Socket
Socket
Sign inDemoInstall

@math.gl/core

Package Overview
Dependencies
Maintainers
3
Versions
61
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

@math.gl/core - npm Package Compare versions

Comparing version 4.0.0 to 4.0.1

dist/index.cjs.map

3

dist/classes/base/math-array.d.ts
import { NumericArray } from '@math.gl/types';
import { ConfigurationOptions } from '../../lib/common';
import { ConfigurationOptions } from "../../lib/common.js";
/** Base class for vectors and matrices */

@@ -67,2 +67,1 @@ export declare abstract class MathArray extends Array<number> {

}
//# sourceMappingURL=math-array.d.ts.map

@@ -1,269 +0,223 @@

function _extendableBuiltin(cls) {
function ExtendableBuiltin() {
var instance = Reflect.construct(cls, Array.from(arguments));
Object.setPrototypeOf(instance, Object.getPrototypeOf(this));
return instance;
}
ExtendableBuiltin.prototype = Object.create(cls.prototype, {
constructor: {
value: cls,
enumerable: false,
writable: true,
configurable: true
}
});
if (Object.setPrototypeOf) {
Object.setPrototypeOf(ExtendableBuiltin, cls);
} else {
ExtendableBuiltin.__proto__ = cls;
}
return ExtendableBuiltin;
}
import { config, formatValue, equals, isArray } from "../../lib/common.js";
export class MathArray extends _extendableBuiltin(Array) {
clone() {
return new this.constructor().copy(this);
}
fromArray(array, offset = 0) {
for (let i = 0; i < this.ELEMENTS; ++i) {
this[i] = array[i + offset];
/** Base class for vectors and matrices */
export class MathArray extends Array {
// Common methods
/**
* Clone the current object
* @returns a new copy of this object
*/
clone() {
// @ts-expect-error TS2351: Cannot use 'new' with an expression whose type lacks a call or construct signature.
return new this.constructor().copy(this); // eslint-disable-line
}
return this.check();
}
toArray(targetArray = [], offset = 0) {
for (let i = 0; i < this.ELEMENTS; ++i) {
targetArray[offset + i] = this[i];
fromArray(array, offset = 0) {
for (let i = 0; i < this.ELEMENTS; ++i) {
this[i] = array[i + offset];
}
return this.check();
}
return targetArray;
}
toObject(targetObject) {
return targetObject;
}
from(arrayOrObject) {
return Array.isArray(arrayOrObject) ? this.copy(arrayOrObject) : this.fromObject(arrayOrObject);
}
to(arrayOrObject) {
if (arrayOrObject === this) {
return this;
toArray(targetArray = [], offset = 0) {
for (let i = 0; i < this.ELEMENTS; ++i) {
targetArray[offset + i] = this[i];
}
return targetArray;
}
return isArray(arrayOrObject) ? this.toArray(arrayOrObject) : this.toObject(arrayOrObject);
}
toTarget(target) {
return target ? this.to(target) : this;
}
toFloat32Array() {
return new Float32Array(this);
}
toString() {
return this.formatString(config);
}
formatString(opts) {
let string = '';
for (let i = 0; i < this.ELEMENTS; ++i) {
string += (i > 0 ? ', ' : '') + formatValue(this[i], opts);
toObject(targetObject) {
return targetObject;
}
return "".concat(opts.printTypes ? this.constructor.name : '', "[").concat(string, "]");
}
equals(array) {
if (!array || this.length !== array.length) {
return false;
from(arrayOrObject) {
return Array.isArray(arrayOrObject)
? this.copy(arrayOrObject)
: // @ts-ignore
this.fromObject(arrayOrObject);
}
for (let i = 0; i < this.ELEMENTS; ++i) {
if (!equals(this[i], array[i])) {
return false;
}
to(arrayOrObject) {
// @ts-ignore
if (arrayOrObject === this) {
return this;
}
// @ts-expect-error TS2339: Property 'toObject' does not exist on type 'MathArray'.
return isArray(arrayOrObject) ? this.toArray(arrayOrObject) : this.toObject(arrayOrObject);
}
return true;
}
exactEquals(array) {
if (!array || this.length !== array.length) {
return false;
toTarget(target) {
return target ? this.to(target) : this;
}
for (let i = 0; i < this.ELEMENTS; ++i) {
if (this[i] !== array[i]) {
return false;
}
/** @deprecated */
toFloat32Array() {
return new Float32Array(this);
}
return true;
}
negate() {
for (let i = 0; i < this.ELEMENTS; ++i) {
this[i] = -this[i];
toString() {
return this.formatString(config);
}
return this.check();
}
lerp(a, b, t) {
if (t === undefined) {
return this.lerp(this, a, b);
/** Formats string according to options */
formatString(opts) {
let string = '';
for (let i = 0; i < this.ELEMENTS; ++i) {
string += (i > 0 ? ', ' : '') + formatValue(this[i], opts);
}
return `${opts.printTypes ? this.constructor.name : ''}[${string}]`;
}
for (let i = 0; i < this.ELEMENTS; ++i) {
const ai = a[i];
const endValue = typeof b === 'number' ? b : b[i];
this[i] = ai + t * (endValue - ai);
equals(array) {
if (!array || this.length !== array.length) {
return false;
}
for (let i = 0; i < this.ELEMENTS; ++i) {
if (!equals(this[i], array[i])) {
return false;
}
}
return true;
}
return this.check();
}
min(vector) {
for (let i = 0; i < this.ELEMENTS; ++i) {
this[i] = Math.min(vector[i], this[i]);
exactEquals(array) {
if (!array || this.length !== array.length) {
return false;
}
for (let i = 0; i < this.ELEMENTS; ++i) {
if (this[i] !== array[i]) {
return false;
}
}
return true;
}
return this.check();
}
max(vector) {
for (let i = 0; i < this.ELEMENTS; ++i) {
this[i] = Math.max(vector[i], this[i]);
// Modifiers
/** Negates all values in this object */
negate() {
for (let i = 0; i < this.ELEMENTS; ++i) {
this[i] = -this[i];
}
return this.check();
}
return this.check();
}
clamp(minVector, maxVector) {
for (let i = 0; i < this.ELEMENTS; ++i) {
this[i] = Math.min(Math.max(this[i], minVector[i]), maxVector[i]);
lerp(a, b, t) {
if (t === undefined) {
return this.lerp(this, a, b);
}
for (let i = 0; i < this.ELEMENTS; ++i) {
const ai = a[i];
const endValue = typeof b === 'number' ? b : b[i];
this[i] = ai + t * (endValue - ai);
}
return this.check();
}
return this.check();
}
add(...vectors) {
for (const vector of vectors) {
for (let i = 0; i < this.ELEMENTS; ++i) {
this[i] += vector[i];
}
/** Minimal */
min(vector) {
for (let i = 0; i < this.ELEMENTS; ++i) {
this[i] = Math.min(vector[i], this[i]);
}
return this.check();
}
return this.check();
}
subtract(...vectors) {
for (const vector of vectors) {
for (let i = 0; i < this.ELEMENTS; ++i) {
this[i] -= vector[i];
}
/** Maximal */
max(vector) {
for (let i = 0; i < this.ELEMENTS; ++i) {
this[i] = Math.max(vector[i], this[i]);
}
return this.check();
}
return this.check();
}
scale(scale) {
if (typeof scale === 'number') {
for (let i = 0; i < this.ELEMENTS; ++i) {
this[i] *= scale;
}
} else {
for (let i = 0; i < this.ELEMENTS && i < scale.length; ++i) {
this[i] *= scale[i];
}
clamp(minVector, maxVector) {
for (let i = 0; i < this.ELEMENTS; ++i) {
this[i] = Math.min(Math.max(this[i], minVector[i]), maxVector[i]);
}
return this.check();
}
return this.check();
}
multiplyByScalar(scalar) {
for (let i = 0; i < this.ELEMENTS; ++i) {
this[i] *= scalar;
add(...vectors) {
for (const vector of vectors) {
for (let i = 0; i < this.ELEMENTS; ++i) {
this[i] += vector[i];
}
}
return this.check();
}
return this.check();
}
check() {
if (config.debug && !this.validate()) {
throw new Error("math.gl: ".concat(this.constructor.name, " some fields set to invalid numbers'"));
subtract(...vectors) {
for (const vector of vectors) {
for (let i = 0; i < this.ELEMENTS; ++i) {
this[i] -= vector[i];
}
}
return this.check();
}
return this;
}
validate() {
let valid = this.length === this.ELEMENTS;
for (let i = 0; i < this.ELEMENTS; ++i) {
valid = valid && Number.isFinite(this[i]);
scale(scale) {
if (typeof scale === 'number') {
for (let i = 0; i < this.ELEMENTS; ++i) {
this[i] *= scale;
}
}
else {
for (let i = 0; i < this.ELEMENTS && i < scale.length; ++i) {
this[i] *= scale[i];
}
}
return this.check();
}
return valid;
}
sub(a) {
return this.subtract(a);
}
setScalar(a) {
for (let i = 0; i < this.ELEMENTS; ++i) {
this[i] = a;
/**
* Multiplies all elements by `scale`
* Note: `Matrix4.multiplyByScalar` only scales its 3x3 "minor"
*/
multiplyByScalar(scalar) {
for (let i = 0; i < this.ELEMENTS; ++i) {
this[i] *= scalar;
}
return this.check();
}
return this.check();
}
addScalar(a) {
for (let i = 0; i < this.ELEMENTS; ++i) {
this[i] += a;
// Debug checks
/** Throws an error if array length is incorrect or contains illegal values */
check() {
if (config.debug && !this.validate()) {
throw new Error(`math.gl: ${this.constructor.name} some fields set to invalid numbers'`);
}
return this;
}
return this.check();
}
subScalar(a) {
return this.addScalar(-a);
}
multiplyScalar(scalar) {
for (let i = 0; i < this.ELEMENTS; ++i) {
this[i] *= scalar;
/** Returns false if the array length is incorrect or contains illegal values */
validate() {
let valid = this.length === this.ELEMENTS;
for (let i = 0; i < this.ELEMENTS; ++i) {
valid = valid && Number.isFinite(this[i]);
}
return valid;
}
return this.check();
}
divideScalar(a) {
return this.multiplyByScalar(1 / a);
}
clampScalar(min, max) {
for (let i = 0; i < this.ELEMENTS; ++i) {
this[i] = Math.min(Math.max(this[i], min), max);
// three.js compatibility
/** @deprecated */
sub(a) {
return this.subtract(a);
}
return this.check();
}
get elements() {
return this;
}
/** @deprecated */
setScalar(a) {
for (let i = 0; i < this.ELEMENTS; ++i) {
this[i] = a;
}
return this.check();
}
/** @deprecated */
addScalar(a) {
for (let i = 0; i < this.ELEMENTS; ++i) {
this[i] += a;
}
return this.check();
}
/** @deprecated */
subScalar(a) {
return this.addScalar(-a);
}
/** @deprecated */
multiplyScalar(scalar) {
// Multiplies all elements
// `Matrix4.scale` only scales its 3x3 "minor"
for (let i = 0; i < this.ELEMENTS; ++i) {
this[i] *= scalar;
}
return this.check();
}
/** @deprecated */
divideScalar(a) {
return this.multiplyByScalar(1 / a);
}
/** @deprecated */
clampScalar(min, max) {
for (let i = 0; i < this.ELEMENTS; ++i) {
this[i] = Math.min(Math.max(this[i], min), max);
}
return this.check();
}
/** @deprecated */
get elements() {
return this;
}
}
//# sourceMappingURL=math-array.js.map
import { NumericArray } from '@math.gl/types';
import { MathArray } from './math-array';
import { MathArray } from "./math-array.js";
/** Base class for matrices */

@@ -14,2 +14,1 @@ export declare abstract class Matrix extends MathArray {

}
//# sourceMappingURL=matrix.d.ts.map
import { MathArray } from "./math-array.js";
import { checkNumber } from "../../lib/validators.js";
import { config } from "../../lib/common.js";
/** Base class for matrices */
export class Matrix extends MathArray {
toString() {
let string = '[';
if (config.printRowMajor) {
string += 'row-major:';
for (let row = 0; row < this.RANK; ++row) {
for (let col = 0; col < this.RANK; ++col) {
string += " ".concat(this[col * this.RANK + row]);
// fromObject(object) {
// const array = object.elements;
// return this.fromRowMajor(array);
// }
// toObject(object) {
// const array = object.elements;
// this.toRowMajor(array);
// return object;
// }
// TODO better override formatString?
toString() {
let string = '[';
if (config.printRowMajor) {
string += 'row-major:';
for (let row = 0; row < this.RANK; ++row) {
for (let col = 0; col < this.RANK; ++col) {
string += ` ${this[col * this.RANK + row]}`;
}
}
}
}
} else {
string += 'column-major:';
for (let i = 0; i < this.ELEMENTS; ++i) {
string += " ".concat(this[i]);
}
else {
string += 'column-major:';
for (let i = 0; i < this.ELEMENTS; ++i) {
string += ` ${this[i]}`;
}
}
string += ']';
return string;
}
string += ']';
return string;
}
getElementIndex(row, col) {
return col * this.RANK + row;
}
getElement(row, col) {
return this[col * this.RANK + row];
}
setElement(row, col, value) {
this[col * this.RANK + row] = checkNumber(value);
return this;
}
getColumn(columnIndex, result = new Array(this.RANK).fill(-0)) {
const firstIndex = columnIndex * this.RANK;
for (let i = 0; i < this.RANK; ++i) {
result[i] = this[firstIndex + i];
getElementIndex(row, col) {
return col * this.RANK + row;
}
return result;
}
setColumn(columnIndex, columnVector) {
const firstIndex = columnIndex * this.RANK;
for (let i = 0; i < this.RANK; ++i) {
this[firstIndex + i] = columnVector[i];
// By default assumes row major indices
getElement(row, col) {
return this[col * this.RANK + row];
}
return this;
}
// By default assumes row major indices
setElement(row, col, value) {
this[col * this.RANK + row] = checkNumber(value);
return this;
}
getColumn(columnIndex, result = new Array(this.RANK).fill(-0)) {
const firstIndex = columnIndex * this.RANK;
for (let i = 0; i < this.RANK; ++i) {
result[i] = this[firstIndex + i];
}
return result;
}
setColumn(columnIndex, columnVector) {
const firstIndex = columnIndex * this.RANK;
for (let i = 0; i < this.RANK; ++i) {
this[firstIndex + i] = columnVector[i];
}
return this;
}
}
//# sourceMappingURL=matrix.js.map
import { NumericArray } from '@math.gl/types';
import { MathArray } from './math-array';
import { MathArray } from "./math-array.js";
/** Base class for vectors with at least 2 elements */

@@ -44,2 +44,1 @@ export declare abstract class Vector extends MathArray {

}
//# sourceMappingURL=vector.d.ts.map
import { MathArray } from "./math-array.js";
import { checkNumber } from "../../lib/validators.js";
import { assert } from "../../lib/assert.js";
/** Base class for vectors with at least 2 elements */
export class Vector extends MathArray {
get x() {
return this[0];
}
set x(value) {
this[0] = checkNumber(value);
}
get y() {
return this[1];
}
set y(value) {
this[1] = checkNumber(value);
}
len() {
return Math.sqrt(this.lengthSquared());
}
magnitude() {
return this.len();
}
lengthSquared() {
let length = 0;
for (let i = 0; i < this.ELEMENTS; ++i) {
length += this[i] * this[i];
// ACCESSORS
get x() {
return this[0];
}
return length;
}
magnitudeSquared() {
return this.lengthSquared();
}
distance(mathArray) {
return Math.sqrt(this.distanceSquared(mathArray));
}
distanceSquared(mathArray) {
let length = 0;
for (let i = 0; i < this.ELEMENTS; ++i) {
const dist = this[i] - mathArray[i];
length += dist * dist;
set x(value) {
this[0] = checkNumber(value);
}
return checkNumber(length);
}
dot(mathArray) {
let product = 0;
for (let i = 0; i < this.ELEMENTS; ++i) {
product += this[i] * mathArray[i];
get y() {
return this[1];
}
return checkNumber(product);
}
normalize() {
const length = this.magnitude();
if (length !== 0) {
for (let i = 0; i < this.ELEMENTS; ++i) {
this[i] /= length;
}
set y(value) {
this[1] = checkNumber(value);
}
return this.check();
}
multiply(...vectors) {
for (const vector of vectors) {
for (let i = 0; i < this.ELEMENTS; ++i) {
this[i] *= vector[i];
}
/**
* Returns the length of the vector from the origin to the point described by this vector
*
* @note `length` is a reserved word for Arrays, so `v.length()` will return number of elements
* Instead we provide `len` and `magnitude`
*/
len() {
return Math.sqrt(this.lengthSquared());
}
return this.check();
}
divide(...vectors) {
for (const vector of vectors) {
for (let i = 0; i < this.ELEMENTS; ++i) {
this[i] /= vector[i];
}
/**
* Returns the length of the vector from the origin to the point described by this vector
*/
magnitude() {
return this.len();
}
return this.check();
}
lengthSq() {
return this.lengthSquared();
}
distanceTo(vector) {
return this.distance(vector);
}
distanceToSquared(vector) {
return this.distanceSquared(vector);
}
getComponent(i) {
assert(i >= 0 && i < this.ELEMENTS, 'index is out of range');
return checkNumber(this[i]);
}
setComponent(i, value) {
assert(i >= 0 && i < this.ELEMENTS, 'index is out of range');
this[i] = value;
return this.check();
}
addVectors(a, b) {
return this.copy(a).add(b);
}
subVectors(a, b) {
return this.copy(a).subtract(b);
}
multiplyVectors(a, b) {
return this.copy(a).multiply(b);
}
addScaledVector(a, b) {
return this.add(new this.constructor(a).multiplyScalar(b));
}
/**
* Returns the squared length of the vector from the origin to the point described by this vector
*/
lengthSquared() {
let length = 0;
for (let i = 0; i < this.ELEMENTS; ++i) {
length += this[i] * this[i];
}
return length;
}
/**
* Returns the squared length of the vector from the origin to the point described by this vector
*/
magnitudeSquared() {
return this.lengthSquared();
}
distance(mathArray) {
return Math.sqrt(this.distanceSquared(mathArray));
}
distanceSquared(mathArray) {
let length = 0;
for (let i = 0; i < this.ELEMENTS; ++i) {
const dist = this[i] - mathArray[i];
length += dist * dist;
}
return checkNumber(length);
}
dot(mathArray) {
let product = 0;
for (let i = 0; i < this.ELEMENTS; ++i) {
product += this[i] * mathArray[i];
}
return checkNumber(product);
}
// MODIFIERS
normalize() {
const length = this.magnitude();
if (length !== 0) {
for (let i = 0; i < this.ELEMENTS; ++i) {
this[i] /= length;
}
}
return this.check();
}
multiply(...vectors) {
for (const vector of vectors) {
for (let i = 0; i < this.ELEMENTS; ++i) {
this[i] *= vector[i];
}
}
return this.check();
}
divide(...vectors) {
for (const vector of vectors) {
for (let i = 0; i < this.ELEMENTS; ++i) {
this[i] /= vector[i];
}
}
return this.check();
}
// THREE.js compatibility
lengthSq() {
return this.lengthSquared();
}
distanceTo(vector) {
return this.distance(vector);
}
distanceToSquared(vector) {
return this.distanceSquared(vector);
}
getComponent(i) {
assert(i >= 0 && i < this.ELEMENTS, 'index is out of range');
return checkNumber(this[i]);
}
setComponent(i, value) {
assert(i >= 0 && i < this.ELEMENTS, 'index is out of range');
this[i] = value;
return this.check();
}
addVectors(a, b) {
return this.copy(a).add(b);
}
subVectors(a, b) {
return this.copy(a).subtract(b);
}
multiplyVectors(a, b) {
return this.copy(a).multiply(b);
}
addScaledVector(a, b) {
// @ts-expect-error error TS2351: Cannot use 'new' with an expression whose type lacks a call or construct signature.
return this.add(new this.constructor(a).multiplyScalar(b));
}
}
//# sourceMappingURL=vector.js.map

@@ -1,3 +0,3 @@

import { MathArray } from './base/math-array';
import { Quaternion } from './quaternion';
import { MathArray } from "./base/math-array.js";
import { Quaternion } from "./quaternion.js";
import { NumericArray } from '@math.gl/types';

@@ -77,2 +77,1 @@ declare enum RotationOrder {

export {};
//# sourceMappingURL=euler.d.ts.map

@@ -0,1 +1,3 @@

// Copyright (c) 2017 Uber Technologies, Inc.
// MIT License
import { MathArray } from "./base/math-array.js";

