: (default false )
true - if a document is not found for the given filter, a new document will be inserted with the values in the filter (eq condition) and the values in the $set and $setOnInsert operators.
false - new document will not be inserted when no match is found for the given filter --------
returnDocument : (default before )
before - Return the document before the changes were applied
after - Return the document after the changes are applied |
insertMany | Model.insertMany([{docs}], options) In a single call, only 20 records can be inserted. options - ordered |
insertOne | Model.insertOne({doc}) |
updateMany | Model.updateMany(filter, update, options) options
upsert: (default false )
true - if a document is not found for the given filter, a new document will be inserted with the values in the filter (eq condition) and the values in the $set and $setOnInsert operators.
false - new document will not be inserted when no match is found for the given filter
** This API will throw an error when more than 20 records are found to be updated. |
updateOne | Model.updateOne(filter, update, options) options
upsert: (default false )
true - if a document is not found for the given filter, a new document will be inserted with the values in the filter (eq condition) and the values in the $set and $setOnInsert operators.
false - new document will not be inserted when no match is found for the given filter --------
returnDocument : (default before )
before - Return the document before the changes were applied
after - Return the document after the changes are applied |
Filter Clause
literal comparison | Equal to. Example: { 'first_name' : 'jim' } |
$eq | Example: { 'first_name' : { '$eq' : 'jim' } } |
$gt | Example (age > 25): { 'age' : { '$gt' : 25 } } |
$gte | Example (age >= 25): { 'age' : { '$gte' : 25 } } |
$lt | Example (age < 25): { 'age' : { '$lt' : 25 } } |
$lte | Example (age <= 25): { 'age' : { '$lte' : 25 } } |
$ne | Example: { 'first_name' : { '$ne' : 'jim' } } |
$in | Example: { '_id' : { '$in' : ['nyc', 'la'] } } |
$nin | Example: { 'address.city' : { '$nin' : ['nyc', 'la'] } } |
$not | Not supported. |
$exists | Example: { 'address.city' : { '$exists' : true} } |
$all | Array operation. Matches if all the elements of an array matches the given values. Example: { 'tags' : { '$all' : [ 'home', 'school' ] } } |
$elemMatch | Not supported. Matches if the elements of an array in a document matches the given conditions. Example: {'goals': { '$elemMatch': { '$gte': 2, '$lt': 10 }}} |
$size | Array Operation. Example: { 'tags' : { '$size' : 1 } } |
$and (implicit) | Logical expression. Example : { '$and' : [ {first_name : 'jim'}, {'age' : {'$gt' : 25 } } ] } |
$and (explicit) | Example : { '$and' : [ {first_name : 'jim'}, {'age' : {'$gt' : 25 } } ] } |
$or | Example: { '$or' : [ {first_name : 'jim'}, {'age' : {'$gt' : 25 } } ] } |
Projection Clause
$elemMatch (projection) | Not supported |
$slice | Array related operation. Example: { 'tags' : { '$slice': 1 }} returns only the first element from the array field called tags. |
$ (projection) | Example: Model.find({}, { username : 1, _id : 0}) - This returns username in the response and the _id field |
Sort Clause
Single Field Sort | Supported |
Multi Field Sort | Not supported |
Update Clause
$inc | Example: { '$inc': { 'points' : 5 } } |
$min | Example: { 'col': { '$min' : 5 } } if the columns value is greater than 5, it will be updated with 5 |
$max | Example: { 'col': { '$max' : 50 } } if the columns value is lesser than 50, it will be updated with 50 |
$rename | Example: { $rename: { '$max' : 50 } } if the columns value is lesser than 50, it will be updated with 50 |
$set | Example: {'update' : {'$set': {'location': 'New York'} }} |
$setOnInsert | Example: {'update' : {'$set': {'location': 'New York'}, '$setOnInsert': {'country': 'USA'} }} |
$unset | Example: {'update' : {'$unset': [address.location] }} |
$addToSet | Example: {'$addToSet' : {'points': 10}} . This will add 10 to an array called points in the documents, without duplicates (i.e. ll skip if 10 is already present in the array) |
$pop | Example: {'$pop' : {'points': 1 }} . This removes the last 1 item from an array called points . -1 will remove the first 1 item. |
$pull | Not supported |
$push | Example. '$push': {'tags': 'work'} . This pushes an element called work to the array tags |
$pullAll | Not supported |
Index Operations
Index operations are not supported.
Aggregation Operations
Aggregation operations are not supported.
Transaction Operations
Transaction operations are not supported.
Vector Search
Vector search is supported. Define a $vector
property in your schema, and you can sort documents by their distance to a given vector using sort({ $vector: { $meta } })
as follows.
const vectorSchema = new Schema(
{
$vector: { type: [Number], default: () => void 0, select: true },
name: 'String'
},
{
collectionOptions: { vector: { dimension: 2, metric: 'cosine' } },
autoCreate: false
}
);
const Vector = mongoose.model('Vector', vectorSchema);
await Vector.createCollection();
const res = await Vector.find({}).sort({ $vector: { $meta: [1, 99] } });
Vectorize
Vectorize is supported. Define a $vectorize
string property in your schema, and you can insert documents with a vector as follows.
const vectorSchema = new Schema(
{
$vector: { type: [Number], default: () => void 0, dimension: 1024 },
$vectorize: { type: String },
name: 'String'
},
{
collectionOptions: {
vector: {
dimension: 1024,
metric: 'cosine',
service: { provider: 'nvidia', modelName: 'NV-Embed-QA' }
}
},
autoCreate: false
}
);
const Vector = mongooseInstance.model('Vector', vectorSchema);
const { _id } = await Vector.create({ name: 'Moby-Dick', $vectorize: 'Call me Ishmael.' });
const doc = await Vector.findById(_id).select({ '*': 1 }).orFail();
doc.$vectorize;
doc.$vector;
Features Using Tables
You can enable the useTables
option in the connection string to use the Tables API as opposed to the Collections API.