@@ -5,554 +7,481 @@ import { Quaternion } from "./quaternion.js";

import { checkNumber } from "../lib/validators.js";
// Internal constants
const ERR_UNKNOWN_ORDER = 'Unknown Euler angle order';
const ALMOST_ONE = 0.99999;
var RotationOrder;
(function (RotationOrder) {
RotationOrder[RotationOrder["ZYX"] = 0] = "ZYX";
RotationOrder[RotationOrder["YXZ"] = 1] = "YXZ";
RotationOrder[RotationOrder["XZY"] = 2] = "XZY";
RotationOrder[RotationOrder["ZXY"] = 3] = "ZXY";
RotationOrder[RotationOrder["YZX"] = 4] = "YZX";
RotationOrder[RotationOrder["XYZ"] = 5] = "XYZ";
RotationOrder[RotationOrder["ZYX"] = 0] = "ZYX";
RotationOrder[RotationOrder["YXZ"] = 1] = "YXZ";
RotationOrder[RotationOrder["XZY"] = 2] = "XZY";
RotationOrder[RotationOrder["ZXY"] = 3] = "ZXY";
RotationOrder[RotationOrder["YZX"] = 4] = "YZX";
RotationOrder[RotationOrder["XYZ"] = 5] = "XYZ";
})(RotationOrder || (RotationOrder = {}));
export class Euler extends MathArray {
static get ZYX() {
return RotationOrder.ZYX;
}
static get YXZ() {
return RotationOrder.YXZ;
}
static get XZY() {
return RotationOrder.XZY;
}
static get ZXY() {
return RotationOrder.ZXY;
}
static get YZX() {
return RotationOrder.YZX;
}
static get XYZ() {
return RotationOrder.XYZ;
}
static get RollPitchYaw() {
return RotationOrder.ZYX;
}
static get DefaultOrder() {
return RotationOrder.ZYX;
}
static get RotationOrders() {
return RotationOrder;
}
static rotationOrder(order) {
return RotationOrder[order];
}
get ELEMENTS() {
return 4;
}
constructor(x = 0, y = 0, z = 0, order = Euler.DefaultOrder) {
super(-0, -0, -0, -0);
if (arguments.length > 0 && Array.isArray(arguments[0])) {
this.fromVector3(...arguments);
} else {
this.set(x, y, z, order);
// Constants
static get ZYX() {
return RotationOrder.ZYX;
}
}
fromQuaternion(quaternion) {
const [x, y, z, w] = quaternion;
const ysqr = y * y;
const t0 = -2 * (ysqr + z * z) + 1;
const t1 = +2 * (x * y + w * z);
let t2 = -2 * (x * z - w * y);
const t3 = +2 * (y * z + w * x);
const t4 = -2 * (x * x + ysqr) + 1;
t2 = t2 > 1 ? 1 : t2;
t2 = t2 < -1 ? -1 : t2;
const roll = Math.atan2(t3, t4);
const pitch = Math.asin(t2);
const yaw = Math.atan2(t1, t0);
return this.set(roll, pitch, yaw, Euler.RollPitchYaw);
}
fromObject(object) {
throw new Error('not implemented');
}
copy(array) {
this[0] = array[0];
this[1] = array[1];
this[2] = array[2];
this[3] = Number.isFinite(array[3]) || this.order;
return this.check();
}
set(x = 0, y = 0, z = 0, order) {
this[0] = x;
this[1] = y;
this[2] = z;
this[3] = Number.isFinite(order) ? order : this[3];
return this.check();
}
validate() {
return validateOrder(this[3]) && Number.isFinite(this[0]) && Number.isFinite(this[1]) && Number.isFinite(this[2]);
}
toArray(array = [], offset = 0) {
array[offset] = this[0];
array[offset + 1] = this[1];
array[offset + 2] = this[2];
return array;
}
toArray4(array = [], offset = 0) {
array[offset] = this[0];
array[offset + 1] = this[1];
array[offset + 2] = this[2];
array[offset + 3] = this[3];
return array;
}
toVector3(result = [-0, -0, -0]) {
result[0] = this[0];
result[1] = this[1];
result[2] = this[2];
return result;
}
get x() {
return this[0];
}
set x(value) {
this[0] = checkNumber(value);
}
get y() {
return this[1];
}
set y(value) {
this[1] = checkNumber(value);
}
get z() {
return this[2];
}
set z(value) {
this[2] = checkNumber(value);
}
get alpha() {
return this[0];
}
set alpha(value) {
this[0] = checkNumber(value);
}
get beta() {
return this[1];
}
set beta(value) {
this[1] = checkNumber(value);
}
get gamma() {
return this[2];
}
set gamma(value) {
this[2] = checkNumber(value);
}
get phi() {
return this[0];
}
set phi(value) {
this[0] = checkNumber(value);
}
get theta() {
return this[1];
}
set theta(value) {
this[1] = checkNumber(value);
}
get psi() {
return this[2];
}
set psi(value) {
this[2] = checkNumber(value);
}
get roll() {
return this[0];
}
set roll(value) {
this[0] = checkNumber(value);
}
get pitch() {
return this[1];
}
set pitch(value) {
this[1] = checkNumber(value);
}
get yaw() {
return this[2];
}
set yaw(value) {
this[2] = checkNumber(value);
}
get order() {
return this[3];
}
set order(value) {
this[3] = checkOrder(value);
}
fromVector3(v, order) {
return this.set(v[0], v[1], v[2], Number.isFinite(order) ? order : this[3]);
}
fromArray(array, offset = 0) {
this[0] = array[0 + offset];
this[1] = array[1 + offset];
this[2] = array[2 + offset];
if (array[3] !== undefined) {
this[3] = array[3];
static get YXZ() {
return RotationOrder.YXZ;
}
return this.check();
}
fromRollPitchYaw(roll, pitch, yaw) {
return this.set(roll, pitch, yaw, RotationOrder.ZYX);
}
fromRotationMatrix(m, order = Euler.DefaultOrder) {
this._fromRotationMatrix(m, order);
return this.check();
}
getRotationMatrix(m) {
return this._getRotationMatrix(m);
}
getQuaternion() {
const q = new Quaternion();
switch (this[3]) {
case RotationOrder.XYZ:
return q.rotateX(this[0]).rotateY(this[1]).rotateZ(this[2]);
case RotationOrder.YXZ:
return q.rotateY(this[0]).rotateX(this[1]).rotateZ(this[2]);
case RotationOrder.ZXY:
return q.rotateZ(this[0]).rotateX(this[1]).rotateY(this[2]);
case RotationOrder.ZYX:
return q.rotateZ(this[0]).rotateY(this[1]).rotateX(this[2]);
case RotationOrder.YZX:
return q.rotateY(this[0]).rotateZ(this[1]).rotateX(this[2]);
case RotationOrder.XZY:
return q.rotateX(this[0]).rotateZ(this[1]).rotateY(this[2]);
default:
throw new Error(ERR_UNKNOWN_ORDER);
static get XZY() {
return RotationOrder.XZY;
}
}
_fromRotationMatrix(m, order = Euler.DefaultOrder) {
const m11 = m[0],
m12 = m[4],
m13 = m[8];
const m21 = m[1],
m22 = m[5],
m23 = m[9];
const m31 = m[2],
m32 = m[6],
m33 = m[10];
order = order || this[3];
switch (order) {
case Euler.XYZ:
this[1] = Math.asin(clamp(m13, -1, 1));
if (Math.abs(m13) < ALMOST_ONE) {
this[0] = Math.atan2(-m23, m33);
this[2] = Math.atan2(-m12, m11);
} else {
this[0] = Math.atan2(m32, m22);
this[2] = 0;
static get ZXY() {
return RotationOrder.ZXY;
}
static get YZX() {
return RotationOrder.YZX;
}
static get XYZ() {
return RotationOrder.XYZ;
}
static get RollPitchYaw() {
return RotationOrder.ZYX;
}
static get DefaultOrder() {
return RotationOrder.ZYX;
}
static get RotationOrders() {
return RotationOrder;
}
static rotationOrder(order) {
return RotationOrder[order];
}
get ELEMENTS() {
return 4;
}
/**
* @class
* @param {Number | Number[]} x
* @param {Number=} [y]
* @param {Number=} [z]
* @param {Number=} [order]
*/
constructor(x = 0, y = 0, z = 0, order = Euler.DefaultOrder) {
// PERF NOTE: initialize elements as double precision numbers
super(-0, -0, -0, -0);
// eslint-disable-next-line prefer-rest-params
if (arguments.length > 0 && Array.isArray(arguments[0])) {
// eslint-disable-next-line prefer-rest-params
// @ts-expect-error
this.fromVector3(...arguments);
}
break;
case Euler.YXZ:
this[0] = Math.asin(-clamp(m23, -1, 1));
if (Math.abs(m23) < ALMOST_ONE) {
this[1] = Math.atan2(m13, m33);
this[2] = Math.atan2(m21, m22);
} else {
this[1] = Math.atan2(-m31, m11);
this[2] = 0;
else {
this.set(x, y, z, order);
}
break;
case Euler.ZXY:
this[0] = Math.asin(clamp(m32, -1, 1));
if (Math.abs(m32) < ALMOST_ONE) {
this[1] = Math.atan2(-m31, m33);
this[2] = Math.atan2(-m12, m22);
} else {
this[1] = 0;
this[2] = Math.atan2(m21, m11);
}
fromQuaternion(quaternion) {
const [x, y, z, w] = quaternion;
const ysqr = y * y;
const t0 = -2 * (ysqr + z * z) + 1;
const t1 = +2 * (x * y + w * z);
let t2 = -2 * (x * z - w * y);
const t3 = +2 * (y * z + w * x);
const t4 = -2 * (x * x + ysqr) + 1;
t2 = t2 > 1 ? 1 : t2;
t2 = t2 < -1 ? -1 : t2;
const roll = Math.atan2(t3, t4);
const pitch = Math.asin(t2);
const yaw = Math.atan2(t1, t0);
return this.set(roll, pitch, yaw, Euler.RollPitchYaw);
}
// eslint-disable-next-line @typescript-eslint/no-unused-vars
fromObject(object) {
throw new Error('not implemented');
// return this.set(object.x, object.y, object.z, object.order);
}
// fromQuaternion(q, order) {
// this._fromRotationMat[-0, -0, -0, -0, -0, -0, -0, -0, -0, -0, -0, -0, -0, -0, -0, -0];
// return this.check();
// }
// If copied array does contain fourth element, preserves currently set order
copy(array) {
this[0] = array[0];
this[1] = array[1];
this[2] = array[2];
// @ts-expect-error
this[3] = Number.isFinite(array[3]) || this.order;
return this.check();
}
// Sets the three angles, and optionally sets the rotation order
// If order is not specified, preserves currently set order
set(x = 0, y = 0, z = 0, order) {
this[0] = x;
this[1] = y;
this[2] = z;
this[3] = Number.isFinite(order) ? order : this[3];
return this.check();
}
validate() {
return (validateOrder(this[3]) &&
Number.isFinite(this[0]) &&
Number.isFinite(this[1]) &&
Number.isFinite(this[2]));
}
// Does not copy the orientation element
toArray(array = [], offset = 0) {
array[offset] = this[0];
array[offset + 1] = this[1];
array[offset + 2] = this[2];
return array;
}
// Copies the orientation element
toArray4(array = [], offset = 0) {
array[offset] = this[0];
array[offset + 1] = this[1];
array[offset + 2] = this[2];
array[offset + 3] = this[3];
return array;
}
toVector3(result = [-0, -0, -0]) {
result[0] = this[0];
result[1] = this[1];
result[2] = this[2];
return result;
}
/* eslint-disable no-multi-spaces, brace-style, no-return-assign */
// x, y, z angle notation (note: only corresponds to axis in XYZ orientation)
get x() {
return this[0];
}
set x(value) {
this[0] = checkNumber(value);
}
get y() {
return this[1];
}
set y(value) {
this[1] = checkNumber(value);
}
get z() {
return this[2];
}
set z(value) {
this[2] = checkNumber(value);
}
// alpha, beta, gamma angle notation
get alpha() {
return this[0];
}
set alpha(value) {
this[0] = checkNumber(value);
}
get beta() {
return this[1];
}
set beta(value) {
this[1] = checkNumber(value);
}
get gamma() {
return this[2];
}
set gamma(value) {
this[2] = checkNumber(value);
}
// phi, theta, psi angle notation
get phi() {
return this[0];
}
set phi(value) {
this[0] = checkNumber(value);
}
get theta() {
return this[1];
}
set theta(value) {
this[1] = checkNumber(value);
}
get psi() {
return this[2];
}
set psi(value) {
this[2] = checkNumber(value);
}
// roll, pitch, yaw angle notation
get roll() {
return this[0];
}
set roll(value) {
this[0] = checkNumber(value);
}
get pitch() {
return this[1];
}
set pitch(value) {
this[1] = checkNumber(value);
}
get yaw() {
return this[2];
}
set yaw(value) {
this[2] = checkNumber(value);
}
// rotation order, in all three angle notations
get order() {
return this[3];
}
set order(value) {
this[3] = checkOrder(value);
}
// Constructors
fromVector3(v, order) {
return this.set(v[0], v[1], v[2], Number.isFinite(order) ? order : this[3]);
}
// TODO - with and without 4th element
fromArray(array, offset = 0) {
this[0] = array[0 + offset];
this[1] = array[1 + offset];
this[2] = array[2 + offset];
if (array[3] !== undefined) {
this[3] = array[3];
}
break;
case Euler.ZYX:
this[1] = Math.asin(-clamp(m31, -1, 1));
if (Math.abs(m31) < ALMOST_ONE) {
this[0] = Math.atan2(m32, m33);
this[2] = Math.atan2(m21, m11);
} else {
this[0] = 0;
this[2] = Math.atan2(-m12, m22);
return this.check();
}
// Common ZYX rotation order
fromRollPitchYaw(roll, pitch, yaw) {
return this.set(roll, pitch, yaw, RotationOrder.ZYX);
}
fromRotationMatrix(m, order = Euler.DefaultOrder) {
this._fromRotationMatrix(m, order);
return this.check();
}
// ACCESSORS
getRotationMatrix(m) {
return this._getRotationMatrix(m);
}
// TODO - move to Quaternion
getQuaternion() {
const q = new Quaternion();
switch (this[3]) {
case RotationOrder.XYZ:
return q.rotateX(this[0]).rotateY(this[1]).rotateZ(this[2]);
case RotationOrder.YXZ:
return q.rotateY(this[0]).rotateX(this[1]).rotateZ(this[2]);
case RotationOrder.ZXY:
return q.rotateZ(this[0]).rotateX(this[1]).rotateY(this[2]);
case RotationOrder.ZYX:
return q.rotateZ(this[0]).rotateY(this[1]).rotateX(this[2]);
case RotationOrder.YZX:
return q.rotateY(this[0]).rotateZ(this[1]).rotateX(this[2]);
case RotationOrder.XZY:
return q.rotateX(this[0]).rotateZ(this[1]).rotateY(this[2]);
default:
throw new Error(ERR_UNKNOWN_ORDER);
}
break;
case Euler.YZX:
this[2] = Math.asin(clamp(m21, -1, 1));
if (Math.abs(m21) < ALMOST_ONE) {
this[0] = Math.atan2(-m23, m22);
this[1] = Math.atan2(-m31, m11);
} else {
this[0] = 0;
this[1] = Math.atan2(m13, m33);
}
// INTERNAL METHODS
// Conversion from Euler to rotation matrix and from matrix to Euler
// Adapted from three.js under MIT license
// // WARNING: this discards revolution information -bhouston
// reorder(newOrder) {
// const q = new Quaternion().setFromEuler(this);
// return this.setFromQuaternion(q, newOrder);
/* eslint-disable complexity, max-statements, one-var */
_fromRotationMatrix(m, order = Euler.DefaultOrder) {
// assumes the upper 3x3 of m is a pure rotation matrix (i.e, unscaled)
const m11 = m[0], m12 = m[4], m13 = m[8];
const m21 = m[1], m22 = m[5], m23 = m[9];
const m31 = m[2], m32 = m[6], m33 = m[10];
order = order || this[3];
switch (order) {
case Euler.XYZ:
this[1] = Math.asin(clamp(m13, -1, 1));
if (Math.abs(m13) < ALMOST_ONE) {
this[0] = Math.atan2(-m23, m33);
this[2] = Math.atan2(-m12, m11);
}
else {
this[0] = Math.atan2(m32, m22);
this[2] = 0;
}
break;
case Euler.YXZ:
this[0] = Math.asin(-clamp(m23, -1, 1));
if (Math.abs(m23) < ALMOST_ONE) {
this[1] = Math.atan2(m13, m33);
this[2] = Math.atan2(m21, m22);
}
else {
this[1] = Math.atan2(-m31, m11);
this[2] = 0;
}
break;
case Euler.ZXY:
this[0] = Math.asin(clamp(m32, -1, 1));
if (Math.abs(m32) < ALMOST_ONE) {
this[1] = Math.atan2(-m31, m33);
this[2] = Math.atan2(-m12, m22);
}
else {
this[1] = 0;
this[2] = Math.atan2(m21, m11);
}
break;
case Euler.ZYX:
this[1] = Math.asin(-clamp(m31, -1, 1));
if (Math.abs(m31) < ALMOST_ONE) {
this[0] = Math.atan2(m32, m33);
this[2] = Math.atan2(m21, m11);
}
else {
this[0] = 0;
this[2] = Math.atan2(-m12, m22);
}
break;
case Euler.YZX:
this[2] = Math.asin(clamp(m21, -1, 1));
if (Math.abs(m21) < ALMOST_ONE) {
this[0] = Math.atan2(-m23, m22);
this[1] = Math.atan2(-m31, m11);
}
else {
this[0] = 0;
this[1] = Math.atan2(m13, m33);
}
break;
case Euler.XZY:
this[2] = Math.asin(-clamp(m12, -1, 1));
if (Math.abs(m12) < ALMOST_ONE) {
this[0] = Math.atan2(m32, m22);
this[1] = Math.atan2(m13, m11);
}
else {
this[0] = Math.atan2(-m23, m33);
this[1] = 0;
}
break;
default:
throw new Error(ERR_UNKNOWN_ORDER);
}
break;
case Euler.XZY:
this[2] = Math.asin(-clamp(m12, -1, 1));
if (Math.abs(m12) < ALMOST_ONE) {
this[0] = Math.atan2(m32, m22);
this[1] = Math.atan2(m13, m11);
} else {
this[0] = Math.atan2(-m23, m33);
this[1] = 0;
}
break;
default:
throw new Error(ERR_UNKNOWN_ORDER);
this[3] = order;
return this;
}
this[3] = order;
return this;
}
_getRotationMatrix(result) {
const te = result || [-0, -0, -0, -0, -0, -0, -0, -0, -0, -0, -0, -0, -0, -0, -0, -0];
const x = this.x,
y = this.y,
z = this.z;
const a = Math.cos(x);
const c = Math.cos(y);
const e = Math.cos(z);
const b = Math.sin(x);
const d = Math.sin(y);
const f = Math.sin(z);
switch (this[3]) {
case Euler.XYZ:
{
const ae = a * e,
af = a * f,
be = b * e,
bf = b * f;
te[0] = c * e;
te[4] = -c * f;
te[8] = d;
te[1] = af + be * d;
te[5] = ae - bf * d;
te[9] = -b * c;
te[2] = bf - ae * d;
te[6] = be + af * d;
te[10] = a * c;
break;
_getRotationMatrix(result) {
const te = result || [-0, -0, -0, -0, -0, -0, -0, -0, -0, -0, -0, -0, -0, -0, -0, -0];
const x = this.x, y = this.y, z = this.z;
const a = Math.cos(x);
const c = Math.cos(y);
const e = Math.cos(z);
const b = Math.sin(x);
const d = Math.sin(y);
const f = Math.sin(z);
switch (this[3]) {
case Euler.XYZ: {
const ae = a * e, af = a * f, be = b * e, bf = b * f;
te[0] = c * e;
te[4] = -c * f;
te[8] = d;
te[1] = af + be * d;
te[5] = ae - bf * d;
te[9] = -b * c;
te[2] = bf - ae * d;
te[6] = be + af * d;
te[10] = a * c;
break;
}
case Euler.YXZ: {
const ce = c * e, cf = c * f, de = d * e, df = d * f;
te[0] = ce + df * b;
te[4] = de * b - cf;
te[8] = a * d;
te[1] = a * f;
te[5] = a * e;
te[9] = -b;
te[2] = cf * b - de;
te[6] = df + ce * b;
te[10] = a * c;
break;
}
case Euler.ZXY: {
const ce = c * e, cf = c * f, de = d * e, df = d * f;
te[0] = ce - df * b;
te[4] = -a * f;
te[8] = de + cf * b;
te[1] = cf + de * b;
te[5] = a * e;
te[9] = df - ce * b;
te[2] = -a * d;
te[6] = b;
te[10] = a * c;
break;
}
case Euler.ZYX: {
const ae = a * e, af = a * f, be = b * e, bf = b * f;
te[0] = c * e;
te[4] = be * d - af;
te[8] = ae * d + bf;
te[1] = c * f;
te[5] = bf * d + ae;
te[9] = af * d - be;
te[2] = -d;
te[6] = b * c;
te[10] = a * c;
break;
}
case Euler.YZX: {
const ac = a * c, ad = a * d, bc = b * c, bd = b * d;
te[0] = c * e;
te[4] = bd - ac * f;
te[8] = bc * f + ad;
te[1] = f;
te[5] = a * e;
te[9] = -b * e;
te[2] = -d * e;
te[6] = ad * f + bc;
te[10] = ac - bd * f;
break;
}
case Euler.XZY: {
const ac = a * c, ad = a * d, bc = b * c, bd = b * d;
te[0] = c * e;
te[4] = -f;
te[8] = d * e;
te[1] = ac * f + bd;
te[5] = a * e;
te[9] = ad * f - bc;
te[2] = bc * f - ad;
te[6] = b * e;
te[10] = bd * f + ac;
break;
}
default:
throw new Error(ERR_UNKNOWN_ORDER);
}
case Euler.YXZ:
{
const ce = c * e,
cf = c * f,
de = d * e,
df = d * f;
te[0] = ce + df * b;
te[4] = de * b - cf;
te[8] = a * d;
te[1] = a * f;
te[5] = a * e;
te[9] = -b;
te[2] = cf * b - de;
te[6] = df + ce * b;
te[10] = a * c;
break;
}
case Euler.ZXY:
{
const ce = c * e,
cf = c * f,
de = d * e,
df = d * f;
te[0] = ce - df * b;
te[4] = -a * f;
te[8] = de + cf * b;
te[1] = cf + de * b;
te[5] = a * e;
te[9] = df - ce * b;
te[2] = -a * d;
te[6] = b;
te[10] = a * c;
break;
}
case Euler.ZYX:
{
const ae = a * e,
af = a * f,
be = b * e,
bf = b * f;
te[0] = c * e;
te[4] = be * d - af;
te[8] = ae * d + bf;
te[1] = c * f;
te[5] = bf * d + ae;
te[9] = af * d - be;
te[2] = -d;
te[6] = b * c;
te[10] = a * c;
break;
}
case Euler.YZX:
{
const ac = a * c,
ad = a * d,
bc = b * c,
bd = b * d;
te[0] = c * e;
te[4] = bd - ac * f;
te[8] = bc * f + ad;
te[1] = f;
te[5] = a * e;
te[9] = -b * e;
te[2] = -d * e;
te[6] = ad * f + bc;
te[10] = ac - bd * f;
break;
}
case Euler.XZY:
{
const ac = a * c,
ad = a * d,
bc = b * c,
bd = b * d;
te[0] = c * e;
te[4] = -f;
te[8] = d * e;
te[1] = ac * f + bd;
te[5] = a * e;
te[9] = ad * f - bc;
te[2] = bc * f - ad;
te[6] = b * e;
te[10] = bd * f + ac;
break;
}
default:
throw new Error(ERR_UNKNOWN_ORDER);
// last column
te[3] = 0;
te[7] = 0;
te[11] = 0;
// bottom row
te[12] = 0;
te[13] = 0;
te[14] = 0;
te[15] = 1;
return te;
}
te[3] = 0;
te[7] = 0;
te[11] = 0;
te[12] = 0;
te[13] = 0;
te[14] = 0;
te[15] = 1;
return te;
}
toQuaternion() {
const cy = Math.cos(this.yaw * 0.5);
const sy = Math.sin(this.yaw * 0.5);
const cr = Math.cos(this.roll * 0.5);
const sr = Math.sin(this.roll * 0.5);
const cp = Math.cos(this.pitch * 0.5);
const sp = Math.sin(this.pitch * 0.5);
const w = cy * cr * cp + sy * sr * sp;
const x = cy * sr * cp - sy * cr * sp;
const y = cy * cr * sp + sy * sr * cp;
const z = sy * cr * cp - cy * sr * sp;
return new Quaternion(x, y, z, w);
}
toQuaternion() {
// Abbreviations for the various angular functions
const cy = Math.cos(this.yaw * 0.5);
const sy = Math.sin(this.yaw * 0.5);
const cr = Math.cos(this.roll * 0.5);
const sr = Math.sin(this.roll * 0.5);
const cp = Math.cos(this.pitch * 0.5);
const sp = Math.sin(this.pitch * 0.5);
const w = cy * cr * cp + sy * sr * sp;
const x = cy * sr * cp - sy * cr * sp;
const y = cy * cr * sp + sy * sr * cp;
const z = sy * cr * cp - cy * sr * sp;
return new Quaternion(x, y, z, w);
}
}
// HELPER FUNCTIONS
function validateOrder(value) {
return value >= 0 && value < 6;
return value >= 0 && value < 6;
}
function checkOrder(value) {
if (value < 0 && value >= 6) {
throw new Error(ERR_UNKNOWN_ORDER);
}
return value;
if (value < 0 && value >= 6) {
throw new Error(ERR_UNKNOWN_ORDER);
}
return value;
}
//# sourceMappingURL=euler.js.map
import { NumericArray } from '@math.gl/types';
import { Matrix } from './base/matrix';
import { Matrix } from "./base/matrix.js";
declare enum INDICES {

@@ -51,3 +51,3 @@ COL0ROW0 = 0,

multiplyRight(a: NumericArray): this;
rotate(radians: number): NumericArray;
rotate(radians: number): this;
scale(factor: NumericArray | number): this;

@@ -64,2 +64,1 @@ translate(vec: NumericArray): this;

export {};
//# sourceMappingURL=matrix3.d.ts.map

@@ -0,1 +1,3 @@

// Copyright (c) 2017 Uber Technologies, Inc.
// MIT License
import { Matrix } from "./base/matrix.js";

@@ -8,202 +10,195 @@ import { checkVector } from "../lib/validators.js";

var INDICES;
(function (INDICES) {
INDICES[INDICES["COL0ROW0"] = 0] = "COL0ROW0";
INDICES[INDICES["COL0ROW1"] = 1] = "COL0ROW1";
INDICES[INDICES["COL0ROW2"] = 2] = "COL0ROW2";
INDICES[INDICES["COL1ROW0"] = 3] = "COL1ROW0";
INDICES[INDICES["COL1ROW1"] = 4] = "COL1ROW1";
INDICES[INDICES["COL1ROW2"] = 5] = "COL1ROW2";
INDICES[INDICES["COL2ROW0"] = 6] = "COL2ROW0";
INDICES[INDICES["COL2ROW1"] = 7] = "COL2ROW1";
INDICES[INDICES["COL2ROW2"] = 8] = "COL2ROW2";
INDICES[INDICES["COL0ROW0"] = 0] = "COL0ROW0";
INDICES[INDICES["COL0ROW1"] = 1] = "COL0ROW1";
INDICES[INDICES["COL0ROW2"] = 2] = "COL0ROW2";
INDICES[INDICES["COL1ROW0"] = 3] = "COL1ROW0";
INDICES[INDICES["COL1ROW1"] = 4] = "COL1ROW1";
INDICES[INDICES["COL1ROW2"] = 5] = "COL1ROW2";
INDICES[INDICES["COL2ROW0"] = 6] = "COL2ROW0";
INDICES[INDICES["COL2ROW1"] = 7] = "COL2ROW1";
INDICES[INDICES["COL2ROW2"] = 8] = "COL2ROW2";
})(INDICES || (INDICES = {}));
const IDENTITY_MATRIX = Object.freeze([1, 0, 0, 0, 1, 0, 0, 0, 1]);
export class Matrix3 extends Matrix {
static get IDENTITY() {
return getIdentityMatrix();
}
static get ZERO() {
return getZeroMatrix();
}
get ELEMENTS() {
return 9;
}
get RANK() {
return 3;
}
get INDICES() {
return INDICES;
}
constructor(array, ...args) {
super(-0, -0, -0, -0, -0, -0, -0, -0, -0);
if (arguments.length === 1 && Array.isArray(array)) {
this.copy(array);
} else if (args.length > 0) {
this.copy([array, ...args]);
} else {
this.identity();
static get IDENTITY() {
return getIdentityMatrix();
}
}
copy(array) {
this[0] = array[0];
this[1] = array[1];
this[2] = array[2];
this[3] = array[3];
this[4] = array[4];
this[5] = array[5];
this[6] = array[6];
this[7] = array[7];
this[8] = array[8];
return this.check();
}
identity() {
return this.copy(IDENTITY_MATRIX);
}
fromObject(object) {
return this.check();
}
fromQuaternion(q) {
mat3_fromQuat(this, q);
return this.check();
}
set(m00, m10, m20, m01, m11, m21, m02, m12, m22) {
this[0] = m00;
this[1] = m10;
this[2] = m20;
this[3] = m01;
this[4] = m11;
this[5] = m21;
this[6] = m02;
this[7] = m12;
this[8] = m22;
return this.check();
}
setRowMajor(m00, m01, m02, m10, m11, m12, m20, m21, m22) {
this[0] = m00;
this[1] = m10;
this[2] = m20;
this[3] = m01;
this[4] = m11;
this[5] = m21;
this[6] = m02;
this[7] = m12;
this[8] = m22;
return this.check();
}
determinant() {
return mat3_determinant(this);
}
transpose() {
mat3_transpose(this, this);
return this.check();
}
invert() {
mat3_invert(this, this);
return this.check();
}
multiplyLeft(a) {
mat3_multiply(this, a, this);
return this.check();
}
multiplyRight(a) {
mat3_multiply(this, this, a);
return this.check();
}
rotate(radians) {
mat3_rotate(this, this, radians);
return this.check();
}
scale(factor) {
if (Array.isArray(factor)) {
mat3_scale(this, this, factor);
} else {
mat3_scale(this, this, [factor, factor]);
static get ZERO() {
return getZeroMatrix();
}
return this.check();
}
translate(vec) {
mat3_translate(this, this, vec);
return this.check();
}
transform(vector, result) {
let out;
switch (vector.length) {
case 2:
out = vec2_transformMat3(result || [-0, -0], vector, this);
break;
case 3:
out = vec3_transformMat3(result || [-0, -0, -0], vector, this);
break;
case 4:
out = vec4_transformMat3(result || [-0, -0, -0, -0], vector, this);
break;
default:
throw new Error('Illegal vector');
get ELEMENTS() {
return 9;
}
checkVector(out, vector.length);
return out;
}
transformVector(vector, result) {
return this.transform(vector, result);
}
transformVector2(vector, result) {
return this.transform(vector, result);
}
transformVector3(vector, result) {
return this.transform(vector, result);
}
get RANK() {
return 3;
}
get INDICES() {
return INDICES;
}
constructor(array, ...args) {
// PERF NOTE: initialize elements as double precision numbers
super(-0, -0, -0, -0, -0, -0, -0, -0, -0);
if (arguments.length === 1 && Array.isArray(array)) {
this.copy(array);
}
else if (args.length > 0) {
this.copy([array, ...args]);
}
else {
this.identity();
}
}
copy(array) {
// Element wise copy for performance
this[0] = array[0];
this[1] = array[1];
this[2] = array[2];
this[3] = array[3];
this[4] = array[4];
this[5] = array[5];
this[6] = array[6];
this[7] = array[7];
this[8] = array[8];
return this.check();
}
// Constructors
identity() {
return this.copy(IDENTITY_MATRIX);
}
/**
*
* @param object
* @returns self
*/
// eslint-disable-next-line @typescript-eslint/no-unused-vars
fromObject(object) {
return this.check();
}
/** Calculates a 3x3 matrix from the given quaternion
* q quat Quaternion to create matrix from
*/
fromQuaternion(q) {
mat3_fromQuat(this, q);
return this.check();
}
/**
* accepts column major order, stores in column major order
*/
// eslint-disable-next-line max-params
set(m00, m10, m20, m01, m11, m21, m02, m12, m22) {
this[0] = m00;
this[1] = m10;
this[2] = m20;
this[3] = m01;
this[4] = m11;
this[5] = m21;
this[6] = m02;
this[7] = m12;
this[8] = m22;
return this.check();
}
/**
* accepts row major order, stores as column major
*/
// eslint-disable-next-line max-params
setRowMajor(m00, m01, m02, m10, m11, m12, m20, m21, m22) {
this[0] = m00;
this[1] = m10;
this[2] = m20;
this[3] = m01;
this[4] = m11;
this[5] = m21;
this[6] = m02;
this[7] = m12;
this[8] = m22;
return this.check();
}
// Accessors
determinant() {
return mat3_determinant(this);
}
// Modifiers
transpose() {
mat3_transpose(this, this);
return this.check();
}
/** Invert a matrix. Note that this can fail if the matrix is not invertible */
invert() {
mat3_invert(this, this);
return this.check();
}
// Operations
multiplyLeft(a) {
mat3_multiply(this, a, this);
return this.check();
}
multiplyRight(a) {
mat3_multiply(this, this, a);
return this.check();
}
rotate(radians) {
mat3_rotate(this, this, radians);
return this.check();
}
scale(factor) {
if (Array.isArray(factor)) {
mat3_scale(this, this, factor);
}
else {
mat3_scale(this, this, [factor, factor]);
}
return this.check();
}
translate(vec) {
mat3_translate(this, this, vec);
return this.check();
}
// Transforms
transform(vector, result) {
let out;
switch (vector.length) {
case 2:
out = vec2_transformMat3(result || [-0, -0], vector, this);
break;
case 3:
out = vec3_transformMat3(result || [-0, -0, -0], vector, this);
break;
case 4:
out = vec4_transformMat3(result || [-0, -0, -0, -0], vector, this);
break;
default:
throw new Error('Illegal vector');
}
checkVector(out, vector.length);
return out;
}
/** @deprecated */
transformVector(vector, result) {
return this.transform(vector, result);
}
/** @deprecated */
transformVector2(vector, result) {
return this.transform(vector, result);
}
/** @deprecated */
transformVector3(vector, result) {
return this.transform(vector, result);
}
}
let ZERO_MATRIX3;
let IDENTITY_MATRIX3 = null;
function getZeroMatrix() {
if (!ZERO_MATRIX3) {
ZERO_MATRIX3 = new Matrix3([0, 0, 0, 0, 0, 0, 0, 0, 0]);
Object.freeze(ZERO_MATRIX3);
}
return ZERO_MATRIX3;
if (!ZERO_MATRIX3) {
ZERO_MATRIX3 = new Matrix3([0, 0, 0, 0, 0, 0, 0, 0, 0]);
Object.freeze(ZERO_MATRIX3);
}
return ZERO_MATRIX3;
}
function getIdentityMatrix() {
if (!IDENTITY_MATRIX3) {
IDENTITY_MATRIX3 = new Matrix3();
Object.freeze(IDENTITY_MATRIX3);
}
return IDENTITY_MATRIX3;
if (!IDENTITY_MATRIX3) {
IDENTITY_MATRIX3 = new Matrix3();
Object.freeze(IDENTITY_MATRIX3);
}
return IDENTITY_MATRIX3;
}
//# sourceMappingURL=matrix3.js.map
import { NumericArray } from '@math.gl/types';
import { Matrix } from './base/matrix';
import { Matrix } from "./base/matrix.js";
declare enum INDICES {

@@ -226,2 +226,1 @@ COL0ROW0 = 0,

export {};
//# sourceMappingURL=matrix4.d.ts.map

@@ -0,4 +1,8 @@

// Copyright (c) 2017 Uber Technologies, Inc.
// MIT License
import { Matrix } from "./base/matrix.js";
import { checkVector } from "../lib/validators.js";
/* eslint-disable camelcase */
import { vec2_transformMat4AsVector, vec3_transformMat4AsVector } from "../lib/gl-matrix-extras.js";
// @ts-ignore gl-matrix types...
import { fromQuat as mat4_fromQuat, frustum as mat4_frustum, lookAt as mat4_lookAt, ortho as mat4_ortho, perspective as mat4_perspective, determinant as mat4_determinant, transpose as mat4_transpose, invert as mat4_invert, multiply as mat4_multiply, rotateX as mat4_rotateX, rotateY as mat4_rotateY, rotateZ as mat4_rotateZ, rotate as mat4_rotate, scale as mat4_scale, translate as mat4_translate } from "../gl-matrix/mat4.js";

@@ -9,23 +13,21 @@ import { transformMat4 as vec2_transformMat4 } from "../gl-matrix/vec2.js";

var INDICES;
(function (INDICES) {
INDICES[INDICES["COL0ROW0"] = 0] = "COL0ROW0";
INDICES[INDICES["COL0ROW1"] = 1] = "COL0ROW1";
INDICES[INDICES["COL0ROW2"] = 2] = "COL0ROW2";
INDICES[INDICES["COL0ROW3"] = 3] = "COL0ROW3";
INDICES[INDICES["COL1ROW0"] = 4] = "COL1ROW0";
INDICES[INDICES["COL1ROW1"] = 5] = "COL1ROW1";
INDICES[INDICES["COL1ROW2"] = 6] = "COL1ROW2";
INDICES[INDICES["COL1ROW3"] = 7] = "COL1ROW3";
INDICES[INDICES["COL2ROW0"] = 8] = "COL2ROW0";
INDICES[INDICES["COL2ROW1"] = 9] = "COL2ROW1";
INDICES[INDICES["COL2ROW2"] = 10] = "COL2ROW2";
INDICES[INDICES["COL2ROW3"] = 11] = "COL2ROW3";
INDICES[INDICES["COL3ROW0"] = 12] = "COL3ROW0";
INDICES[INDICES["COL3ROW1"] = 13] = "COL3ROW1";
INDICES[INDICES["COL3ROW2"] = 14] = "COL3ROW2";
INDICES[INDICES["COL3ROW3"] = 15] = "COL3ROW3";
INDICES[INDICES["COL0ROW0"] = 0] = "COL0ROW0";
INDICES[INDICES["COL0ROW1"] = 1] = "COL0ROW1";
INDICES[INDICES["COL0ROW2"] = 2] = "COL0ROW2";
INDICES[INDICES["COL0ROW3"] = 3] = "COL0ROW3";
INDICES[INDICES["COL1ROW0"] = 4] = "COL1ROW0";
INDICES[INDICES["COL1ROW1"] = 5] = "COL1ROW1";
INDICES[INDICES["COL1ROW2"] = 6] = "COL1ROW2";
INDICES[INDICES["COL1ROW3"] = 7] = "COL1ROW3";
INDICES[INDICES["COL2ROW0"] = 8] = "COL2ROW0";
INDICES[INDICES["COL2ROW1"] = 9] = "COL2ROW1";
INDICES[INDICES["COL2ROW2"] = 10] = "COL2ROW2";
INDICES[INDICES["COL2ROW3"] = 11] = "COL2ROW3";
INDICES[INDICES["COL3ROW0"] = 12] = "COL3ROW0";
INDICES[INDICES["COL3ROW1"] = 13] = "COL3ROW1";
INDICES[INDICES["COL3ROW2"] = 14] = "COL3ROW2";
INDICES[INDICES["COL3ROW3"] = 15] = "COL3ROW3";
})(INDICES || (INDICES = {}));
const DEFAULT_FOVY = 45 * Math.PI / 180;
const DEFAULT_FOVY = (45 * Math.PI) / 180;
const DEFAULT_ASPECT = 1;

@@ -35,446 +37,508 @@ const DEFAULT_NEAR = 0.1;