The following operations are supported in the tables API.
Connection APIs
createDatabase | When flag createNamespaceOnConnect is set to true the keyspace passed on to the mongoose.connect function via the URL, is created automatically. Not supported on Astra. |
dropDatabase | Drops the database (not supported on Astra) |
createTable | connection.createTable() |
dropTable | connection.dropTable() |
Table APIs
countDocuments | Not supported |
deleteMany | Model.deleteMany(filter) . |
deleteOne | Model.deleteOne(filter, options) Must specify _id in filter |
find | Model.find(filter, projection, options) options - limit , skip , sort (skip works only with sorting) |
findOne | Model.findOne(filter, options) options - sort Example: findOne({}, { sort: { username: -1 } }) |
findOneAndDelete | Not supported |
findOneAndReplace | Not supported |
findOneAndUpdate | Not supported |
insertMany | Model.insertMany([{docs}], options) |
insertOne | Model.insertOne({doc}) |
updateMany | Not supported |
updateOne | Model.updateOne(filter, update, options) options
upsert: (default false )
true - if a document is not found for the given filter, a new document will be inserted with the values in the filter (eq condition) and the values in the $set and $setOnInsert operators.
false - new document will not be inserted when no match is found for the given filter |
Filter Clause
literal comparison | Equal to. Example: { 'first_name' : 'jim' } |
$eq | Example: { 'first_name' : { '$eq' : 'jim' } } |
$gt | Example (age > 25): { 'age' : { '$gt' : 25 } } |
$gte | Example (age >= 25): { 'age' : { '$gte' : 25 } } |
$lt | Example (age < 25): { 'age' : { '$lt' : 25 } } |
$lte | Example (age <= 25): { 'age' : { '$lte' : 25 } } |
$ne | Example: { 'first_name' : { '$ne' : 'jim' } } |
$in | Example: { '_id' : { '$in' : ['nyc', 'la'] } } |
$nin | Example: { 'address.city' : { '$nin' : ['nyc', 'la'] } } |
$not | Not supported. |
$exists | Not supported. |
$all | Not supported. |
$elemMatch | Not supported. |
$size | Not supported. |
$and (implicit) | Logical expression. Example : { '$and' : [ {first_name : 'jim'}, {'age' : {'$gt' : 25 } } ] } |
$and (explicit) | Not supported. |
$or | Not supported. |
Sort Clause
Single Field Sort | Supported |
Multi Field Sort | Not supported |
Update Clause
$inc | Not supported. |
$min | Not supported. |
$max | Not supported. |
$rename | Not supported. |
$set | Example: {'update' : {'$set': {'location': 'New York'} }} |
$setOnInsert | Not supported. |
$unset | Example: {'update' : {'$unset': [address.location] }} |
$addToSet | Not supported. |
$pop | Not supported. |
$pull | Not supported |
$push | Not supported. |
$pullAll | Not supported. |
Index Operations
Indexes are supported. Indexes can be created using the createIndex
method on the collection object, or by defining an index in your Mongoose schema.
However, indexes are limited to 1 key: compound indexes are not supported.
const testSchema = new Schema({ testProperty: String, otherTestProperty: String });
testSchema.index({ testProperty: 1 });
const TestModel = mongoose.model('Test', testSchema);
await TestModel.createIndexes();
Aggregation Operations
Aggregation operations are not supported.
Transaction Operations
Transaction operations are not supported.
Vector Search
Vector search is supported. Define a property of type [Number]
with a dimension
property and Mongoose will treat it as a vector when you use tableDefinitionForSchema
.
import { tableDefinitionFromSchema } from '@datastax/astra-mongoose';
const vectorSchema = new Schema(
{
vector: { type: [Number], default: () => void 0, dimension: 2 },
name: 'String'
},
{
autoCreate: false,
autoIndex: false,
versionKey: false
}
);
const Vector = mongoose.model('VectorTable', vectorSchema, 'vector_table');
await mongoose.connection.createTable('vector_table', tableDefinitionFromSchema(vectorSchema));
await mongoose.connection.collection('vector_table').createVectorIndex('vectortables', 'vector');
const res = await Vector.find({}, null, { includeSimilarity: true }).sort({ vector: { $meta: [1, 99] } });
Vectorize
Vectorize is supported. Use the Vectorize
type exported by astra-mongoose.
import { tableDefinitionFromSchema, Vectorize } from '@datastax/astra-mongoose';
interface IVector {
vector: string | number[] | null;
name?: string | null;
}
const vectorSchema = new Schema<IVector>({ name: 'String' }, { autoCreate: false });
vectorSchema.path('vector', new Vectorize('vector', {
default: [],
dimension: 1024,
service: {
provider: 'nvidia',
modelName: 'NV-Embed-QA'
}
}));
const Vector = mongoose.model('vector', vectorSchema, 'vector_table');
await mongoose.connection.createTable('vector_table', tableDefinitionFromSchema(vectorSchema));
await mongoose.connection.collection('vector_table').createVectorIndex('vectortables', 'vector');
await Vector.create({ name: 'Recipe', vector: 'My Taco Recipe: 1 corn tortilla, 2 oz ground beef' });
await Vector.create({ name: 'Story', vector: 'Colorful butterflies soar high above the blooming garden' });
const doc = await Vector.findOne().sort({ vector: { $meta: 'mexican food' } }).orFail();
doc.name;