const IDENTITY_MATRIX = Object.freeze([1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1]);
/** 4x4 matrix */
export class Matrix4 extends Matrix {
static get IDENTITY() {
return getIdentityMatrix();
}
static get ZERO() {
return getZeroMatrix();
}
get ELEMENTS() {
return 16;
}
get RANK() {
return 4;
}
get INDICES() {
return INDICES;
}
constructor(array) {
super(-0, -0, -0, -0, -0, -0, -0, -0, -0, -0, -0, -0, -0, -0, -0, -0);
if (arguments.length === 1 && Array.isArray(array)) {
this.copy(array);
} else {
this.identity();
static get IDENTITY() {
return getIdentityMatrix();
}
}
copy(array) {
this[0] = array[0];
this[1] = array[1];
this[2] = array[2];
this[3] = array[3];
this[4] = array[4];
this[5] = array[5];
this[6] = array[6];
this[7] = array[7];
this[8] = array[8];
this[9] = array[9];
this[10] = array[10];
this[11] = array[11];
this[12] = array[12];
this[13] = array[13];
this[14] = array[14];
this[15] = array[15];
return this.check();
}
set(m00, m10, m20, m30, m01, m11, m21, m31, m02, m12, m22, m32, m03, m13, m23, m33) {
this[0] = m00;
this[1] = m10;
this[2] = m20;
this[3] = m30;
this[4] = m01;
this[5] = m11;
this[6] = m21;
this[7] = m31;
this[8] = m02;
this[9] = m12;
this[10] = m22;
this[11] = m32;
this[12] = m03;
this[13] = m13;
this[14] = m23;
this[15] = m33;
return this.check();
}
setRowMajor(m00, m01, m02, m03, m10, m11, m12, m13, m20, m21, m22, m23, m30, m31, m32, m33) {
this[0] = m00;
this[1] = m10;
this[2] = m20;
this[3] = m30;
this[4] = m01;
this[5] = m11;
this[6] = m21;
this[7] = m31;
this[8] = m02;
this[9] = m12;
this[10] = m22;
this[11] = m32;
this[12] = m03;
this[13] = m13;
this[14] = m23;
this[15] = m33;
return this.check();
}
toRowMajor(result) {
result[0] = this[0];
result[1] = this[4];
result[2] = this[8];
result[3] = this[12];
result[4] = this[1];
result[5] = this[5];
result[6] = this[9];
result[7] = this[13];
result[8] = this[2];
result[9] = this[6];
result[10] = this[10];
result[11] = this[14];
result[12] = this[3];
result[13] = this[7];
result[14] = this[11];
result[15] = this[15];
return result;
}
identity() {
return this.copy(IDENTITY_MATRIX);
}
fromObject(object) {
return this.check();
}
fromQuaternion(quaternion) {
mat4_fromQuat(this, quaternion);
return this.check();
}
frustum(view) {
const {
left,
right,
bottom,
top,
near = DEFAULT_NEAR,
far = DEFAULT_FAR
} = view;
if (far === Infinity) {
computeInfinitePerspectiveOffCenter(this, left, right, bottom, top, near);
} else {
mat4_frustum(this, left, right, bottom, top, near, far);
static get ZERO() {
return getZeroMatrix();
}
return this.check();
}
lookAt(view) {
const {
eye,
center = [0, 0, 0],
up = [0, 1, 0]
} = view;
mat4_lookAt(this, eye, center, up);
return this.check();
}
ortho(view) {
const {
left,
right,
bottom,
top,
near = DEFAULT_NEAR,
far = DEFAULT_FAR
} = view;
mat4_ortho(this, left, right, bottom, top, near, far);
return this.check();
}
orthographic(view) {
const {
fovy = DEFAULT_FOVY,
aspect = DEFAULT_ASPECT,
focalDistance = 1,
near = DEFAULT_NEAR,
far = DEFAULT_FAR
} = view;
checkRadians(fovy);
const halfY = fovy / 2;
const top = focalDistance * Math.tan(halfY);
const right = top * aspect;
return this.ortho({
left: -right,
right,
bottom: -top,
top,
near,
far
});
}
perspective(view) {
const {
fovy = 45 * Math.PI / 180,
aspect = 1,
near = 0.1,
far = 500
} = view;
checkRadians(fovy);
mat4_perspective(this, fovy, aspect, near, far);
return this.check();
}
determinant() {
return mat4_determinant(this);
}
getScale(result = [-0, -0, -0]) {
result[0] = Math.sqrt(this[0] * this[0] + this[1] * this[1] + this[2] * this[2]);
result[1] = Math.sqrt(this[4] * this[4] + this[5] * this[5] + this[6] * this[6]);
result[2] = Math.sqrt(this[8] * this[8] + this[9] * this[9] + this[10] * this[10]);
return result;
}
getTranslation(result = [-0, -0, -0]) {
result[0] = this[12];
result[1] = this[13];
result[2] = this[14];
return result;
}
getRotation(result, scaleResult) {
result = result || [-0, -0, -0, -0, -0, -0, -0, -0, -0, -0, -0, -0, -0, -0, -0, -0];
scaleResult = scaleResult || [-0, -0, -0];
const scale = this.getScale(scaleResult);
const inverseScale0 = 1 / scale[0];
const inverseScale1 = 1 / scale[1];
const inverseScale2 = 1 / scale[2];
result[0] = this[0] * inverseScale0;
result[1] = this[1] * inverseScale1;
result[2] = this[2] * inverseScale2;
result[3] = 0;
result[4] = this[4] * inverseScale0;
result[5] = this[5] * inverseScale1;
result[6] = this[6] * inverseScale2;
result[7] = 0;
result[8] = this[8] * inverseScale0;
result[9] = this[9] * inverseScale1;
result[10] = this[10] * inverseScale2;
result[11] = 0;
result[12] = 0;
result[13] = 0;
result[14] = 0;
result[15] = 1;
return result;
}
getRotationMatrix3(result, scaleResult) {
result = result || [-0, -0, -0, -0, -0, -0, -0, -0, -0];
scaleResult = scaleResult || [-0, -0, -0];
const scale = this.getScale(scaleResult);
const inverseScale0 = 1 / scale[0];
const inverseScale1 = 1 / scale[1];
const inverseScale2 = 1 / scale[2];
result[0] = this[0] * inverseScale0;
result[1] = this[1] * inverseScale1;
result[2] = this[2] * inverseScale2;
result[3] = this[4] * inverseScale0;
result[4] = this[5] * inverseScale1;
result[5] = this[6] * inverseScale2;
result[6] = this[8] * inverseScale0;
result[7] = this[9] * inverseScale1;
result[8] = this[10] * inverseScale2;
return result;
}
transpose() {
mat4_transpose(this, this);
return this.check();
}
invert() {
mat4_invert(this, this);
return this.check();
}
multiplyLeft(a) {
mat4_multiply(this, a, this);
return this.check();
}
multiplyRight(a) {
mat4_multiply(this, this, a);
return this.check();
}
rotateX(radians) {
mat4_rotateX(this, this, radians);
return this.check();
}
rotateY(radians) {
mat4_rotateY(this, this, radians);
return this.check();
}
rotateZ(radians) {
mat4_rotateZ(this, this, radians);
return this.check();
}
rotateXYZ(angleXYZ) {
return this.rotateX(angleXYZ[0]).rotateY(angleXYZ[1]).rotateZ(angleXYZ[2]);
}
rotateAxis(radians, axis) {
mat4_rotate(this, this, radians, axis);
return this.check();
}
scale(factor) {
mat4_scale(this, this, Array.isArray(factor) ? factor : [factor, factor, factor]);
return this.check();
}
translate(vector) {
mat4_translate(this, this, vector);
return this.check();
}
transform(vector, result) {
if (vector.length === 4) {
result = vec4_transformMat4(result || [-0, -0, -0, -0], vector, this);
checkVector(result, 4);
return result;
get ELEMENTS() {
return 16;
}
return this.transformAsPoint(vector, result);
}
transformAsPoint(vector, result) {
const {
length
} = vector;
let out;
switch (length) {
case 2:
out = vec2_transformMat4(result || [-0, -0], vector, this);
break;
case 3:
out = vec3_transformMat4(result || [-0, -0, -0], vector, this);
break;
default:
throw new Error('Illegal vector');
get RANK() {
return 4;
}
checkVector(out, vector.length);
return out;
}
transformAsVector(vector, result) {
let out;
switch (vector.length) {
case 2:
out = vec2_transformMat4AsVector(result || [-0, -0], vector, this);
break;
case 3:
out = vec3_transformMat4AsVector(result || [-0, -0, -0], vector, this);
break;
default:
throw new Error('Illegal vector');
get INDICES() {
return INDICES;
}
checkVector(out, vector.length);
return out;
}
transformPoint(vector, result) {
return this.transformAsPoint(vector, result);
}
transformVector(vector, result) {
return this.transformAsPoint(vector, result);
}
transformDirection(vector, result) {
return this.transformAsVector(vector, result);
}
makeRotationX(radians) {
return this.identity().rotateX(radians);
}
makeTranslation(x, y, z) {
return this.identity().translate([x, y, z]);
}
constructor(array) {
// PERF NOTE: initialize elements as double precision numbers
super(-0, -0, -0, -0, -0, -0, -0, -0, -0, -0, -0, -0, -0, -0, -0, -0);
if (arguments.length === 1 && Array.isArray(array)) {
this.copy(array);
}
else {
this.identity();
}
}
copy(array) {
this[0] = array[0];
this[1] = array[1];
this[2] = array[2];
this[3] = array[3];
this[4] = array[4];
this[5] = array[5];
this[6] = array[6];
this[7] = array[7];
this[8] = array[8];
this[9] = array[9];
this[10] = array[10];
this[11] = array[11];
this[12] = array[12];
this[13] = array[13];
this[14] = array[14];
this[15] = array[15];
return this.check();
}
// eslint-disable-next-line max-params
set(m00, m10, m20, m30, m01, m11, m21, m31, m02, m12, m22, m32, m03, m13, m23, m33) {
this[0] = m00;
this[1] = m10;
this[2] = m20;
this[3] = m30;
this[4] = m01;
this[5] = m11;
this[6] = m21;
this[7] = m31;
this[8] = m02;
this[9] = m12;
this[10] = m22;
this[11] = m32;
this[12] = m03;
this[13] = m13;
this[14] = m23;
this[15] = m33;
return this.check();
}
// accepts row major order, stores as column major
// eslint-disable-next-line max-params
setRowMajor(m00, m01, m02, m03, m10, m11, m12, m13, m20, m21, m22, m23, m30, m31, m32, m33) {
this[0] = m00;
this[1] = m10;
this[2] = m20;
this[3] = m30;
this[4] = m01;
this[5] = m11;
this[6] = m21;
this[7] = m31;
this[8] = m02;
this[9] = m12;
this[10] = m22;
this[11] = m32;
this[12] = m03;
this[13] = m13;
this[14] = m23;
this[15] = m33;
return this.check();
}
toRowMajor(result) {
result[0] = this[0];
result[1] = this[4];
result[2] = this[8];
result[3] = this[12];
result[4] = this[1];
result[5] = this[5];
result[6] = this[9];
result[7] = this[13];
result[8] = this[2];
result[9] = this[6];
result[10] = this[10];
result[11] = this[14];
result[12] = this[3];
result[13] = this[7];
result[14] = this[11];
result[15] = this[15];
return result;
}
// Constructors
/** Set to identity matrix */
identity() {
return this.copy(IDENTITY_MATRIX);
}
/**
*
* @param object
* @returns self
*/
// eslint-disable-next-line @typescript-eslint/no-unused-vars
fromObject(object) {
return this.check();
}
/**
* Calculates a 4x4 matrix from the given quaternion
* @param quaternion Quaternion to create matrix from
* @returns self
*/
fromQuaternion(quaternion) {
mat4_fromQuat(this, quaternion);
return this.check();
}
/**
* Generates a frustum matrix with the given bounds
* @param view.left - Left bound of the frustum
* @param view.right - Right bound of the frustum
* @param view.bottom - Bottom bound of the frustum
* @param view.top - Top bound of the frustum
* @param view.near - Near bound of the frustum
* @param view.far - Far bound of the frustum. Can be set to Infinity.
* @returns self
*/
frustum(view) {
const { left, right, bottom, top, near = DEFAULT_NEAR, far = DEFAULT_FAR } = view;
if (far === Infinity) {
computeInfinitePerspectiveOffCenter(this, left, right, bottom, top, near);
}
else {
mat4_frustum(this, left, right, bottom, top, near, far);
}
return this.check();
}
/**
* Generates a look-at matrix with the given eye position, focal point,
* and up axis
* @param view.eye - (vector) Position of the viewer
* @param view.center - (vector) Point the viewer is looking at
* @param view.up - (vector) Up axis
* @returns self
*/
lookAt(view) {
const { eye, center = [0, 0, 0], up = [0, 1, 0] } = view;
mat4_lookAt(this, eye, center, up);
return this.check();
}
/**
* Generates a orthogonal projection matrix with the given bounds
* from "traditional" view space parameters
* @param view.left - Left bound of the frustum
* @param view.right number Right bound of the frustum
* @param view.bottom - Bottom bound of the frustum
* @param view.top number Top bound of the frustum
* @param view.near - Near bound of the frustum
* @param view.far number Far bound of the frustum
* @returns self
*/
ortho(view) {
const { left, right, bottom, top, near = DEFAULT_NEAR, far = DEFAULT_FAR } = view;
mat4_ortho(this, left, right, bottom, top, near, far);
return this.check();
}
/**
* Generates an orthogonal projection matrix with the same parameters
* as a perspective matrix (plus focalDistance)
* @param view.fovy Vertical field of view in radians
* @param view.aspect Aspect ratio. Typically viewport width / viewport height
* @param view.focalDistance Distance in the view frustum used for extent calculations
* @param view.near Near bound of the frustum
* @param view.far Far bound of the frustum
* @returns self
*/
orthographic(view) {
const { fovy = DEFAULT_FOVY, aspect = DEFAULT_ASPECT, focalDistance = 1, near = DEFAULT_NEAR, far = DEFAULT_FAR } = view;
checkRadians(fovy);
const halfY = fovy / 2;
const top = focalDistance * Math.tan(halfY); // focus_plane is the distance from the camera
const right = top * aspect;
return this.ortho({
left: -right,
right,
bottom: -top,
top,
near,
far
});
}
/**
* Generates a perspective projection matrix with the given bounds
* @param view.fovy Vertical field of view in radians
* @param view.aspect Aspect ratio. typically viewport width/height
* @param view.near Near bound of the frustum
* @param view.far Far bound of the frustum
* @returns self
*/
perspective(view) {
const { fovy = (45 * Math.PI) / 180, aspect = 1, near = 0.1, far = 500 } = view;
checkRadians(fovy);
mat4_perspective(this, fovy, aspect, near, far);
return this.check();
}
// Accessors
determinant() {
return mat4_determinant(this);
}
/**
* Extracts the non-uniform scale assuming the matrix is an affine transformation.
* The scales are the "lengths" of the column vectors in the upper-left 3x3 matrix.
* @param result
* @returns self
*/
getScale(result = [-0, -0, -0]) {
// explicit is faster than hypot...
result[0] = Math.sqrt(this[0] * this[0] + this[1] * this[1] + this[2] * this[2]);
result[1] = Math.sqrt(this[4] * this[4] + this[5] * this[5] + this[6] * this[6]);
result[2] = Math.sqrt(this[8] * this[8] + this[9] * this[9] + this[10] * this[10]);
// result[0] = Math.hypot(this[0], this[1], this[2]);
// result[1] = Math.hypot(this[4], this[5], this[6]);
// result[2] = Math.hypot(this[8], this[9], this[10]);
return result;
}
/**
* Gets the translation portion, assuming the matrix is a affine transformation matrix.
* @param result
* @returns self
*/
getTranslation(result = [-0, -0, -0]) {
result[0] = this[12];
result[1] = this[13];
result[2] = this[14];
return result;
}
/**
* Gets upper left 3x3 pure rotation matrix (non-scaling), assume affine transformation matrix
* @param result
* @param scaleResult
* @returns self
*/
getRotation(result, scaleResult) {
result = result || [-0, -0, -0, -0, -0, -0, -0, -0, -0, -0, -0, -0, -0, -0, -0, -0];
scaleResult = scaleResult || [-0, -0, -0];
const scale = this.getScale(scaleResult);
const inverseScale0 = 1 / scale[0];
const inverseScale1 = 1 / scale[1];
const inverseScale2 = 1 / scale[2];
result[0] = this[0] * inverseScale0;
result[1] = this[1] * inverseScale1;
result[2] = this[2] * inverseScale2;
result[3] = 0;
result[4] = this[4] * inverseScale0;
result[5] = this[5] * inverseScale1;
result[6] = this[6] * inverseScale2;
result[7] = 0;
result[8] = this[8] * inverseScale0;
result[9] = this[9] * inverseScale1;
result[10] = this[10] * inverseScale2;
result[11] = 0;
result[12] = 0;
result[13] = 0;
result[14] = 0;
result[15] = 1;
return result;
}
/**
*
* @param result
* @param scaleResult
* @returns self
*/
getRotationMatrix3(result, scaleResult) {
result = result || [-0, -0, -0, -0, -0, -0, -0, -0, -0];
scaleResult = scaleResult || [-0, -0, -0];
const scale = this.getScale(scaleResult);
const inverseScale0 = 1 / scale[0];
const inverseScale1 = 1 / scale[1];
const inverseScale2 = 1 / scale[2];
result[0] = this[0] * inverseScale0;
result[1] = this[1] * inverseScale1;
result[2] = this[2] * inverseScale2;
result[3] = this[4] * inverseScale0;
result[4] = this[5] * inverseScale1;
result[5] = this[6] * inverseScale2;
result[6] = this[8] * inverseScale0;
result[7] = this[9] * inverseScale1;
result[8] = this[10] * inverseScale2;
return result;
}
// Modifiers
transpose() {
mat4_transpose(this, this);
return this.check();
}
invert() {
mat4_invert(this, this);
return this.check();
}
// Operations
multiplyLeft(a) {
mat4_multiply(this, a, this);
return this.check();
}
multiplyRight(a) {
mat4_multiply(this, this, a);
return this.check();
}
// Rotates a matrix by the given angle around the X axis
rotateX(radians) {
mat4_rotateX(this, this, radians);
// mat4_rotate(this, this, radians, [1, 0, 0]);
return this.check();
}
// Rotates a matrix by the given angle around the Y axis.
rotateY(radians) {
mat4_rotateY(this, this, radians);
// mat4_rotate(this, this, radians, [0, 1, 0]);
return this.check();
}
/**
* Rotates a matrix by the given angle around the Z axis.
* @param radians
* @returns self
*/
rotateZ(radians) {
mat4_rotateZ(this, this, radians);
// mat4_rotate(this, this, radians, [0, 0, 1]);
return this.check();
}
/**
*
* @param param0
* @returns self
*/
rotateXYZ(angleXYZ) {
return this.rotateX(angleXYZ[0]).rotateY(angleXYZ[1]).rotateZ(angleXYZ[2]);
}
/**
*
* @param radians
* @param axis
* @returns self
*/
rotateAxis(radians, axis) {
mat4_rotate(this, this, radians, axis);
return this.check();
}
/**
*
* @param factor
* @returns self
*/
scale(factor) {
mat4_scale(this, this, Array.isArray(factor) ? factor : [factor, factor, factor]);
return this.check();
}
/**
*
* @param vec
* @returns self
*/
translate(vector) {
mat4_translate(this, this, vector);
return this.check();
}
// Transforms
/**
* Transforms any 2, 3 or 4 element vector. 2 and 3 elements are treated as points
* @param vector
* @param result
* @returns self
*/
transform(vector, result) {
if (vector.length === 4) {
result = vec4_transformMat4(result || [-0, -0, -0, -0], vector, this);
checkVector(result, 4);
return result;
}
return this.transformAsPoint(vector, result);
}
/**
* Transforms any 2 or 3 element array as point (w implicitly 1)
* @param vector
* @param result
* @returns self
*/
transformAsPoint(vector, result) {
const { length } = vector;
let out;
switch (length) {
case 2:
out = vec2_transformMat4(result || [-0, -0], vector, this);
break;
case 3:
out = vec3_transformMat4(result || [-0, -0, -0], vector, this);
break;
default:
throw new Error('Illegal vector');
}
checkVector(out, vector.length);
return out;
}
/**
* Transforms any 2 or 3 element array as vector (w implicitly 0)
* @param vector
* @param result
* @returns self
*/
transformAsVector(vector, result) {
let out;
switch (vector.length) {
case 2:
out = vec2_transformMat4AsVector(result || [-0, -0], vector, this);
break;
case 3:
out = vec3_transformMat4AsVector(result || [-0, -0, -0], vector, this);
break;
default:
throw new Error('Illegal vector');
}
checkVector(out, vector.length);
return out;
}
/** @deprecated */
transformPoint(vector, result) {
return this.transformAsPoint(vector, result);
}
/** @deprecated */
transformVector(vector, result) {
return this.transformAsPoint(vector, result);
}
/** @deprecated */
transformDirection(vector, result) {
return this.transformAsVector(vector, result);
}
// three.js math API compatibility
makeRotationX(radians) {
return this.identity().rotateX(radians);
}
makeTranslation(x, y, z) {
return this.identity().translate([x, y, z]);
}
}
// TODO initializing static members directly is an option, but make sure no tree-shaking issues
let ZERO;
let IDENTITY;
function getZeroMatrix() {
if (!ZERO) {
ZERO = new Matrix4([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]);
Object.freeze(ZERO);
}
return ZERO;
if (!ZERO) {
ZERO = new Matrix4([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]);
Object.freeze(ZERO);
}
return ZERO;
}
function getIdentityMatrix() {
if (!IDENTITY) {
IDENTITY = new Matrix4();
Object.freeze(IDENTITY);
}
return IDENTITY;
if (!IDENTITY) {
IDENTITY = new Matrix4();
Object.freeze(IDENTITY);
}
return IDENTITY;
}
// HELPER FUNCTIONS
function checkRadians(possiblyDegrees) {
if (possiblyDegrees > Math.PI * 2) {
throw Error('expected radians');
}
if (possiblyDegrees > Math.PI * 2) {
throw Error('expected radians');
}
}
// eslint-disable-next-line max-params
function computeInfinitePerspectiveOffCenter(result, left, right, bottom, top, near) {
const column0Row0 = 2 * near / (right - left);
const column1Row1 = 2 * near / (top - bottom);
const column2Row0 = (right + left) / (right - left);
const column2Row1 = (top + bottom) / (top - bottom);
const column2Row2 = -1;
const column2Row3 = -1;
const column3Row2 = -2 * near;
result[0] = column0Row0;
result[1] = 0;
result[2] = 0;
result[3] = 0;
result[4] = 0;
result[5] = column1Row1;
result[6] = 0;
result[7] = 0;
result[8] = column2Row0;
result[9] = column2Row1;
result[10] = column2Row2;
result[11] = column2Row3;
result[12] = 0;
result[13] = 0;
result[14] = column3Row2;
result[15] = 0;
return result;
const column0Row0 = (2 * near) / (right - left);
const column1Row1 = (2 * near) / (top - bottom);
const column2Row0 = (right + left) / (right - left);
const column2Row1 = (top + bottom) / (top - bottom);
const column2Row2 = -1;
const column2Row3 = -1;
const column3Row2 = -2 * near;
result[0] = column0Row0;
result[1] = 0;
result[2] = 0;
result[3] = 0;
result[4] = 0;
result[5] = column1Row1;
result[6] = 0;
result[7] = 0;
result[8] = column2Row0;
result[9] = column2Row1;
result[10] = column2Row2;
result[11] = column2Row3;
result[12] = 0;
result[13] = 0;
result[14] = column3Row2;
result[15] = 0;
return result;
}
//# sourceMappingURL=matrix4.js.map

@@ -1,6 +0,6 @@

import { Matrix4 } from './matrix4';
import { Vector3 } from './vector3';
import { Euler } from './euler';
import { Matrix4 } from "./matrix4.js";
import { Vector3 } from "./vector3.js";
import { Euler } from "./euler.js";
import { NumericArray } from '@math.gl/types';
declare type PoseOptions = {
type PoseOptions = {
position?: Readonly<NumericArray>;

@@ -40,2 +40,1 @@ orientation?: Readonly<NumericArray>;

export {};
//# sourceMappingURL=pose.d.ts.map

@@ -1,2 +0,3 @@

import _defineProperty from "@babel/runtime/helpers/esm/defineProperty";
// Copyright (c) 2017 Uber Technologies, Inc.
// MIT License
import { Matrix4 } from "./matrix4.js";

@@ -6,120 +7,104 @@ import { Vector3 } from "./vector3.js";

export class Pose {
constructor({
x = 0,
y = 0,
z = 0,
roll = 0,
pitch = 0,
yaw = 0,
position,
orientation
} = {}) {
_defineProperty(this, "position", void 0);
_defineProperty(this, "orientation", void 0);
if (Array.isArray(position) && position.length === 3) {
this.position = new Vector3(position);
} else {
this.position = new Vector3(x, y, z);
constructor({ x = 0, y = 0, z = 0, roll = 0, pitch = 0, yaw = 0, position, orientation } = {}) {
if (Array.isArray(position) && position.length === 3) {
this.position = new Vector3(position);
}
else {
this.position = new Vector3(x, y, z);
}
if (Array.isArray(orientation) && orientation.length === 4) {
// @ts-expect-error
this.orientation = new Euler(orientation, orientation[3]);
}
else {
this.orientation = new Euler(roll, pitch, yaw, Euler.RollPitchYaw);
}
}
if (Array.isArray(orientation) && orientation.length === 4) {
this.orientation = new Euler(orientation, orientation[3]);
} else {
this.orientation = new Euler(roll, pitch, yaw, Euler.RollPitchYaw);
get x() {
return this.position.x;
}
}
get x() {
return this.position.x;
}
set x(value) {
this.position.x = value;
}
get y() {
return this.position.y;
}
set y(value) {
this.position.y = value;
}
get z() {
return this.position.z;
}
set z(value) {
this.position.z = value;
}
get roll() {
return this.orientation.roll;
}
set roll(value) {
this.orientation.roll = value;
}
get pitch() {
return this.orientation.pitch;
}
set pitch(value) {
this.orientation.pitch = value;
}
get yaw() {
return this.orientation.yaw;
}
set yaw(value) {
this.orientation.yaw = value;
}
getPosition() {
return this.position;
}
getOrientation() {
return this.orientation;
}
equals(pose) {
if (!pose) {
return false;
set x(value) {
this.position.x = value;
}
return this.position.equals(pose.position) && this.orientation.equals(pose.orientation);
}
exactEquals(pose) {
if (!pose) {
return false;
get y() {
return this.position.y;
}
return this.position.exactEquals(pose.position) && this.orientation.exactEquals(pose.orientation);
}
getTransformationMatrix() {
const sr = Math.sin(this.roll);
const sp = Math.sin(this.pitch);
const sw = Math.sin(this.yaw);
const cr = Math.cos(this.roll);
const cp = Math.cos(this.pitch);
const cw = Math.cos(this.yaw);
return new Matrix4().setRowMajor(cw * cp, -sw * cr + cw * sp * sr, sw * sr + cw * sp * cr, this.x, sw * cp, cw * cr + sw * sp * sr, -cw * sr + sw * sp * cr, this.y, -sp, cp * sr, cp * cr, this.z, 0, 0, 0, 1);
}
getTransformationMatrixFromPose(pose) {
return new Matrix4().multiplyRight(this.getTransformationMatrix()).multiplyRight(pose.getTransformationMatrix().invert());
}
getTransformationMatrixToPose(pose) {
return new Matrix4().multiplyRight(pose.getTransformationMatrix()).multiplyRight(this.getTransformationMatrix().invert());
}
set y(value) {
this.position.y = value;
}
get z() {
return this.position.z;
}
set z(value) {
this.position.z = value;
}
get roll() {
return this.orientation.roll;
}
set roll(value) {
this.orientation.roll = value;
}
get pitch() {
return this.orientation.pitch;
}
set pitch(value) {
this.orientation.pitch = value;
}
get yaw() {
return this.orientation.yaw;
}
set yaw(value) {
this.orientation.yaw = value;
}
getPosition() {
return this.position;
}
getOrientation() {
return this.orientation;
}
equals(pose) {
if (!pose) {
return false;
}
return this.position.equals(pose.position) && this.orientation.equals(pose.orientation);
}
exactEquals(pose) {
if (!pose) {
return false;
}
return (this.position.exactEquals(pose.position) && this.orientation.exactEquals(pose.orientation));
}
getTransformationMatrix() {
// setup pre computations for the sin/cos of the angles
const sr = Math.sin(this.roll);
const sp = Math.sin(this.pitch);
const sw = Math.sin(this.yaw);
const cr = Math.cos(this.roll);
const cp = Math.cos(this.pitch);
const cw = Math.cos(this.yaw);
// Create matrix
return new Matrix4().setRowMajor(cw * cp, // 0,0
-sw * cr + cw * sp * sr, // 0,1
sw * sr + cw * sp * cr, // 0,2
this.x, // 0,3
sw * cp, // 1,0
cw * cr + sw * sp * sr, // 1,1
-cw * sr + sw * sp * cr, // 1,2
this.y, // 1,3
-sp, // 2,0
cp * sr, // 2,1
cp * cr, // 2,2
this.z, // 2,3
0, 0, 0, 1);
}
getTransformationMatrixFromPose(pose) {
return new Matrix4()
.multiplyRight(this.getTransformationMatrix())
.multiplyRight(pose.getTransformationMatrix().invert());
}
getTransformationMatrixToPose(pose) {
return new Matrix4()
.multiplyRight(pose.getTransformationMatrix())
.multiplyRight(this.getTransformationMatrix().invert());
}
}
//# sourceMappingURL=pose.js.map
import { NumericArray } from '@math.gl/types';
import { MathArray } from './base/math-array';
import { MathArray } from "./base/math-array.js";
export declare class Quaternion extends MathArray {

@@ -63,2 +63,1 @@ constructor(x?: number | Readonly<NumericArray>, y?: number, z?: number, w?: number);

}
//# sourceMappingURL=quaternion.d.ts.map
import { MathArray } from "./base/math-array.js";
import { checkNumber, checkVector } from "../lib/validators.js";
import { Vector4 } from "./vector4.js";
import { fromMat3 as quat_fromMat3, setAxisAngle as quat_setAxisAngle, identity as quat_identity, length as quat_length, squaredLength as quat_squaredLength, dot as quat_dot, rotationTo as quat_rotationTo, add as quat_add, calculateW as quat_calculateW, conjugate as quat_conjugate, invert as quat_invert, lerp as quat_lerp, multiply as quat_multiply, rotateX as quat_rotateX, rotateY as quat_rotateY, rotateZ as quat_rotateZ, scale as quat_scale, slerp as quat_slerp } from "../gl-matrix/quat.js";
// @ts-ignore gl-matrix types...
import { fromMat3 as quat_fromMat3, setAxisAngle as quat_setAxisAngle, identity as quat_identity, length as quat_length, squaredLength as quat_squaredLength, dot as quat_dot,
// getAxisAngle as quat_getAxisAngle,
rotationTo as quat_rotationTo, add as quat_add, calculateW as quat_calculateW, conjugate as quat_conjugate, invert as quat_invert, lerp as quat_lerp, multiply as quat_multiply, rotateX as quat_rotateX, rotateY as quat_rotateY, rotateZ as quat_rotateZ, scale as quat_scale, slerp as quat_slerp } from "../gl-matrix/quat.js";
// @ts-ignore gl-matrix types...
import { transformQuat as vec4_transformQuat } from "../gl-matrix/vec4.js";
const IDENTITY_QUATERNION = [0, 0, 0, 1];
export class Quaternion extends MathArray {
constructor(x = 0, y = 0, z = 0, w = 1) {
super(-0, -0, -0, -0);
if (Array.isArray(x) && arguments.length === 1) {
this.copy(x);
} else {
this.set(x, y, z, w);
constructor(x = 0, y = 0, z = 0, w = 1) {
// PERF NOTE: initialize elements as double precision numbers
super(-0, -0, -0, -0);
// eslint-disable-next-line prefer-rest-params
if (Array.isArray(x) && arguments.length === 1) {
this.copy(x);
}
else {
this.set(x, y, z, w);
}
}
}
copy(array) {
this[0] = array[0];
this[1] = array[1];
this[2] = array[2];
this[3] = array[3];
return this.check();
}
set(x, y, z, w) {
this[0] = x;
this[1] = y;
this[2] = z;
this[3] = w;
return this.check();
}
fromObject(object) {
this[0] = object.x;
this[1] = object.y;
this[2] = object.z;
this[3] = object.w;
return this.check();
}
fromMatrix3(m) {
quat_fromMat3(this, m);
return this.check();
}
fromAxisRotation(axis, rad) {
quat_setAxisAngle(this, axis, rad);
return this.check();
}
identity() {
quat_identity(this);
return this.check();
}
setAxisAngle(axis, rad) {
return this.fromAxisRotation(axis, rad);
}
get ELEMENTS() {
return 4;
}
get x() {
return this[0];
}
set x(value) {
this[0] = checkNumber(value);
}
get y() {
return this[1];
}
set y(value) {
this[1] = checkNumber(value);
}
get z() {
return this[2];
}
set z(value) {
this[2] = checkNumber(value);
}
get w() {
return this[3];
}
set w(value) {
this[3] = checkNumber(value);
}
len() {
return quat_length(this);
}
lengthSquared() {
return quat_squaredLength(this);
}
dot(a) {
return quat_dot(this, a);
}
rotationTo(vectorA, vectorB) {
quat_rotationTo(this, vectorA, vectorB);
return this.check();
}
add(a) {
quat_add(this, this, a);
return this.check();
}
calculateW() {
quat_calculateW(this, this);
return this.check();
}
conjugate() {
quat_conjugate(this, this);
return this.check();
}
invert() {
quat_invert(this, this);
return this.check();
}
lerp(a, b, t) {
if (t === undefined) {
return this.lerp(this, a, b);
copy(array) {
this[0] = array[0];
this[1] = array[1];
this[2] = array[2];
this[3] = array[3];
return this.check();
}
quat_lerp(this, a, b, t);
return this.check();
}
multiplyRight(a) {
quat_multiply(this, this, a);
return this.check();
}
multiplyLeft(a) {
quat_multiply(this, a, this);
return this.check();
}
normalize() {
const length = this.len();
const l = length > 0 ? 1 / length : 0;
this[0] = this[0] * l;
this[1] = this[1] * l;
this[2] = this[2] * l;
this[3] = this[3] * l;
if (length === 0) {
this[3] = 1;
set(x, y, z, w) {
this[0] = x;
this[1] = y;
this[2] = z;
this[3] = w;
return this.check();
}
return this.check();
}
rotateX(rad) {
quat_rotateX(this, this, rad);
return this.check();
}
rotateY(rad) {
quat_rotateY(this, this, rad);
return this.check();
}
rotateZ(rad) {
quat_rotateZ(this, this, rad);
return this.check();
}
scale(b) {
quat_scale(this, this, b);
return this.check();
}
slerp(arg0, arg1, arg2) {
let start;
let target;
let ratio;
switch (arguments.length) {
case 1:
({
start = IDENTITY_QUATERNION,
target,
ratio
} = arg0);
break;
case 2:
start = this;
target = arg0;
ratio = arg1;
break;
default:
start = arg0;
target = arg1;
ratio = arg2;
fromObject(object) {
this[0] = object.x;
this[1] = object.y;
this[2] = object.z;
this[3] = object.w;
return this.check();
}
quat_slerp(this, start, target, ratio);
return this.check();
}
transformVector4(vector, result = new Vector4()) {
vec4_transformQuat(result, vector, this);
return checkVector(result, 4);
}
lengthSq() {
return this.lengthSquared();
}
setFromAxisAngle(axis, rad) {
return this.setAxisAngle(axis, rad);
}
premultiply(a) {
return this.multiplyLeft(a);
}
multiply(a) {
return this.multiplyRight(a);
}
/**
* Creates a quaternion from the given 3x3 rotation matrix.
* NOTE: The resultant quaternion is not normalized, so you should
* be sure to renormalize the quaternion yourself where necessary.
* @param m
* @returns
*/
fromMatrix3(m) {
quat_fromMat3(this, m);
return this.check();
}
fromAxisRotation(axis, rad) {
quat_setAxisAngle(this, axis, rad);
return this.check();
}
/** Set a quat to the identity quaternion */
identity() {
quat_identity(this);
return this.check();
}
// Set the components of a quat to the given values
// set(i, j, k, l) {
// quat_set(this, i, j, k, l);
// return this.check();
// }
// Sets a quat from the given angle and rotation axis, then returns it.
setAxisAngle(axis, rad) {
return this.fromAxisRotation(axis, rad);
}
// Getters/setters
get ELEMENTS() {
return 4;
}
get x() {
return this[0];
}
set x(value) {
this[0] = checkNumber(value);
}
get y() {
return this[1];
}
set y(value) {
this[1] = checkNumber(value);
}
get z() {
return this[2];
}
set z(value) {
this[2] = checkNumber(value);
}
get w() {
return this[3];
}
set w(value) {
this[3] = checkNumber(value);
}
// Calculates the length of a quat
len() {
return quat_length(this);
}
// Calculates the squared length of a quat
lengthSquared() {
return quat_squaredLength(this);
}
// Calculates the dot product of two quat's
// @return {Number}
dot(a) {
return quat_dot(this, a);
}
// Gets the rotation axis and angle for a given quaternion.
// If a quaternion is created with setAxisAngle, this method will
// return the same values as providied in the original parameter
// list OR functionally equivalent values.
// Example: The quaternion formed by axis [0, 0, 1] and angle -90
// is the same as the quaternion formed by [0, 0, 1] and 270.
// This method favors the latter.
// @return {{[x,y,z], Number}}
// getAxisAngle() {
// const axis = [];
// // const angle = quat_getAxisAngle(axis, this);
// return {axis, angle};
// }
// MODIFIERS
// Sets a quaternion to represent the shortest rotation from one vector
// to another. Both vectors are assumed to be unit length.
rotationTo(vectorA, vectorB) {
quat_rotationTo(this, vectorA, vectorB);
return this.check();
}
// Sets the specified quaternion with values corresponding to the given axes.
// Each axis is a vec3 and is expected to be unit length and perpendicular
// to all other specified axes.
// setAxes() {
// Number
// }
// Performs a spherical linear interpolation with two control points
// sqlerp() {
// Number;
// }
// Adds two quat's
add(a) {
quat_add(this, this, a);
return this.check();
}
// Calculates the W component of a quat from the X, Y, and Z components.
// Any existing W component will be ignored.
calculateW() {
quat_calculateW(this, this);
return this.check();
}
// Calculates the conjugate of a quat If the quaternion is normalized,
// this function is faster than quat_invert and produces the same result.
conjugate() {
quat_conjugate(this, this);
return this.check();
}
// Calculates the inverse of a quat
invert() {
quat_invert(this, this);
return this.check();
}
// Performs a linear interpolation between two quat's
lerp(a, b, t) {
if (t === undefined) {
return this.lerp(this, a, b);
}
quat_lerp(this, a, b, t);
return this.check();
}
// Multiplies two quat's
multiplyRight(a) {
quat_multiply(this, this, a);
return this.check();
}
multiplyLeft(a) {
quat_multiply(this, a, this);
return this.check();
}
// Normalize a quat
normalize() {
// Handle 0 case
const length = this.len();
const l = length > 0 ? 1 / length : 0;
this[0] = this[0] * l;
this[1] = this[1] * l;
this[2] = this[2] * l;
this[3] = this[3] * l;
// Set to [0, 0, 0, 1] if length is 0
if (length === 0) {
this[3] = 1;
}
return this.check();
}
// Rotates a quaternion by the given angle about the X axis
rotateX(rad) {
quat_rotateX(this, this, rad);
return this.check();
}
// Rotates a quaternion by the given angle about the Y axis
rotateY(rad) {
quat_rotateY(this, this, rad);
return this.check();
}
// Rotates a quaternion by the given angle about the Z axis
rotateZ(rad) {
quat_rotateZ(this, this, rad);
return this.check();
}
// Scales a quat by a scalar number
scale(b) {
quat_scale(this, this, b);
return this.check();
}
// Performs a spherical linear interpolation between two quat
slerp(arg0, arg1, arg2) {
let start;
let target;
let ratio;
// eslint-disable-next-line prefer-rest-params
switch (arguments.length) {
case 1: // Deprecated signature ({start, target, ratio})
// eslint-disable-next-line prefer-rest-params
({
start = IDENTITY_QUATERNION,
target,
ratio
} = arg0);
break;
case 2: // THREE.js compatibility signature (target, ration)
start = this; // eslint-disable-line
target = arg0;
ratio = arg1;
break;
default:
// Default signature: (start, target, ratio)
start = arg0;
target = arg1;
ratio = arg2;
}
quat_slerp(this, start, target, ratio);
return this.check();
}
transformVector4(vector, result = new Vector4()) {
vec4_transformQuat(result, vector, this);
return checkVector(result, 4);
}
// THREE.js Math API compatibility
lengthSq() {
return this.lengthSquared();
}
setFromAxisAngle(axis, rad) {
return this.setAxisAngle(axis, rad);
}
premultiply(a) {
return this.multiplyLeft(a);
}
multiply(a) {
return this.multiplyRight(a);
}
}
//# sourceMappingURL=quaternion.js.map
import { NumericArray } from '@math.gl/types';
import { Vector3 } from './vector3';
declare type SphericalCoordinatesOptions = {
import { Vector3 } from "./vector3.js";
type SphericalCoordinatesOptions = {
phi?: number;

@@ -12,3 +12,3 @@ theta?: number;

};
declare type FormatOptions = {
type FormatOptions = {
printTypes?: boolean;

@@ -61,2 +61,1 @@ };

export {};
//# sourceMappingURL=spherical-coordinates.d.ts.map

@@ -1,155 +0,146 @@

import _defineProperty from "@babel/runtime/helpers/esm/defineProperty";
import { Vector3 } from "./vector3.js";
import { formatValue, equals, config } from "../lib/common.js";
import { degrees, radians, clamp } from "../lib/common.js";
// @ts-ignore gl-matrix types...
import * as vec3 from "../gl-matrix/vec3.js";
// TODO - import epsilon
const EPSILON = 0.000001;
const EARTH_RADIUS_METERS = 6371000;
/**
* The poles (phi) are at the positive and negative y axis.
* The equator starts at positive z.
* @link https://en.wikipedia.org/wiki/Spherical_coordinate_system
*/
export class SphericalCoordinates {
constructor({
phi = 0,
theta = 0,
radius = 1,
bearing,
pitch,
altitude,
radiusScale = EARTH_RADIUS_METERS
} = {}) {
_defineProperty(this, "phi", void 0);
_defineProperty(this, "theta", void 0);
_defineProperty(this, "radius", void 0);
_defineProperty(this, "radiusScale", void 0);
this.phi = phi;
this.theta = theta;
this.radius = radius || altitude || 1;
this.radiusScale = radiusScale || 1;
if (bearing !== undefined) {
this.bearing = bearing;
// bearing: number;
// pitch: number;
// altitude: number;
// lnglatZ coordinates
// longitude: number;
// latitude: number;
// lng: number;
// lat: number;
// z: number;
/**
* Creates a new SphericalCoordinates object
* @param options
* @param [options.phi] =0 - rotation around X (latitude)
* @param [options.theta] =0 - rotation around Y (longitude)
* @param [options.radius] =1 - Distance from center
* @param [options.bearing]
* @param [options.pitch]
* @param [options.altitude]
* @param [options.radiusScale] =1
*/
// eslint-disable-next-line complexity
constructor({ phi = 0, theta = 0, radius = 1, bearing, pitch, altitude, radiusScale = EARTH_RADIUS_METERS } = {}) {
this.phi = phi;
this.theta = theta;
// TODO - silently accepts illegal 0
this.radius = radius || altitude || 1; // radial distance from center
this.radiusScale = radiusScale || 1; // Used by lngLatZ
if (bearing !== undefined) {
this.bearing = bearing; // up / down towards top and bottom pole
}
if (pitch !== undefined) {
this.pitch = pitch; // around the equator of the sphere
}
this.check();
}
if (pitch !== undefined) {
this.pitch = pitch;
toString() {
return this.formatString(config);
}
this.check();
}
toString() {
return this.formatString(config);
}
formatString({
printTypes = false
}) {
const f = formatValue;
return "".concat(printTypes ? 'Spherical' : '', "[rho:").concat(f(this.radius), ",theta:").concat(f(this.theta), ",phi:").concat(f(this.phi), "]");
}
equals(other) {
return equals(this.radius, other.radius) && equals(this.theta, other.theta) && equals(this.phi, other.phi);
}
exactEquals(other) {
return this.radius === other.radius && this.theta === other.theta && this.phi === other.phi;
}
get bearing() {
return 180 - degrees(this.phi);
}
set bearing(v) {
this.phi = Math.PI - radians(v);
}
get pitch() {
return degrees(this.theta);
}
set pitch(v) {
this.theta = radians(v);
}
get longitude() {
return degrees(this.phi);
}
get latitude() {
return degrees(this.theta);
}
get lng() {
return degrees(this.phi);
}
get lat() {
return degrees(this.theta);
}
get z() {
return (this.radius - 1) * this.radiusScale;
}
set(radius, phi, theta) {
this.radius = radius;
this.phi = phi;
this.theta = theta;
return this.check();
}
clone() {
return new SphericalCoordinates().copy(this);
}
copy(other) {
this.radius = other.radius;
this.phi = other.phi;
this.theta = other.theta;
return this.check();
}
fromLngLatZ([lng, lat, z]) {
this.radius = 1 + z / this.radiusScale;
this.phi = radians(lat);
this.theta = radians(lng);
return this.check();
}
fromVector3(v) {
this.radius = vec3.length(v);
if (this.radius > 0) {
this.theta = Math.atan2(v[0], v[1]);
this.phi = Math.acos(clamp(v[2] / this.radius, -1, 1));
formatString({ printTypes = false }) {
const f = formatValue;
return `${printTypes ? 'Spherical' : ''}\
[rho:${f(this.radius)},theta:${f(this.theta)},phi:${f(this.phi)}]`;
}
return this.check();
}
toVector3() {
return new Vector3(0, 0, this.radius).rotateX({
radians: this.theta
}).rotateZ({
radians: this.phi
});
}
makeSafe() {
this.phi = Math.max(EPSILON, Math.min(Math.PI - EPSILON, this.phi));
return this;
}
check() {
if (!Number.isFinite(this.phi) || !Number.isFinite(this.theta) || !(this.radius > 0)) {
throw new Error('SphericalCoordinates: some fields set to invalid numbers');
equals(other) {
return (equals(this.radius, other.radius) &&
equals(this.theta, other.theta) &&
equals(this.phi, other.phi));
}
return this;
}
exactEquals(other) {
return this.radius === other.radius && this.theta === other.theta && this.phi === other.phi;
}
/* eslint-disable brace-style */
// Cartographic (bearing 0 north, pitch 0 look from above)
get bearing() {
return 180 - degrees(this.phi);
}
set bearing(v) {
this.phi = Math.PI - radians(v);
}
get pitch() {
return degrees(this.theta);
}
set pitch(v) {
this.theta = radians(v);
}
// get pitch() { return 90 - degrees(this.phi); }
// set pitch(v) { this.phi = radians(v) + Math.PI / 2; }
// get altitude() { return this.radius - 1; } // relative altitude
// lnglatZ coordinates
get longitude() {
return degrees(this.phi);
}
get latitude() {
return degrees(this.theta);
}
get lng() {
return degrees(this.phi);
}
get lat() {
return degrees(this.theta);
}
get z() {
return (this.radius - 1) * this.radiusScale;
}
/* eslint-enable brace-style */
set(radius, phi, theta) {
this.radius = radius;
this.phi = phi;
this.theta = theta;
return this.check();
}
clone() {
return new SphericalCoordinates().copy(this);
}
copy(other) {
this.radius = other.radius;
this.phi = other.phi;
this.theta = other.theta;
return this.check();
}
fromLngLatZ([lng, lat, z]) {
this.radius = 1 + z / this.radiusScale;
this.phi = radians(lat);
this.theta = radians(lng);
return this.check();
}
fromVector3(v) {
this.radius = vec3.length(v);
if (this.radius > 0) {
this.theta = Math.atan2(v[0], v[1]); // equator angle around y-up axis
this.phi = Math.acos(clamp(v[2] / this.radius, -1, 1)); // polar angle
}
return this.check();
}
toVector3() {
return new Vector3(0, 0, this.radius)
.rotateX({ radians: this.theta })
.rotateZ({ radians: this.phi });
}
// restrict phi to be betwee EPS and PI-EPS
makeSafe() {
this.phi = Math.max(EPSILON, Math.min(Math.PI - EPSILON, this.phi));
return this;
}
check() {
// this.makeSafe();
if (!Number.isFinite(this.phi) || !Number.isFinite(this.theta) || !(this.radius > 0)) {
throw new Error('SphericalCoordinates: some fields set to invalid numbers');
}
return this;
}
}
//# sourceMappingURL=spherical-coordinates.js.map

@@ -1,2 +0,2 @@

import { Vector } from './base/vector';
import { Vector } from "./base/vector.js";
import { NumericArray } from '@math.gl/types';

@@ -55,2 +55,1 @@ /**

}
//# sourceMappingURL=vector2.d.ts.map

@@ -0,1 +1,3 @@

// Copyright (c) 2017 Uber Technologies, Inc.
// MIT License
import { Vector } from "./base/vector.js";

@@ -6,90 +8,104 @@ import { config, isArray } from "../lib/common.js";

import { vec2_transformMat4AsVector } from "../lib/gl-matrix-extras.js";
/**
* Two-element vector class.
* Subclass of Array<number>
*/
export class Vector2 extends Vector {
constructor(x = 0, y = 0) {
super(2);
if (isArray(x) && arguments.length === 1) {
this.copy(x);
} else {
if (config.debug) {
checkNumber(x);
checkNumber(y);
}
this[0] = x;
this[1] = y;
// Creates a new, empty vec2
constructor(x = 0, y = 0) {
// PERF NOTE: initialize elements as double precision numbers
super(2); // -0, -0);
if (isArray(x) && arguments.length === 1) {
this.copy(x);
}
else {
if (config.debug) {
checkNumber(x);
checkNumber(y);
}
this[0] = x;
this[1] = y;
}
}
}
set(x, y) {
this[0] = x;
this[1] = y;
return this.check();
}
copy(array) {
this[0] = array[0];
this[1] = array[1];
return this.check();
}
fromObject(object) {
if (config.debug) {
checkNumber(object.x);
checkNumber(object.y);
set(x, y) {
this[0] = x;
this[1] = y;
return this.check();
}
this[0] = object.x;
this[1] = object.y;
return this.check();
}
toObject(object) {
object.x = this[0];
object.y = this[1];
return object;
}
get ELEMENTS() {
return 2;
}
horizontalAngle() {
return Math.atan2(this.y, this.x);
}
verticalAngle() {
return Math.atan2(this.x, this.y);
}
transform(matrix4) {
return this.transformAsPoint(matrix4);
}
transformAsPoint(matrix4) {
vec2_transformMat4(this, this, matrix4);
return this.check();
}
transformAsVector(matrix4) {
vec2_transformMat4AsVector(this, this, matrix4);
return this.check();
}
transformByMatrix3(matrix3) {
vec2_transformMat3(this, this, matrix3);
return this.check();
}
transformByMatrix2x3(matrix2x3) {
vec2_transformMat2d(this, this, matrix2x3);
return this.check();
}
transformByMatrix2(matrix2) {
vec2_transformMat2(this, this, matrix2);
return this.check();
}
copy(array) {
this[0] = array[0];
this[1] = array[1];
return this.check();
}
fromObject(object) {
if (config.debug) {
checkNumber(object.x);
checkNumber(object.y);
}
this[0] = object.x;
this[1] = object.y;
return this.check();
}
toObject(object) {
object.x = this[0];
object.y = this[1];
return object;
}
// Getters/setters
get ELEMENTS() {
return 2;
}
/**
* Returns angle from x axis
* @returns
*/
horizontalAngle() {
return Math.atan2(this.y, this.x);
}
/**
* Returns angle from y axis
* @returns
*/
verticalAngle() {
return Math.atan2(this.x, this.y);
}
// Transforms
/**
* Transforms as point
* @param matrix4
* @returns
*/
transform(matrix4) {
return this.transformAsPoint(matrix4);
}
/**
* transforms as point (4th component is implicitly 1)
* @param matrix4
* @returns
*/
transformAsPoint(matrix4) {
vec2_transformMat4(this, this, matrix4);
return this.check();
}
/**
* transforms as vector (4th component is implicitly 0, ignores translation. slightly faster)
* @param matrix4
* @returns
*/
transformAsVector(matrix4) {
vec2_transformMat4AsVector(this, this, matrix4);
return this.check();
}
transformByMatrix3(matrix3) {
vec2_transformMat3(this, this, matrix3);
return this.check();
}
transformByMatrix2x3(matrix2x3) {
vec2_transformMat2d(this, this, matrix2x3);
return this.check();
}
transformByMatrix2(matrix2) {
vec2_transformMat2(this, this, matrix2);
return this.check();
}
}
//# sourceMappingURL=vector2.js.map
import { NumericArray } from '@math.gl/types';
import { Vector } from './base/vector';
import { Vector } from "./base/vector.js";
/**

@@ -56,2 +56,1 @@ * Three-element vector class.

}
//# sourceMappingURL=vector3.d.ts.map
import { Vector } from "./base/vector.js";
import { config, isArray } from "../lib/common.js";
import { checkNumber } from "../lib/validators.js";
// @ts-ignore gl-matrix types
import { angle as vec3_angle, cross as vec3_cross, rotateX as vec3_rotateX, rotateY as vec3_rotateY, rotateZ as vec3_rotateZ, transformMat4 as vec3_transformMat4, transformMat3 as vec3_transformMat3, transformQuat as vec3_transformQuat } from "../gl-matrix/vec3.js";
/* eslint-disable camelcase */
import { vec3_transformMat2, vec3_transformMat4AsVector } from "../lib/gl-matrix-extras.js";
const ORIGIN = [0, 0, 0];
let ZERO;
/**
* Three-element vector class.
* Subclass of Array<number>
*/
export class Vector3 extends Vector {
static get ZERO() {
if (!ZERO) {
ZERO = new Vector3(0, 0, 0);
Object.freeze(ZERO);
static get ZERO() {
if (!ZERO) {
ZERO = new Vector3(0, 0, 0);
Object.freeze(ZERO);
}
return ZERO;
}
return ZERO;
}
constructor(x = 0, y = 0, z = 0) {
super(-0, -0, -0);
if (arguments.length === 1 && isArray(x)) {
this.copy(x);
} else {
if (config.debug) {
checkNumber(x);
checkNumber(y);
checkNumber(z);
}
this[0] = x;
this[1] = y;
this[2] = z;
/**
* @class
* @param x
* @param y
* @param z
*/
constructor(x = 0, y = 0, z = 0) {
// PERF NOTE: initialize elements as double precision numbers
super(-0, -0, -0);
if (arguments.length === 1 && isArray(x)) {
this.copy(x);
}
else {
// this.set(x, y, z);
if (config.debug) {
checkNumber(x);
checkNumber(y);
checkNumber(z);
}
// @ts-expect-error TS2412: Property '0' of type 'number | [number, number, number]' is not assignable to numeric index type 'number'
this[0] = x;
this[1] = y;
this[2] = z;
}
}
}
set(x, y, z) {
this[0] = x;
this[1] = y;
this[2] = z;
return this.check();
}
copy(array) {
this[0] = array[0];
this[1] = array[1];
this[2] = array[2];
return this.check();
}
fromObject(object) {
if (config.debug) {
checkNumber(object.x);
checkNumber(object.y);
checkNumber(object.z);
set(x, y, z) {
this[0] = x;
this[1] = y;
this[2] = z;
return this.check();
}
this[0] = object.x;
this[1] = object.y;
this[2] = object.z;
return this.check();
}
toObject(object) {
object.x = this[0];
object.y = this[1];
object.z = this[2];
return object;
}
get ELEMENTS() {
return 3;
}
get z() {
return this[2];
}
set z(value) {
this[2] = checkNumber(value);
}
angle(vector) {
return vec3_angle(this, vector);
}
cross(vector) {
vec3_cross(this, this, vector);
return this.check();
}
rotateX({
radians,
origin = ORIGIN
}) {
vec3_rotateX(this, this, origin, radians);
return this.check();
}
rotateY({
radians,
origin = ORIGIN
}) {
vec3_rotateY(this, this, origin, radians);
return this.check();
}
rotateZ({
radians,
origin = ORIGIN
}) {
vec3_rotateZ(this, this, origin, radians);
return this.check();
}
transform(matrix4) {
return this.transformAsPoint(matrix4);
}
transformAsPoint(matrix4) {
vec3_transformMat4(this, this, matrix4);
return this.check();
}
transformAsVector(matrix4) {
vec3_transformMat4AsVector(this, this, matrix4);
return this.check();
}
transformByMatrix3(matrix3) {
vec3_transformMat3(this, this, matrix3);
return this.check();
}
transformByMatrix2(matrix2) {
vec3_transformMat2(this, this, matrix2);
return this.check();
}
transformByQuaternion(quaternion) {
vec3_transformQuat(this, this, quaternion);
return this.check();
}
copy(array) {
this[0] = array[0];
this[1] = array[1];
this[2] = array[2];
return this.check();
}
fromObject(object) {
if (config.debug) {
checkNumber(object.x);
checkNumber(object.y);
checkNumber(object.z);
}
this[0] = object.x;
this[1] = object.y;
this[2] = object.z;
return this.check();
}
toObject(object) {
object.x = this[0];
object.y = this[1];
object.z = this[2];
return object;
}
// Getters/setters
get ELEMENTS() {
return 3;
}
get z() {
return this[2];
}
set z(value) {
this[2] = checkNumber(value);
}
// ACCESSORS
angle(vector) {
return vec3_angle(this, vector);
}
// MODIFIERS
cross(vector) {
vec3_cross(this, this, vector);
return this.check();
}
rotateX({ radians, origin = ORIGIN }) {
vec3_rotateX(this, this, origin, radians);
return this.check();
}
rotateY({ radians, origin = ORIGIN }) {
vec3_rotateY(this, this, origin, radians);
return this.check();
}
rotateZ({ radians, origin = ORIGIN }) {
vec3_rotateZ(this, this, origin, radians);
return this.check();
}
// Transforms
// transforms as point (4th component is implicitly 1)
transform(matrix4) {
return this.transformAsPoint(matrix4);
}
// transforms as point (4th component is implicitly 1)
transformAsPoint(matrix4) {
vec3_transformMat4(this, this, matrix4);
return this.check();
}
// transforms as vector (4th component is implicitly 0, ignores translation. slightly faster)
transformAsVector(matrix4) {
vec3_transformMat4AsVector(this, this, matrix4);
return this.check();
}
transformByMatrix3(matrix3) {
vec3_transformMat3(this, this, matrix3);
return this.check();
}
transformByMatrix2(matrix2) {
vec3_transformMat2(this, this, matrix2);
return this.check();
}
transformByQuaternion(quaternion) {
vec3_transformQuat(this, this, quaternion);
return this.check();
}
}
//# sourceMappingURL=vector3.js.map
import { NumericArray } from '@math.gl/types';
import { Vector } from './base/vector';
import type { Matrix4 } from './matrix4';
import { Vector } from "./base/vector.js";
import type { Matrix4 } from "./matrix4.js";
/**

@@ -41,2 +41,1 @@ * Four-element vector class.

}
//# sourceMappingURL=vector4.d.ts.map

@@ -0,1 +1,4 @@

// Copyright (c) 2017 Uber Technologies, Inc.
// MIT License
/* eslint-disable camelcase */
import { transformMat4 as vec4_transformMat4, transformQuat as vec4_transformQuat } from "../gl-matrix/vec3.js";

@@ -7,117 +10,106 @@ import { vec4_transformMat2, vec4_transformMat3 } from "../lib/gl-matrix-extras.js";

let ZERO;
/**
* Four-element vector class.
* Subclass of Array<number>
*/
export class Vector4 extends Vector {
static get ZERO() {
if (!ZERO) {
ZERO = new Vector4(0, 0, 0, 0);
Object.freeze(ZERO);
static get ZERO() {
if (!ZERO) {
ZERO = new Vector4(0, 0, 0, 0);
Object.freeze(ZERO);
}
return ZERO;
}
return ZERO;
}
constructor(x = 0, y = 0, z = 0, w = 0) {
super(-0, -0, -0, -0);
if (isArray(x) && arguments.length === 1) {
this.copy(x);
} else {
if (config.debug) {
checkNumber(x);
checkNumber(y);
checkNumber(z);
checkNumber(w);
}
this[0] = x;
this[1] = y;
this[2] = z;
this[3] = w;
constructor(x = 0, y = 0, z = 0, w = 0) {
// PERF NOTE: initialize elements as double precision numbers
super(-0, -0, -0, -0);
if (isArray(x) && arguments.length === 1) {
this.copy(x);
}
else {
// this.set(x, y, z, w);
if (config.debug) {
checkNumber(x);
checkNumber(y);
checkNumber(z);
checkNumber(w);
}
this[0] = x;
this[1] = y;
this[2] = z;
this[3] = w;
}
}
}
set(x, y, z, w) {
this[0] = x;
this[1] = y;
this[2] = z;
this[3] = w;
return this.check();
}
copy(array) {
this[0] = array[0];
this[1] = array[1];
this[2] = array[2];
this[3] = array[3];
return this.check();
}
fromObject(object) {
if (config.debug) {
checkNumber(object.x);
checkNumber(object.y);
checkNumber(object.z);
checkNumber(object.w);
set(x, y, z, w) {
this[0] = x;
this[1] = y;
this[2] = z;
this[3] = w;
return this.check();
}
this[0] = object.x;
this[1] = object.y;
this[2] = object.z;
this[3] = object.w;
return this;
}
toObject(object) {
object.x = this[0];
object.y = this[1];
object.z = this[2];
object.w = this[3];
return object;
}
get ELEMENTS() {
return 4;
}
get z() {
return this[2];
}
set z(value) {
this[2] = checkNumber(value);
}
get w() {
return this[3];
}
set w(value) {
this[3] = checkNumber(value);
}
transform(matrix4) {
vec4_transformMat4(this, this, matrix4);
return this.check();
}
transformByMatrix3(matrix3) {
vec4_transformMat3(this, this, matrix3);
return this.check();
}
transformByMatrix2(matrix2) {
vec4_transformMat2(this, this, matrix2);
return this.check();
}
transformByQuaternion(quaternion) {
vec4_transformQuat(this, this, quaternion);
return this.check();
}
applyMatrix4(m) {
m.transform(this, this);
return this;
}
copy(array) {
this[0] = array[0];
this[1] = array[1];
this[2] = array[2];
this[3] = array[3];
return this.check();
}
fromObject(object) {
if (config.debug) {
checkNumber(object.x);
checkNumber(object.y);
checkNumber(object.z);
checkNumber(object.w);
}
this[0] = object.x;
this[1] = object.y;
this[2] = object.z;
this[3] = object.w;
return this;
}
toObject(object) {
object.x = this[0];
object.y = this[1];
object.z = this[2];
object.w = this[3];
return object;
}
// Getters/setters
/* eslint-disable no-multi-spaces, brace-style, no-return-assign */
get ELEMENTS() {
return 4;
}
get z() {
return this[2];
}
set z(value) {
this[2] = checkNumber(value);
}
get w() {
return this[3];
}
set w(value) {
this[3] = checkNumber(value);
}
transform(matrix4) {
vec4_transformMat4(this, this, matrix4);
return this.check();
}
transformByMatrix3(matrix3) {
vec4_transformMat3(this, this, matrix3);
return this.check();
}
transformByMatrix2(matrix2) {
vec4_transformMat2(this, this, matrix2);
return this.check();
}
transformByQuaternion(quaternion) {
vec4_transformQuat(this, this, quaternion);
return this.check();
}
// three.js compatibility
applyMatrix4(m) {
m.transform(this, this);
return this;
}
}
//# sourceMappingURL=vector4.js.map

@@ -38,2 +38,1 @@ /**

export const ANGLE_ORDER: "zyx";
//# sourceMappingURL=common.d.ts.map

@@ -0,1 +1,8 @@

// @eslint-disable
// @ts-nocheck
/**
* Common utilities
* @module glMatrix
*/
// Configuration Constants
export const EPSILON = 0.000001;

@@ -5,16 +12,41 @@ export let ARRAY_TYPE = typeof Float32Array !== 'undefined' ? Float32Array : Array;

export const ANGLE_ORDER = 'zyx';
/**
* Symmetric round
* see https://www.npmjs.com/package/round-half-up-symmetric#user-content-detailed-background
*
* @param {Number} a value to round
*/
export function round(a) {
if (a >= 0) return Math.round(a);
return a % 0.5 === 0 ? Math.floor(a) : Math.round(a);
if (a >= 0)
return Math.round(a);
return a % 0.5 === 0 ? Math.floor(a) : Math.round(a);
}
/**
* Sets the type of array used when creating new vectors and matrices
*
* @param {Float32ArrayConstructor | ArrayConstructor} type Array type, such as Float32Array or Array
*/
export function setMatrixArrayType(type) {
ARRAY_TYPE = type;
ARRAY_TYPE = type;
}
const degree = Math.PI / 180;
/**
* Convert Degree To Radian
*
* @param {Number} a Angle in Degrees
*/
export function toRadian(a) {
return a * degree;
return a * degree;
}
/**
* Tests whether or not the arguments have approximately the same value, within an absolute
* or relative tolerance of glMatrix.EPSILON (an absolute tolerance is used for values less
* than or equal to 1.0, and a relative tolerance is used for larger values)
*
* @param {Number} a The first number to test.
* @param {Number} b The second number to test.
* @returns {Boolean} True if the numbers are approximately equal, false otherwise.
*/
export function equals(a, b) {
return Math.abs(a - b) <= EPSILON * Math.max(1.0, Math.abs(a), Math.abs(b));
return Math.abs(a - b) <= EPSILON * Math.max(1.0, Math.abs(a), Math.abs(b));
}
//# sourceMappingURL=common.js.map

@@ -287,2 +287,1 @@ /**

export declare const sub: typeof subtract;
//# sourceMappingURL=mat3.d.ts.map
import * as glMatrix from './common.js';
/**
* 3x3 Matrix
* @module mat3
*/
/**
* Creates a new identity mat3
*
* @returns {mat3} a new 3x3 matrix
*/
export function create() {
const out = new glMatrix.ARRAY_TYPE(9);
if (glMatrix.ARRAY_TYPE != Float32Array) {
out[1] = 0;
out[2] = 0;
out[3] = 0;
out[5] = 0;
out[6] = 0;
out[7] = 0;
}
out[0] = 1;
out[4] = 1;
out[8] = 1;
return out;
const out = new glMatrix.ARRAY_TYPE(9);
if (glMatrix.ARRAY_TYPE != Float32Array) {
out[1] = 0;
out[2] = 0;
out[3] = 0;
out[5] = 0;
out[6] = 0;
out[7] = 0;
}
out[0] = 1;
out[4] = 1;
out[8] = 1;
return out;
}
/**
* Copies the upper-left 3x3 values into the given mat3.
*
* @param {mat3} out the receiving 3x3 matrix
* @param {ReadonlyMat4} a the source 4x4 matrix
* @returns {mat3} out
*/
export function fromMat4(out, a) {
out[0] = a[0];
out[1] = a[1];
out[2] = a[2];
out[3] = a[4];
out[4] = a[5];
out[5] = a[6];
out[6] = a[8];
out[7] = a[9];
out[8] = a[10];
return out;
out[0] = a[0];
out[1] = a[1];
out[2] = a[2];
out[3] = a[4];
out[4] = a[5];
out[5] = a[6];
out[6] = a[8];
out[7] = a[9];
out[8] = a[10];
return out;
}
/**
* Creates a new mat3 initialized with values from an existing matrix
*
* @param {ReadonlyMat3} a matrix to clone
* @returns {mat3} a new 3x3 matrix
*/
export function clone(a) {
const out = new glMatrix.ARRAY_TYPE(9);
out[0] = a[0];
out[1] = a[1];
out[2] = a[2];
out[3] = a[3];
out[4] = a[4];
out[5] = a[5];
out[6] = a[6];
out[7] = a[7];
out[8] = a[8];
return out;
const out = new glMatrix.ARRAY_TYPE(9);
out[0] = a[0];
out[1] = a[1];
out[2] = a[2];
out[3] = a[3];
out[4] = a[4];
out[5] = a[5];
out[6] = a[6];
out[7] = a[7];
out[8] = a[8];
return out;
}
/**
* Copy the values from one mat3 to another
*
* @param {mat3} out the receiving matrix
* @param {ReadonlyMat3} a the source matrix
* @returns {mat3} out
*/
export function copy(out, a) {
out[0] = a[0];
out[1] = a[1];
out[2] = a[2];
out[3] = a[3];
out[4] = a[4];
out[5] = a[5];
out[6] = a[6];
out[7] = a[7];
out[8] = a[8];
return out;
out[0] = a[0];
out[1] = a[1];
out[2] = a[2];
out[3] = a[3];
out[4] = a[4];
out[5] = a[5];
out[6] = a[6];
out[7] = a[7];
out[8] = a[8];
return out;
}
/**
* Create a new mat3 with the given values
*
* @param {Number} m00 Component in column 0, row 0 position (index 0)
* @param {Number} m01 Component in column 0, row 1 position (index 1)
* @param {Number} m02 Component in column 0, row 2 position (index 2)
* @param {Number} m10 Component in column 1, row 0 position (index 3)
* @param {Number} m11 Component in column 1, row 1 position (index 4)
* @param {Number} m12 Component in column 1, row 2 position (index 5)
* @param {Number} m20 Component in column 2, row 0 position (index 6)
* @param {Number} m21 Component in column 2, row 1 position (index 7)
* @param {Number} m22 Component in column 2, row 2 position (index 8)
* @returns {mat3} A new mat3
*/
export function fromValues(m00, m01, m02, m10, m11, m12, m20, m21, m22) {
const out = new glMatrix.ARRAY_TYPE(9);
out[0] = m00;
out[1] = m01;
out[2] = m02;
out[3] = m10;
out[4] = m11;
out[5] = m12;
out[6] = m20;
out[7] = m21;
out[8] = m22;
return out;
const out = new glMatrix.ARRAY_TYPE(9);
out[0] = m00;
out[1] = m01;
out[2] = m02;
out[3] = m10;
out[4] = m11;
out[5] = m12;
out[6] = m20;
out[7] = m21;
out[8] = m22;
return out;
}
/**
* Set the components of a mat3 to the given values
*
* @param {mat3} out the receiving matrix
* @param {Number} m00 Component in column 0, row 0 position (index 0)
* @param {Number} m01 Component in column 0, row 1 position (index 1)
* @param {Number} m02 Component in column 0, row 2 position (index 2)
* @param {Number} m10 Component in column 1, row 0 position (index 3)
* @param {Number} m11 Component in column 1, row 1 position (index 4)
* @param {Number} m12 Component in column 1, row 2 position (index 5)
* @param {Number} m20 Component in column 2, row 0 position (index 6)
* @param {Number} m21 Component in column 2, row 1 position (index 7)
* @param {Number} m22 Component in column 2, row 2 position (index 8)
* @returns {mat3} out
*/
export function set(out, m00, m01, m02, m10, m11, m12, m20, m21, m22) {
out[0] = m00;
out[1] = m01;
out[2] = m02;
out[3] = m10;
out[4] = m11;
out[5] = m12;
out[6] = m20;
out[7] = m21;
out[8] = m22;
return out;
out[0] = m00;
out[1] = m01;
out[2] = m02;
out[3] = m10;
out[4] = m11;
out[5] = m12;
out[6] = m20;
out[7] = m21;
out[8] = m22;
return out;
}
/**
* Set a mat3 to the identity matrix
*
* @param {mat3} out the receiving matrix
* @returns {mat3} out
*/
export function identity(out) {
out[0] = 1;
out[1] = 0;
out[2] = 0;
out[3] = 0;
out[4] = 1;
out[5] = 0;
out[6] = 0;
out[7] = 0;
out[8] = 1;
return out;
out[0] = 1;
out[1] = 0;
out[2] = 0;
out[3] = 0;
out[4] = 1;
out[5] = 0;
out[6] = 0;
out[7] = 0;
out[8] = 1;
return out;
}
/**
* Transpose the values of a mat3
*
* @param {mat3} out the receiving matrix
* @param {ReadonlyMat3} a the source matrix
* @returns {mat3} out
*/
export function transpose(out, a) {
if (out === a) {
// If we are transposing ourselves we can skip a few steps but have to cache some values
if (out === a) {
const a01 = a[1];
const a02 = a[2];
const a12 = a[5];
out[1] = a[3];
out[2] = a[6];
out[3] = a01;
out[5] = a[7];
out[6] = a02;
out[7] = a12;
}
else {
out[0] = a[0];
out[1] = a[3];
out[2] = a[6];
out[3] = a[1];
out[4] = a[4];
out[5] = a[7];
out[6] = a[2];
out[7] = a[5];
out[8] = a[8];
}
return out;
}
/**
* Inverts a mat3
*
* @param {mat3} out the receiving matrix
* @param {ReadonlyMat3} a the source matrix
* @returns {mat3} out
*/
export function invert(out, a) {
const a00 = a[0];
const a01 = a[1];
const a02 = a[2];
const a10 = a[3];
const a11 = a[4];
const a12 = a[5];
out[1] = a[3];
out[2] = a[6];
out[3] = a01;
out[5] = a[7];
out[6] = a02;
out[7] = a12;
} else {
out[0] = a[0];
out[1] = a[3];
out[2] = a[6];
out[3] = a[1];
out[4] = a[4];
out[5] = a[7];
out[6] = a[2];
out[7] = a[5];
out[8] = a[8];
}
return out;
const a20 = a[6];
const a21 = a[7];
const a22 = a[8];
const b01 = a22 * a11 - a12 * a21;
const b11 = -a22 * a10 + a12 * a20;
const b21 = a21 * a10 - a11 * a20;
// Calculate the determinant
let det = a00 * b01 + a01 * b11 + a02 * b21;
if (!det) {
return null;
}
det = 1.0 / det;
out[0] = b01 * det;
out[1] = (-a22 * a01 + a02 * a21) * det;
out[2] = (a12 * a01 - a02 * a11) * det;
out[3] = b11 * det;
out[4] = (a22 * a00 - a02 * a20) * det;
out[5] = (-a12 * a00 + a02 * a10) * det;
out[6] = b21 * det;
out[7] = (-a21 * a00 + a01 * a20) * det;
out[8] = (a11 * a00 - a01 * a10) * det;
return out;
}
export function invert(out, a) {
const a00 = a[0];
const a01 = a[1];
const a02 = a[2];
const a10 = a[3];
const a11 = a[4];
const a12 = a[5];
const a20 = a[6];
const a21 = a[7];
const a22 = a[8];
const b01 = a22 * a11 - a12 * a21;
const b11 = -a22 * a10 + a12 * a20;
const b21 = a21 * a10 - a11 * a20;
let det = a00 * b01 + a01 * b11 + a02 * b21;
if (!det) {
return null;
}
det = 1.0 / det;
out[0] = b01 * det;
out[1] = (-a22 * a01 + a02 * a21) * det;
out[2] = (a12 * a01 - a02 * a11) * det;
out[3] = b11 * det;
out[4] = (a22 * a00 - a02 * a20) * det;
out[5] = (-a12 * a00 + a02 * a10) * det;
out[6] = b21 * det;
out[7] = (-a21 * a00 + a01 * a20) * det;
out[8] = (a11 * a00 - a01 * a10) * det;
return out;
}
/**
* Calculates the adjugate of a mat3
*
* @param {mat3} out the receiving matrix
* @param {ReadonlyMat3} a the source matrix
* @returns {mat3} out
*/
export function adjoint(out, a) {
const a00 = a[0];
const a01 = a[1];
const a02 = a[2];
const a10 = a[3];
const a11 = a[4];
const a12 = a[5];
const a20 = a[6];
const a21 = a[7];
const a22 = a[8];
out[0] = a11 * a22 - a12 * a21;
out[1] = a02 * a21 - a01 * a22;
out[2] = a01 * a12 - a02 * a11;
out[3] = a12 * a20 - a10 * a22;
out[4] = a00 * a22 - a02 * a20;
out[5] = a02 * a10 - a00 * a12;
out[6] = a10 * a21 - a11 * a20;
out[7] = a01 * a20 - a00 * a21;
out[8] = a00 * a11 - a01 * a10;
return out;
const a00 = a[0];
const a01 = a[1];
const a02 = a[2];
const a10 = a[3];
const a11 = a[4];
const a12 = a[5];
const a20 = a[6];
const a21 = a[7];
const a22 = a[8];
out[0] = a11 * a22 - a12 * a21;
out[1] = a02 * a21 - a01 * a22;
out[2] = a01 * a12 - a02 * a11;
out[3] = a12 * a20 - a10 * a22;
out[4] = a00 * a22 - a02 * a20;
out[5] = a02 * a10 - a00 * a12;
out[6] = a10 * a21 - a11 * a20;
out[7] = a01 * a20 - a00 * a21;
out[8] = a00 * a11 - a01 * a10;
return out;
}
/**
* Calculates the determinant of a mat3
*
* @param {ReadonlyMat3} a the source matrix
* @returns {Number} determinant of a
*/
export function determinant(a) {
const a00 = a[0];
const a01 = a[1];
const a02 = a[2];
const a10 = a[3];
const a11 = a[4];
const a12 = a[5];
const a20 = a[6];
const a21 = a[7];
const a22 = a[8];
return a00 * (a22 * a11 - a12 * a21) + a01 * (-a22 * a10 + a12 * a20) + a02 * (a21 * a10 - a11 * a20);
const a00 = a[0];
const a01 = a[1];
const a02 = a[2];
const a10 = a[3];
const a11 = a[4];
const a12 = a[5];
const a20 = a[6];
const a21 = a[7];
const a22 = a[8];
return (a00 * (a22 * a11 - a12 * a21) + a01 * (-a22 * a10 + a12 * a20) + a02 * (a21 * a10 - a11 * a20));
}
/**
* Multiplies two mat3's
*
* @param {mat3} out the receiving matrix
* @param {ReadonlyMat3} a the first operand
* @param {ReadonlyMat3} b the second operand
* @returns {mat3} out
*/
export function multiply(out, a, b) {
const a00 = a[0];
const a01 = a[1];
const a02 = a[2];
const a10 = a[3];
const a11 = a[4];
const a12 = a[5];
const a20 = a[6];
const a21 = a[7];
const a22 = a[8];
const b00 = b[0];
const b01 = b[1];
const b02 = b[2];
const b10 = b[3];
const b11 = b[4];
const b12 = b[5];
const b20 = b[6];
const b21 = b[7];
const b22 = b[8];
out[0] = b00 * a00 + b01 * a10 + b02 * a20;
out[1] = b00 * a01 + b01 * a11 + b02 * a21;
out[2] = b00 * a02 + b01 * a12 + b02 * a22;
out[3] = b10 * a00 + b11 * a10 + b12 * a20;
out[4] = b10 * a01 + b11 * a11 + b12 * a21;
out[5] = b10 * a02 + b11 * a12 + b12 * a22;
out[6] = b20 * a00 + b21 * a10 + b22 * a20;
out[7] = b20 * a01 + b21 * a11 + b22 * a21;
out[8] = b20 * a02 + b21 * a12 + b22 * a22;
return out;
const a00 = a[0];
const a01 = a[1];
const a02 = a[2];
const a10 = a[3];
const a11 = a[4];
const a12 = a[5];
const a20 = a[6];
const a21 = a[7];
const a22 = a[8];
const b00 = b[0];
const b01 = b[1];
const b02 = b[2];
const b10 = b[3];
const b11 = b[4];
const b12 = b[5];
const b20 = b[6];
const b21 = b[7];
const b22 = b[8];
out[0] = b00 * a00 + b01 * a10 + b02 * a20;
out[1] = b00 * a01 + b01 * a11 + b02 * a21;
out[2] = b00 * a02 + b01 * a12 + b02 * a22;
out[3] = b10 * a00 + b11 * a10 + b12 * a20;
out[4] = b10 * a01 + b11 * a11 + b12 * a21;
out[5] = b10 * a02 + b11 * a12 + b12 * a22;
out[6] = b20 * a00 + b21 * a10 + b22 * a20;
out[7] = b20 * a01 + b21 * a11 + b22 * a21;
out[8] = b20 * a02 + b21 * a12 + b22 * a22;
return out;
}
/**
* Translate a mat3 by the given vector
*
* @param {mat3} out the receiving matrix
* @param {ReadonlyMat3} a the matrix to translate
* @param {ReadonlyVec2} v vector to translate by
* @returns {mat3} out
*/
export function translate(out, a, v) {
const a00 = a[0];
const a01 = a[1];
const a02 = a[2];
const a10 = a[3];
const a11 = a[4];
const a12 = a[5];
const a20 = a[6];
const a21 = a[7];
const a22 = a[8];
const x = v[0];
const y = v[1];
out[0] = a00;
out[1] = a01;
out[2] = a02;
out[3] = a10;
out[4] = a11;
out[5] = a12;
out[6] = x * a00 + y * a10 + a20;
out[7] = x * a01 + y * a11 + a21;
out[8] = x * a02 + y * a12 + a22;
return out;
const a00 = a[0];
const a01 = a[1];
const a02 = a[2];
const a10 = a[3];
const a11 = a[4];
const a12 = a[5];
const a20 = a[6];
const a21 = a[7];
const a22 = a[8];
const x = v[0];
const y = v[1];
out[0] = a00;
out[1] = a01;
out[2] = a02;
out[3] = a10;
out[4] = a11;
out[5] = a12;
out[6] = x * a00 + y * a10 + a20;
out[7] = x * a01 + y * a11 + a21;
out[8] = x * a02 + y * a12 + a22;
return out;
}
/**
* Rotates a mat3 by the given angle
*
* @param {mat3} out the receiving matrix
* @param {ReadonlyMat3} a the matrix to rotate
* @param {Number} rad the angle to rotate the matrix by
* @returns {mat3} out
*/
export function rotate(out, a, rad) {
const a00 = a[0];
const a01 = a[1];
const a02 = a[2];
const a10 = a[3];
const a11 = a[4];
const a12 = a[5];
const a20 = a[6];
const a21 = a[7];
const a22 = a[8];
const s = Math.sin(rad);
const c = Math.cos(rad);
out[0] = c * a00 + s * a10;
out[1] = c * a01 + s * a11;
out[2] = c * a02 + s * a12;
out[3] = c * a10 - s * a00;
out[4] = c * a11 - s * a01;
out[5] = c * a12 - s * a02;
out[6] = a20;
out[7] = a21;
out[8] = a22;
return out;
const a00 = a[0];
const a01 = a[1];
const a02 = a[2];
const a10 = a[3];
const a11 = a[4];
const a12 = a[5];
const a20 = a[6];
const a21 = a[7];
const a22 = a[8];
const s = Math.sin(rad);
const c = Math.cos(rad);
out[0] = c * a00 + s * a10;
out[1] = c * a01 + s * a11;
out[2] = c * a02 + s * a12;
out[3] = c * a10 - s * a00;
out[4] = c * a11 - s * a01;
out[5] = c * a12 - s * a02;
out[6] = a20;
out[7] = a21;
out[8] = a22;
return out;
}
/**
* Scales the mat3 by the dimensions in the given vec2
*
* @param {mat3} out the receiving matrix
* @param {ReadonlyMat3} a the matrix to scale
* @param {ReadonlyVec2} v the vec2 to scale the matrix by
* @returns {mat3} out
**/
export function scale(out, a, v) {
const x = v[0];
const y = v[1];
out[0] = x * a[0];
out[1] = x * a[1];
out[2] = x * a[2];
out[3] = y * a[3];
out[4] = y * a[4];
out[5] = y * a[5];
out[6] = a[6];
out[7] = a[7];
out[8] = a[8];
return out;
const x = v[0];
const y = v[1];
out[0] = x * a[0];
out[1] = x * a[1];
out[2] = x * a[2];
out[3] = y * a[3];
out[4] = y * a[4];
out[5] = y * a[5];
out[6] = a[6];
out[7] = a[7];
out[8] = a[8];
return out;
}
/**
* Creates a matrix from a vector translation
* This is equivalent to (but much faster than):
*
* mat3.identity(dest);
* mat3.translate(dest, dest, vec);
*
* @param {mat3} out mat3 receiving operation result
* @param {ReadonlyVec2} v Translation vector
* @returns {mat3} out
*/
export function fromTranslation(out, v) {
out[0] = 1;
out[1] = 0;
out[2] = 0;
out[3] = 0;
out[4] = 1;
out[5] = 0;
out[6] = v[0];
out[7] = v[1];
out[8] = 1;
return out;
out[0] = 1;
out[1] = 0;
out[2] = 0;
out[3] = 0;
out[4] = 1;
out[5] = 0;
out[6] = v[0];
out[7] = v[1];
out[8] = 1;
return out;
}
/**
* Creates a matrix from a given angle
* This is equivalent to (but much faster than):
*
* mat3.identity(dest);
* mat3.rotate(dest, dest, rad);
*
* @param {mat3} out mat3 receiving operation result
* @param {Number} rad the angle to rotate the matrix by
* @returns {mat3} out
*/
export function fromRotation(out, rad) {
const s = Math.sin(rad);
const c = Math.cos(rad);
out[0] = c;
out[1] = s;
out[2] = 0;
out[3] = -s;
out[4] = c;
out[5] = 0;
out[6] = 0;
out[7] = 0;
out[8] = 1;
return out;
const s = Math.sin(rad);
const c = Math.cos(rad);
out[0] = c;
out[1] = s;
out[2] = 0;
out[3] = -s;
out[4] = c;
out[5] = 0;
out[6] = 0;
out[7] = 0;
out[8] = 1;
return out;
}
/**
* Creates a matrix from a vector scaling
* This is equivalent to (but much faster than):
*
* mat3.identity(dest);
* mat3.scale(dest, dest, vec);
*
* @param {mat3} out mat3 receiving operation result
* @param {ReadonlyVec2} v Scaling vector
* @returns {mat3} out
*/
export function fromScaling(out, v) {
out[0] = v[0];
out[1] = 0;
out[2] = 0;
out[3] = 0;
out[4] = v[1];
out[5] = 0;
out[6] = 0;
out[7] = 0;
out[8] = 1;
return out;
out[0] = v[0];
out[1] = 0;
out[2] = 0;
out[3] = 0;
out[4] = v[1];
out[5] = 0;
out[6] = 0;
out[7] = 0;
out[8] = 1;
return out;
}
/**
* Copies the values from a mat2d into a mat3
*
* @param {mat3} out the receiving matrix
* @param {ReadonlyMat2d} a the matrix to copy
* @returns {mat3} out
**/
export function fromMat2d(out, a) {
out[0] = a[0];
out[1] = a[1];
out[2] = 0;
out[3] = a[2];
out[4] = a[3];
out[5] = 0;
out[6] = a[4];
out[7] = a[5];
out[8] = 1;
return out;
out[0] = a[0];
out[1] = a[1];
out[2] = 0;
out[3] = a[2];
out[4] = a[3];
out[5] = 0;
out[6] = a[4];
out[7] = a[5];
out[8] = 1;
return out;
}
/**
* Calculates a 3x3 matrix from the given quaternion
*
* @param {mat3} out mat3 receiving operation result
* @param {ReadonlyQuat} q Quaternion to create matrix from
*
* @returns {mat3} out
*/
export function fromQuat(out, q) {
const x = q[0];
const y = q[1];
const z = q[2];
const w = q[3];
const x2 = x + x;
const y2 = y + y;
const z2 = z + z;
const xx = x * x2;
const yx = y * x2;
const yy = y * y2;
const zx = z * x2;
const zy = z * y2;
const zz = z * z2;
const wx = w * x2;
const wy = w * y2;
const wz = w * z2;
out[0] = 1 - yy - zz;
out[3] = yx - wz;
out[6] = zx + wy;
out[1] = yx + wz;
out[4] = 1 - xx - zz;
out[7] = zy - wx;
out[2] = zx - wy;
out[5] = zy + wx;
out[8] = 1 - xx - yy;
return out;
const x = q[0];
const y = q[1];
const z = q[2];
const w = q[3];
const x2 = x + x;
const y2 = y + y;
const z2 = z + z;
const xx = x * x2;
const yx = y * x2;
const yy = y * y2;
const zx = z * x2;
const zy = z * y2;
const zz = z * z2;
const wx = w * x2;
const wy = w * y2;
const wz = w * z2;
out[0] = 1 - yy - zz;
out[3] = yx - wz;
out[6] = zx + wy;
out[1] = yx + wz;
out[4] = 1 - xx - zz;
out[7] = zy - wx;
out[2] = zx - wy;
out[5] = zy + wx;
out[8] = 1 - xx - yy;
return out;
}
/**
* Calculates a 3x3 normal matrix (transpose inverse) from the 4x4 matrix
*
* @param {mat3} out mat3 receiving operation result
* @param {ReadonlyMat4} a Mat4 to derive the normal matrix from
*
* @returns {mat3} out
*/
export function normalFromMat4(out, a) {
const a00 = a[0];
const a01 = a[1];
const a02 = a[2];
const a03 = a[3];
const a10 = a[4];
const a11 = a[5];
const a12 = a[6];
const a13 = a[7];
const a20 = a[8];
const a21 = a[9];
const a22 = a[10];
const a23 = a[11];
const a30 = a[12];
const a31 = a[13];
const a32 = a[14];
const a33 = a[15];
const b00 = a00 * a11 - a01 * a10;
const b01 = a00 * a12 - a02 * a10;
const b02 = a00 * a13 - a03 * a10;
const b03 = a01 * a12 - a02 * a11;
const b04 = a01 * a13 - a03 * a11;
const b05 = a02 * a13 - a03 * a12;
const b06 = a20 * a31 - a21 * a30;
const b07 = a20 * a32 - a22 * a30;
const b08 = a20 * a33 - a23 * a30;
const b09 = a21 * a32 - a22 * a31;
const b10 = a21 * a33 - a23 * a31;
const b11 = a22 * a33 - a23 * a32;
let det = b00 * b11 - b01 * b10 + b02 * b09 + b03 * b08 - b04 * b07 + b05 * b06;
if (!det) {
return null;
}
det = 1.0 / det;
out[0] = (a11 * b11 - a12 * b10 + a13 * b09) * det;
out[1] = (a12 * b08 - a10 * b11 - a13 * b07) * det;
out[2] = (a10 * b10 - a11 * b08 + a13 * b06) * det;
out[3] = (a02 * b10 - a01 * b11 - a03 * b09) * det;
out[4] = (a00 * b11 - a02 * b08 + a03 * b07) * det;
out[5] = (a01 * b08 - a00 * b10 - a03 * b06) * det;
out[6] = (a31 * b05 - a32 * b04 + a33 * b03) * det;
out[7] = (a32 * b02 - a30 * b05 - a33 * b01) * det;
out[8] = (a30 * b04 - a31 * b02 + a33 * b00) * det;
return out;
const a00 = a[0];
const a01 = a[1];
const a02 = a[2];
const a03 = a[3];
const a10 = a[4];
const a11 = a[5];
const a12 = a[6];
const a13 = a[7];
const a20 = a[8];
const a21 = a[9];
const a22 = a[10];
const a23 = a[11];
const a30 = a[12];
const a31 = a[13];
const a32 = a[14];
const a33 = a[15];
const b00 = a00 * a11 - a01 * a10;
const b01 = a00 * a12 - a02 * a10;
const b02 = a00 * a13 - a03 * a10;
const b03 = a01 * a12 - a02 * a11;
const b04 = a01 * a13 - a03 * a11;
const b05 = a02 * a13 - a03 * a12;
const b06 = a20 * a31 - a21 * a30;
const b07 = a20 * a32 - a22 * a30;
const b08 = a20 * a33 - a23 * a30;
const b09 = a21 * a32 - a22 * a31;
const b10 = a21 * a33 - a23 * a31;
const b11 = a22 * a33 - a23 * a32;
// Calculate the determinant
let det = b00 * b11 - b01 * b10 + b02 * b09 + b03 * b08 - b04 * b07 + b05 * b06;
if (!det) {
return null;
}
det = 1.0 / det;
out[0] = (a11 * b11 - a12 * b10 + a13 * b09) * det;
out[1] = (a12 * b08 - a10 * b11 - a13 * b07) * det;
out[2] = (a10 * b10 - a11 * b08 + a13 * b06) * det;
out[3] = (a02 * b10 - a01 * b11 - a03 * b09) * det;
out[4] = (a00 * b11 - a02 * b08 + a03 * b07) * det;
out[5] = (a01 * b08 - a00 * b10 - a03 * b06) * det;
out[6] = (a31 * b05 - a32 * b04 + a33 * b03) * det;
out[7] = (a32 * b02 - a30 * b05 - a33 * b01) * det;
out[8] = (a30 * b04 - a31 * b02 + a33 * b00) * det;
return out;
}
/**
* Generates a 2D projection matrix with the given bounds
*
* @param {mat3} out mat3 frustum matrix will be written into
* @param {number} width Width of your gl context
* @param {number} height Height of gl context
* @returns {mat3} out
*/
export function projection(out, width, height) {
out[0] = 2 / width;
out[1] = 0;
out[2] = 0;
out[3] = 0;
out[4] = -2 / height;
out[5] = 0;
out[6] = -1;
out[7] = 1;
out[8] = 1;
return out;
out[0] = 2 / width;
out[1] = 0;
out[2] = 0;
out[3] = 0;
out[4] = -2 / height;
out[5] = 0;
out[6] = -1;
out[7] = 1;
out[8] = 1;
return out;
}
/**
* Returns a string representation of a mat3
*
* @param {ReadonlyMat3} a matrix to represent as a string
* @returns {String} string representation of the matrix
*/
export function str(a) {
return "mat3(".concat(a[0], ", ").concat(a[1], ", ").concat(a[2], ", ").concat(a[3], ", ").concat(a[4], ", ").concat(a[5], ", ").concat(a[6], ", ").concat(a[7], ", ").concat(a[8], ")");
return `mat3(${a[0]}, ${a[1]}, ${a[2]}, ${a[3]}, ${a[4]}, ${a[5]}, ${a[6]}, ${a[7]}, ${a[8]})`;
}
/**
* Returns Frobenius norm of a mat3
*
* @param {ReadonlyMat3} a the matrix to calculate Frobenius norm of
* @returns {Number} Frobenius norm
*/
export function frob(a) {
return Math.sqrt(a[0] * a[0] + a[1] * a[1] + a[2] * a[2] + a[3] * a[3] + a[4] * a[4] + a[5] * a[5] + a[6] * a[6] + a[7] * a[7] + a[8] * a[8]);
return Math.sqrt(a[0] * a[0] +
a[1] * a[1] +
a[2] * a[2] +
a[3] * a[3] +
a[4] * a[4] +
a[5] * a[5] +
a[6] * a[6] +
a[7] * a[7] +
a[8] * a[8]);
}
/**
* Adds two mat3's
*
* @param {mat3} out the receiving matrix
* @param {ReadonlyMat3} a the first operand
* @param {ReadonlyMat3} b the second operand
* @returns {mat3} out
*/
export function add(out, a, b) {
out[0] = a[0] + b[0];
out[1] = a[1] + b[1];
out[2] = a[2] + b[2];
out[3] = a[3] + b[3];
out[4] = a[4] + b[4];
out[5] = a[5] + b[5];
out[6] = a[6] + b[6];
out[7] = a[7] + b[7];
out[8] = a[8] + b[8];
return out;
out[0] = a[0] + b[0];
out[1] = a[1] + b[1];
out[2] = a[2] + b[2];
out[3] = a[3] + b[3];
out[4] = a[4] + b[4];
out[5] = a[5] + b[5];
out[6] = a[6] + b[6];
out[7] = a[7] + b[7];
out[8] = a[8] + b[8];
return out;
}
/**
* Subtracts matrix b from matrix a
*
* @param {mat3} out the receiving matrix
* @param {ReadonlyMat3} a the first operand
* @param {ReadonlyMat3} b the second operand
* @returns {mat3} out
*/
export function subtract(out, a, b) {
out[0] = a[0] - b[0];
out[1] = a[1] - b[1];
out[2] = a[2] - b[2];
out[3] = a[3] - b[3];
out[4] = a[4] - b[4];
out[5] = a[5] - b[5];
out[6] = a[6] - b[6];
out[7] = a[7] - b[7];
out[8] = a[8] - b[8];
return out;
out[0] = a[0] - b[0];
out[1] = a[1] - b[1];
out[2] = a[2] - b[2];
out[3] = a[3] - b[3];
out[4] = a[4] - b[4];
out[5] = a[5] - b[5];
out[6] = a[6] - b[6];
out[7] = a[7] - b[7];
out[8] = a[8] - b[8];
return out;
}
/**
* Multiply each element of the matrix by a scalar.
*
* @param {mat3} out the receiving matrix
* @param {ReadonlyMat3} a the matrix to scale
* @param {Number} b amount to scale the matrix's elements by
* @returns {mat3} out
*/
export function multiplyScalar(out, a, b) {
out[0] = a[0] * b;
out[1] = a[1] * b;
out[2] = a[2] * b;
out[3] = a[3] * b;
out[4] = a[4] * b;
out[5] = a[5] * b;
out[6] = a[6] * b;
out[7] = a[7] * b;
out[8] = a[8] * b;
return out;
out[0] = a[0] * b;
out[1] = a[1] * b;
out[2] = a[2] * b;
out[3] = a[3] * b;
out[4] = a[4] * b;
out[5] = a[5] * b;
out[6] = a[6] * b;
out[7] = a[7] * b;
out[8] = a[8] * b;
return out;
}
/**
* Adds two mat3's after multiplying each element of the second operand by a scalar value.
*
* @param {mat3} out the receiving vector
* @param {ReadonlyMat3} a the first operand
* @param {ReadonlyMat3} b the second operand
* @param {Number} scale the amount to scale b's elements by before adding
* @returns {mat3} out
*/
export function multiplyScalarAndAdd(out, a, b, scale) {
out[0] = a[0] + b[0] * scale;
out[1] = a[1] + b[1] * scale;
out[2] = a[2] + b[2] * scale;
out[3] = a[3] + b[3] * scale;
out[4] = a[4] + b[4] * scale;
out[5] = a[5] + b[5] * scale;
out[6] = a[6] + b[6] * scale;
out[7] = a[7] + b[7] * scale;
out[8] = a[8] + b[8] * scale;
return out;
out[0] = a[0] + b[0] * scale;
out[1] = a[1] + b[1] * scale;
out[2] = a[2] + b[2] * scale;
out[3] = a[3] + b[3] * scale;
out[4] = a[4] + b[4] * scale;
out[5] = a[5] + b[5] * scale;
out[6] = a[6] + b[6] * scale;
out[7] = a[7] + b[7] * scale;
out[8] = a[8] + b[8] * scale;
return out;
}
/**
* Returns whether or not the matrices have exactly the same elements in the same position (when compared with ===)
*
* @param {ReadonlyMat3} a The first matrix.
* @param {ReadonlyMat3} b The second matrix.
* @returns {Boolean} True if the matrices are equal, false otherwise.
*/
export function exactEquals(a, b) {
return a[0] === b[0] && a[1] === b[1] && a[2] === b[2] && a[3] === b[3] && a[4] === b[4] && a[5] === b[5] && a[6] === b[6] && a[7] === b[7] && a[8] === b[8];
return (a[0] === b[0] &&
a[1] === b[1] &&
a[2] === b[2] &&
a[3] === b[3] &&
a[4] === b[4] &&
a[5] === b[5] &&
a[6] === b[6] &&
a[7] === b[7] &&
a[8] === b[8]);
}
/**
* Returns whether or not the matrices have approximately the same elements in the same position.
*
* @param {ReadonlyMat3} a The first matrix.
* @param {ReadonlyMat3} b The second matrix.
* @returns {Boolean} True if the matrices are equal, false otherwise.
*/
export function equals(a, b) {
const a0 = a[0];
const a1 = a[1];
const a2 = a[2];
const a3 = a[3];
const a4 = a[4];
const a5 = a[5];
const a6 = a[6];
const a7 = a[7];
const a8 = a[8];
const b0 = b[0];
const b1 = b[1];
const b2 = b[2];
const b3 = b[3];
const b4 = b[4];
const b5 = b[5];
const b6 = b[6];
const b7 = b[7];
const b8 = b[8];
return Math.abs(a0 - b0) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a0), Math.abs(b0)) && Math.abs(a1 - b1) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a1), Math.abs(b1)) && Math.abs(a2 - b2) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a2), Math.abs(b2)) && Math.abs(a3 - b3) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a3), Math.abs(b3)) && Math.abs(a4 - b4) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a4), Math.abs(b4)) && Math.abs(a5 - b5) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a5), Math.abs(b5)) && Math.abs(a6 - b6) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a6), Math.abs(b6)) && Math.abs(a7 - b7) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a7), Math.abs(b7)) && Math.abs(a8 - b8) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a8), Math.abs(b8));
const a0 = a[0];
const a1 = a[1];
const a2 = a[2];
const a3 = a[3];
const a4 = a[4];
const a5 = a[5];
const a6 = a[6];
const a7 = a[7];
const a8 = a[8];
const b0 = b[0];
const b1 = b[1];
const b2 = b[2];
const b3 = b[3];
const b4 = b[4];
const b5 = b[5];
const b6 = b[6];
const b7 = b[7];
const b8 = b[8];
return (Math.abs(a0 - b0) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a0), Math.abs(b0)) &&
Math.abs(a1 - b1) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a1), Math.abs(b1)) &&
Math.abs(a2 - b2) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a2), Math.abs(b2)) &&
Math.abs(a3 - b3) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a3), Math.abs(b3)) &&
Math.abs(a4 - b4) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a4), Math.abs(b4)) &&
Math.abs(a5 - b5) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a5), Math.abs(b5)) &&
Math.abs(a6 - b6) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a6), Math.abs(b6)) &&
Math.abs(a7 - b7) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a7), Math.abs(b7)) &&
Math.abs(a8 - b8) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a8), Math.abs(b8)));
}
/**
* Alias for {@link mat3.multiply}
* @function
*/
export const mul = multiply;
/**
* Alias for {@link mat3.subtract}
* @function
*/
export const sub = subtract;
//# sourceMappingURL=mat3.js.map

@@ -550,2 +550,1 @@ /**

export declare const sub: typeof subtract;
//# sourceMappingURL=mat4.d.ts.map

@@ -0,6 +1,177 @@

// @eslint-disable
// @ts-nocheck
import * as glMatrix from './common.js';
/**
* 4x4 Matrix<br>Format: column-major, when typed out it looks like row-major<br>The matrices are being post multiplied.
* @module mat4
*/
/**
* Creates a new identity mat4
*
* @returns a new 4x4 matrix
*/
export function create() {
const out = new glMatrix.ARRAY_TYPE(16);
if (glMatrix.ARRAY_TYPE != Float32Array) {
const out = new glMatrix.ARRAY_TYPE(16);
if (glMatrix.ARRAY_TYPE != Float32Array) {
out[1] = 0;
out[2] = 0;
out[3] = 0;
out[4] = 0;
out[6] = 0;
out[7] = 0;
out[8] = 0;
out[9] = 0;
out[11] = 0;
out[12] = 0;
out[13] = 0;
out[14] = 0;
}
out[0] = 1;
out[5] = 1;
out[10] = 1;
out[15] = 1;
return out;
}
/**
* Creates a new mat4 initialized with values from an existing matrix
*
* @param {ReadonlyMat4} a matrix to clone
* @returns {mat4} a new 4x4 matrix
*/
export function clone(a) {
const out = new glMatrix.ARRAY_TYPE(16);
out[0] = a[0];
out[1] = a[1];
out[2] = a[2];
out[3] = a[3];
out[4] = a[4];
out[5] = a[5];
out[6] = a[6];
out[7] = a[7];
out[8] = a[8];
out[9] = a[9];
out[10] = a[10];
out[11] = a[11];
out[12] = a[12];
out[13] = a[13];
out[14] = a[14];
out[15] = a[15];
return out;
}
/**
* Copy the values from one mat4 to another
*
* @param {mat4} out the receiving matrix
* @param {ReadonlyMat4} a the source matrix
* @returns {mat4} out
*/
export function copy(out, a) {
out[0] = a[0];
out[1] = a[1];
out[2] = a[2];
out[3] = a[3];
out[4] = a[4];
out[5] = a[5];
out[6] = a[6];
out[7] = a[7];
out[8] = a[8];
out[9] = a[9];
out[10] = a[10];
out[11] = a[11];
out[12] = a[12];
out[13] = a[13];
out[14] = a[14];
out[15] = a[15];
return out;
}
/**
* Create a new mat4 with the given values
*
* @param {Number} m00 Component in column 0, row 0 position (index 0)
* @param {Number} m01 Component in column 0, row 1 position (index 1)
* @param {Number} m02 Component in column 0, row 2 position (index 2)
* @param {Number} m03 Component in column 0, row 3 position (index 3)
* @param {Number} m10 Component in column 1, row 0 position (index 4)
* @param {Number} m11 Component in column 1, row 1 position (index 5)
* @param {Number} m12 Component in column 1, row 2 position (index 6)
* @param {Number} m13 Component in column 1, row 3 position (index 7)
* @param {Number} m20 Component in column 2, row 0 position (index 8)
* @param {Number} m21 Component in column 2, row 1 position (index 9)
* @param {Number} m22 Component in column 2, row 2 position (index 10)
* @param {Number} m23 Component in column 2, row 3 position (index 11)
* @param {Number} m30 Component in column 3, row 0 position (index 12)
* @param {Number} m31 Component in column 3, row 1 position (index 13)
* @param {Number} m32 Component in column 3, row 2 position (index 14)
* @param {Number} m33 Component in column 3, row 3 position (index 15)
* @returns {mat4} A new mat4
*/
export function fromValues(m00, m01, m02, m03, m10, m11, m12, m13, m20, m21, m22, m23, m30, m31, m32, m33) {
const out = new glMatrix.ARRAY_TYPE(16);
out[0] = m00;
out[1] = m01;
out[2] = m02;
out[3] = m03;
out[4] = m10;
out[5] = m11;
out[6] = m12;
out[7] = m13;
out[8] = m20;
out[9] = m21;
out[10] = m22;
out[11] = m23;
out[12] = m30;
out[13] = m31;
out[14] = m32;
out[15] = m33;
return out;
}
/**
* Set the components of a mat4 to the given values
*
* @param {mat4} out the receiving matrix
* @param {Number} m00 Component in column 0, row 0 position (index 0)
* @param {Number} m01 Component in column 0, row 1 position (index 1)
* @param {Number} m02 Component in column 0, row 2 position (index 2)
* @param {Number} m03 Component in column 0, row 3 position (index 3)
* @param {Number} m10 Component in column 1, row 0 position (index 4)
* @param {Number} m11 Component in column 1, row 1 position (index 5)
* @param {Number} m12 Component in column 1, row 2 position (index 6)
* @param {Number} m13 Component in column 1, row 3 position (index 7)
* @param {Number} m20 Component in column 2, row 0 position (index 8)
* @param {Number} m21 Component in column 2, row 1 position (index 9)
* @param {Number} m22 Component in column 2, row 2 position (index 10)
* @param {Number} m23 Component in column 2, row 3 position (index 11)
* @param {Number} m30 Component in column 3, row 0 position (index 12)
* @param {Number} m31 Component in column 3, row 1 position (index 13)
* @param {Number} m32 Component in column 3, row 2 position (index 14)
* @param {Number} m33 Component in column 3, row 3 position (index 15)
* @returns {mat4} out
*/
export function set(out, m00, m01, m02, m03, m10, m11, m12, m13, m20, m21, m22, m23, m30, m31, m32, m33) {
out[0] = m00;
out[1] = m01;
out[2] = m02;
out[3] = m03;
out[4] = m10;
out[5] = m11;
out[6] = m12;
out[7] = m13;
out[8] = m20;
out[9] = m21;
out[10] = m22;
out[11] = m23;
out[12] = m30;
out[13] = m31;
out[14] = m32;
out[15] = m33;
return out;
}
/**
* Set a mat4 to the identity matrix
*
* @param {mat4} out the receiving matrix
* @returns {mat4} out
*/
export function identity(out) {
out[0] = 1;
out[1] = 0;

@@ -10,2 +181,3 @@ out[2] = 0;

out[4] = 0;
out[5] = 1;
out[6] = 0;

@@ -15,2 +187,3 @@ out[7] = 0;

out[9] = 0;
out[10] = 1;
out[11] = 0;

@@ -20,352 +193,404 @@ out[12] = 0;

out[14] = 0;
}
out[0] = 1;
out[5] = 1;
out[10] = 1;
out[15] = 1;
return out;
out[15] = 1;
return out;
}
export function clone(a) {
const out = new glMatrix.ARRAY_TYPE(16);
out[0] = a[0];
out[1] = a[1];
out[2] = a[2];
out[3] = a[3];
out[4] = a[4];
out[5] = a[5];
out[6] = a[6];
out[7] = a[7];
out[8] = a[8];
out[9] = a[9];
out[10] = a[10];
out[11] = a[11];
out[12] = a[12];
out[13] = a[13];
out[14] = a[14];
out[15] = a[15];
return out;
/**
* Transpose the values of a mat4
*
* @param {mat4} out the receiving matrix
* @param {ReadonlyMat4} a the source matrix
* @returns {mat4} out
*/
export function transpose(out, a) {
// If we are transposing ourselves we can skip a few steps but have to cache some values
if (out === a) {
const a01 = a[1];
const a02 = a[2];
const a03 = a[3];
const a12 = a[6];
const a13 = a[7];
const a23 = a[11];
out[1] = a[4];
out[2] = a[8];
out[3] = a[12];
out[4] = a01;
out[6] = a[9];
out[7] = a[13];
out[8] = a02;
out[9] = a12;
out[11] = a[14];
out[12] = a03;
out[13] = a13;
out[14] = a23;
}
else {
out[0] = a[0];
out[1] = a[4];
out[2] = a[8];
out[3] = a[12];
out[4] = a[1];
out[5] = a[5];
out[6] = a[9];
out[7] = a[13];
out[8] = a[2];
out[9] = a[6];
out[10] = a[10];
out[11] = a[14];
out[12] = a[3];
out[13] = a[7];
out[14] = a[11];
out[15] = a[15];
}
return out;
}
export function copy(out, a) {
out[0] = a[0];
out[1] = a[1];
out[2] = a[2];
out[3] = a[3];
out[4] = a[4];
out[5] = a[5];
out[6] = a[6];
out[7] = a[7];
out[8] = a[8];
out[9] = a[9];
out[10] = a[10];
out[11] = a[11];
out[12] = a[12];
out[13] = a[13];
out[14] = a[14];
out[15] = a[15];
return out;
}
export function fromValues(m00, m01, m02, m03, m10, m11, m12, m13, m20, m21, m22, m23, m30, m31, m32, m33) {
const out = new glMatrix.ARRAY_TYPE(16);
out[0] = m00;
out[1] = m01;
out[2] = m02;
out[3] = m03;
out[4] = m10;
out[5] = m11;
out[6] = m12;
out[7] = m13;
out[8] = m20;
out[9] = m21;
out[10] = m22;
out[11] = m23;
out[12] = m30;
out[13] = m31;
out[14] = m32;
out[15] = m33;
return out;
}
export function set(out, m00, m01, m02, m03, m10, m11, m12, m13, m20, m21, m22, m23, m30, m31, m32, m33) {
out[0] = m00;
out[1] = m01;
out[2] = m02;
out[3] = m03;
out[4] = m10;
out[5] = m11;
out[6] = m12;
out[7] = m13;
out[8] = m20;
out[9] = m21;
out[10] = m22;
out[11] = m23;
out[12] = m30;
out[13] = m31;
out[14] = m32;
out[15] = m33;
return out;
}
export function identity(out) {
out[0] = 1;
out[1] = 0;
out[2] = 0;
out[3] = 0;
out[4] = 0;
out[5] = 1;
out[6] = 0;
out[7] = 0;
out[8] = 0;
out[9] = 0;
out[10] = 1;
out[11] = 0;
out[12] = 0;
out[13] = 0;
out[14] = 0;
out[15] = 1;
return out;
}
export function transpose(out, a) {
if (out === a) {
/**
* Inverts a mat4
*
* @param {mat4} out the receiving matrix
* @param {ReadonlyMat4} a the source matrix
* @returns {mat4} out
*/
export function invert(out, a) {
const a00 = a[0];
const a01 = a[1];
const a02 = a[2];
const a03 = a[3];
const a10 = a[4];
const a11 = a[5];
const a12 = a[6];
const a13 = a[7];
const a20 = a[8];
const a21 = a[9];
const a22 = a[10];
const a23 = a[11];
out[1] = a[4];
out[2] = a[8];
out[3] = a[12];
out[4] = a01;
out[6] = a[9];
out[7] = a[13];
out[8] = a02;
out[9] = a12;
out[11] = a[14];
out[12] = a03;
out[13] = a13;
out[14] = a23;
} else {
out[0] = a[0];
out[1] = a[4];
out[2] = a[8];
out[3] = a[12];
out[4] = a[1];
out[5] = a[5];
out[6] = a[9];
out[7] = a[13];
out[8] = a[2];
out[9] = a[6];
out[10] = a[10];
out[11] = a[14];
out[12] = a[3];
out[13] = a[7];
out[14] = a[11];
out[15] = a[15];
}
return out;
const a30 = a[12];
const a31 = a[13];
const a32 = a[14];
const a33 = a[15];
const b00 = a00 * a11 - a01 * a10;
const b01 = a00 * a12 - a02 * a10;
const b02 = a00 * a13 - a03 * a10;
const b03 = a01 * a12 - a02 * a11;
const b04 = a01 * a13 - a03 * a11;
const b05 = a02 * a13 - a03 * a12;
const b06 = a20 * a31 - a21 * a30;
const b07 = a20 * a32 - a22 * a30;
const b08 = a20 * a33 - a23 * a30;
const b09 = a21 * a32 - a22 * a31;
const b10 = a21 * a33 - a23 * a31;
const b11 = a22 * a33 - a23 * a32;
// Calculate the determinant
let det = b00 * b11 - b01 * b10 + b02 * b09 + b03 * b08 - b04 * b07 + b05 * b06;
if (!det) {
return null;
}
det = 1.0 / det;
out[0] = (a11 * b11 - a12 * b10 + a13 * b09) * det;
out[1] = (a02 * b10 - a01 * b11 - a03 * b09) * det;
out[2] = (a31 * b05 - a32 * b04 + a33 * b03) * det;
out[3] = (a22 * b04 - a21 * b05 - a23 * b03) * det;
out[4] = (a12 * b08 - a10 * b11 - a13 * b07) * det;
out[5] = (a00 * b11 - a02 * b08 + a03 * b07) * det;
out[6] = (a32 * b02 - a30 * b05 - a33 * b01) * det;
out[7] = (a20 * b05 - a22 * b02 + a23 * b01) * det;
out[8] = (a10 * b10 - a11 * b08 + a13 * b06) * det;
out[9] = (a01 * b08 - a00 * b10 - a03 * b06) * det;
out[10] = (a30 * b04 - a31 * b02 + a33 * b00) * det;
out[11] = (a21 * b02 - a20 * b04 - a23 * b00) * det;
out[12] = (a11 * b07 - a10 * b09 - a12 * b06) * det;
out[13] = (a00 * b09 - a01 * b07 + a02 * b06) * det;
out[14] = (a31 * b01 - a30 * b03 - a32 * b00) * det;
out[15] = (a20 * b03 - a21 * b01 + a22 * b00) * det;
return out;
}
export function invert(out, a) {
const a00 = a[0];
const a01 = a[1];
const a02 = a[2];
const a03 = a[3];
const a10 = a[4];
const a11 = a[5];
const a12 = a[6];
const a13 = a[7];
const a20 = a[8];
const a21 = a[9];
const a22 = a[10];
const a23 = a[11];
const a30 = a[12];
const a31 = a[13];
const a32 = a[14];
const a33 = a[15];
const b00 = a00 * a11 - a01 * a10;
const b01 = a00 * a12 - a02 * a10;
const b02 = a00 * a13 - a03 * a10;
const b03 = a01 * a12 - a02 * a11;
const b04 = a01 * a13 - a03 * a11;
const b05 = a02 * a13 - a03 * a12;
const b06 = a20 * a31 - a21 * a30;
const b07 = a20 * a32 - a22 * a30;
const b08 = a20 * a33 - a23 * a30;
const b09 = a21 * a32 - a22 * a31;
const b10 = a21 * a33 - a23 * a31;
const b11 = a22 * a33 - a23 * a32;
let det = b00 * b11 - b01 * b10 + b02 * b09 + b03 * b08 - b04 * b07 + b05 * b06;
if (!det) {
return null;
}
det = 1.0 / det;
out[0] = (a11 * b11 - a12 * b10 + a13 * b09) * det;
out[1] = (a02 * b10 - a01 * b11 - a03 * b09) * det;
out[2] = (a31 * b05 - a32 * b04 + a33 * b03) * det;
out[3] = (a22 * b04 - a21 * b05 - a23 * b03) * det;
out[4] = (a12 * b08 - a10 * b11 - a13 * b07) * det;
out[5] = (a00 * b11 - a02 * b08 + a03 * b07) * det;
out[6] = (a32 * b02 - a30 * b05 - a33 * b01) * det;
out[7] = (a20 * b05 - a22 * b02 + a23 * b01) * det;
out[8] = (a10 * b10 - a11 * b08 + a13 * b06) * det;
out[9] = (a01 * b08 - a00 * b10 - a03 * b06) * det;
out[10] = (a30 * b04 - a31 * b02 + a33 * b00) * det;
out[11] = (a21 * b02 - a20 * b04 - a23 * b00) * det;
out[12] = (a11 * b07 - a10 * b09 - a12 * b06) * det;
out[13] = (a00 * b09 - a01 * b07 + a02 * b06) * det;
out[14] = (a31 * b01 - a30 * b03 - a32 * b00) * det;
out[15] = (a20 * b03 - a21 * b01 + a22 * b00) * det;
return out;
}
/**
* Calculates the adjugate of a mat4
*
* @param {mat4} out the receiving matrix
* @param {ReadonlyMat4} a the source matrix
* @returns {mat4} out
*/
export function adjoint(out, a) {
const a00 = a[0];
const a01 = a[1];
const a02 = a[2];
const a03 = a[3];
const a10 = a[4];
const a11 = a[5];
const a12 = a[6];
const a13 = a[7];
const a20 = a[8];
const a21 = a[9];
const a22 = a[10];
const a23 = a[11];
const a30 = a[12];
const a31 = a[13];
const a32 = a[14];
const a33 = a[15];
const b00 = a00 * a11 - a01 * a10;
const b01 = a00 * a12 - a02 * a10;
const b02 = a00 * a13 - a03 * a10;
const b03 = a01 * a12 - a02 * a11;
const b04 = a01 * a13 - a03 * a11;
const b05 = a02 * a13 - a03 * a12;
const b06 = a20 * a31 - a21 * a30;
const b07 = a20 * a32 - a22 * a30;
const b08 = a20 * a33 - a23 * a30;
const b09 = a21 * a32 - a22 * a31;
const b10 = a21 * a33 - a23 * a31;
const b11 = a22 * a33 - a23 * a32;
out[0] = a11 * b11 - a12 * b10 + a13 * b09;
out[1] = a02 * b10 - a01 * b11 - a03 * b09;
out[2] = a31 * b05 - a32 * b04 + a33 * b03;
out[3] = a22 * b04 - a21 * b05 - a23 * b03;
out[4] = a12 * b08 - a10 * b11 - a13 * b07;
out[5] = a00 * b11 - a02 * b08 + a03 * b07;
out[6] = a32 * b02 - a30 * b05 - a33 * b01;
out[7] = a20 * b05 - a22 * b02 + a23 * b01;
out[8] = a10 * b10 - a11 * b08 + a13 * b06;
out[9] = a01 * b08 - a00 * b10 - a03 * b06;
out[10] = a30 * b04 - a31 * b02 + a33 * b00;
out[11] = a21 * b02 - a20 * b04 - a23 * b00;
out[12] = a11 * b07 - a10 * b09 - a12 * b06;
out[13] = a00 * b09 - a01 * b07 + a02 * b06;
out[14] = a31 * b01 - a30 * b03 - a32 * b00;
out[15] = a20 * b03 - a21 * b01 + a22 * b00;
return out;
const a00 = a[0];
const a01 = a[1];
const a02 = a[2];
const a03 = a[3];
const a10 = a[4];
const a11 = a[5];
const a12 = a[6];
const a13 = a[7];
const a20 = a[8];
const a21 = a[9];
const a22 = a[10];
const a23 = a[11];
const a30 = a[12];
const a31 = a[13];
const a32 = a[14];
const a33 = a[15];
const b00 = a00 * a11 - a01 * a10;
const b01 = a00 * a12 - a02 * a10;
const b02 = a00 * a13 - a03 * a10;
const b03 = a01 * a12 - a02 * a11;
const b04 = a01 * a13 - a03 * a11;
const b05 = a02 * a13 - a03 * a12;
const b06 = a20 * a31 - a21 * a30;
const b07 = a20 * a32 - a22 * a30;
const b08 = a20 * a33 - a23 * a30;
const b09 = a21 * a32 - a22 * a31;
const b10 = a21 * a33 - a23 * a31;
const b11 = a22 * a33 - a23 * a32;
out[0] = a11 * b11 - a12 * b10 + a13 * b09;
out[1] = a02 * b10 - a01 * b11 - a03 * b09;
out[2] = a31 * b05 - a32 * b04 + a33 * b03;
out[3] = a22 * b04 - a21 * b05 - a23 * b03;
out[4] = a12 * b08 - a10 * b11 - a13 * b07;
out[5] = a00 * b11 - a02 * b08 + a03 * b07;
out[6] = a32 * b02 - a30 * b05 - a33 * b01;
out[7] = a20 * b05 - a22 * b02 + a23 * b01;
out[8] = a10 * b10 - a11 * b08 + a13 * b06;
out[9] = a01 * b08 - a00 * b10 - a03 * b06;
out[10] = a30 * b04 - a31 * b02 + a33 * b00;
out[11] = a21 * b02 - a20 * b04 - a23 * b00;
out[12] = a11 * b07 - a10 * b09 - a12 * b06;
out[13] = a00 * b09 - a01 * b07 + a02 * b06;
out[14] = a31 * b01 - a30 * b03 - a32 * b00;
out[15] = a20 * b03 - a21 * b01 + a22 * b00;
return out;
}
/**
* Calculates the determinant of a mat4
*
* @param {ReadonlyMat4} a the source matrix
* @returns {Number} determinant of a
*/
export function determinant(a) {
const a00 = a[0];
const a01 = a[1];
const a02 = a[2];
const a03 = a[3];
const a10 = a[4];
const a11 = a[5];
const a12 = a[6];
const a13 = a[7];
const a20 = a[8];
const a21 = a[9];
const a22 = a[10];
const a23 = a[11];
const a30 = a[12];
const a31 = a[13];
const a32 = a[14];
const a33 = a[15];
const b0 = a00 * a11 - a01 * a10;
const b1 = a00 * a12 - a02 * a10;
const b2 = a01 * a12 - a02 * a11;
const b3 = a20 * a31 - a21 * a30;
const b4 = a20 * a32 - a22 * a30;
const b5 = a21 * a32 - a22 * a31;
const b6 = a00 * b5 - a01 * b4 + a02 * b3;
const b7 = a10 * b5 - a11 * b4 + a12 * b3;
const b8 = a20 * b2 - a21 * b1 + a22 * b0;
const b9 = a30 * b2 - a31 * b1 + a32 * b0;
return a13 * b6 - a03 * b7 + a33 * b8 - a23 * b9;
const a00 = a[0];
const a01 = a[1];
const a02 = a[2];
const a03 = a[3];
const a10 = a[4];
const a11 = a[5];
const a12 = a[6];
const a13 = a[7];
const a20 = a[8];
const a21 = a[9];
const a22 = a[10];
const a23 = a[11];
const a30 = a[12];
const a31 = a[13];
const a32 = a[14];
const a33 = a[15];
const b0 = a00 * a11 - a01 * a10;
const b1 = a00 * a12 - a02 * a10;
const b2 = a01 * a12 - a02 * a11;
const b3 = a20 * a31 - a21 * a30;
const b4 = a20 * a32 - a22 * a30;
const b5 = a21 * a32 - a22 * a31;
const b6 = a00 * b5 - a01 * b4 + a02 * b3;
const b7 = a10 * b5 - a11 * b4 + a12 * b3;
const b8 = a20 * b2 - a21 * b1 + a22 * b0;
const b9 = a30 * b2 - a31 * b1 + a32 * b0;
// Calculate the determinant
return a13 * b6 - a03 * b7 + a33 * b8 - a23 * b9;
}
/**
* Multiplies two mat4s
*
* @param {mat4} out the receiving matrix
* @param {ReadonlyMat4} a the first operand
* @param {ReadonlyMat4} b the second operand
* @returns {mat4} out
*/
export function multiply(out, a, b) {
const a00 = a[0];
const a01 = a[1];
const a02 = a[2];
const a03 = a[3];
const a10 = a[4];
const a11 = a[5];
const a12 = a[6];
const a13 = a[7];
const a20 = a[8];
const a21 = a[9];
const a22 = a[10];
const a23 = a[11];
const a30 = a[12];
const a31 = a[13];
const a32 = a[14];
const a33 = a[15];
let b0 = b[0];
let b1 = b[1];
let b2 = b[2];
let b3 = b[3];
out[0] = b0 * a00 + b1 * a10 + b2 * a20 + b3 * a30;
out[1] = b0 * a01 + b1 * a11 + b2 * a21 + b3 * a31;
out[2] = b0 * a02 + b1 * a12 + b2 * a22 + b3 * a32;
out[3] = b0 * a03 + b1 * a13 + b2 * a23 + b3 * a33;
b0 = b[4];
b1 = b[5];
b2 = b[6];
b3 = b[7];
out[4] = b0 * a00 + b1 * a10 + b2 * a20 + b3 * a30;
out[5] = b0 * a01 + b1 * a11 + b2 * a21 + b3 * a31;
out[6] = b0 * a02 + b1 * a12 + b2 * a22 + b3 * a32;
out[7] = b0 * a03 + b1 * a13 + b2 * a23 + b3 * a33;
b0 = b[8];
b1 = b[9];
b2 = b[10];
b3 = b[11];
out[8] = b0 * a00 + b1 * a10 + b2 * a20 + b3 * a30;
out[9] = b0 * a01 + b1 * a11 + b2 * a21 + b3 * a31;
out[10] = b0 * a02 + b1 * a12 + b2 * a22 + b3 * a32;
out[11] = b0 * a03 + b1 * a13 + b2 * a23 + b3 * a33;
b0 = b[12];
b1 = b[13];
b2 = b[14];
b3 = b[15];
out[12] = b0 * a00 + b1 * a10 + b2 * a20 + b3 * a30;
out[13] = b0 * a01 + b1 * a11 + b2 * a21 + b3 * a31;
out[14] = b0 * a02 + b1 * a12 + b2 * a22 + b3 * a32;
out[15] = b0 * a03 + b1 * a13 + b2 * a23 + b3 * a33;
return out;
const a00 = a[0];
const a01 = a[1];
const a02 = a[2];
const a03 = a[3];
const a10 = a[4];
const a11 = a[5];
const a12 = a[6];
const a13 = a[7];
const a20 = a[8];
const a21 = a[9];
const a22 = a[10];
const a23 = a[11];
const a30 = a[12];
const a31 = a[13];
const a32 = a[14];
const a33 = a[15];
// Cache only the current line of the second matrix
let b0 = b[0];
let b1 = b[1];
let b2 = b[2];
let b3 = b[3];
out[0] = b0 * a00 + b1 * a10 + b2 * a20 + b3 * a30;
out[1] = b0 * a01 + b1 * a11 + b2 * a21 + b3 * a31;
out[2] = b0 * a02 + b1 * a12 + b2 * a22 + b3 * a32;
out[3] = b0 * a03 + b1 * a13 + b2 * a23 + b3 * a33;
b0 = b[4];
b1 = b[5];
b2 = b[6];
b3 = b[7];
out[4] = b0 * a00 + b1 * a10 + b2 * a20 + b3 * a30;
out[5] = b0 * a01 + b1 * a11 + b2 * a21 + b3 * a31;
out[6] = b0 * a02 + b1 * a12 + b2 * a22 + b3 * a32;
out[7] = b0 * a03 + b1 * a13 + b2 * a23 + b3 * a33;
b0 = b[8];
b1 = b[9];
b2 = b[10];
b3 = b[11];
out[8] = b0 * a00 + b1 * a10 + b2 * a20 + b3 * a30;
out[9] = b0 * a01 + b1 * a11 + b2 * a21 + b3 * a31;
out[10] = b0 * a02 + b1 * a12 + b2 * a22 + b3 * a32;
out[11] = b0 * a03 + b1 * a13 + b2 * a23 + b3 * a33;
b0 = b[12];
b1 = b[13];
b2 = b[14];
b3 = b[15];
out[12] = b0 * a00 + b1 * a10 + b2 * a20 + b3 * a30;
out[13] = b0 * a01 + b1 * a11 + b2 * a21 + b3 * a31;
out[14] = b0 * a02 + b1 * a12 + b2 * a22 + b3 * a32;
out[15] = b0 * a03 + b1 * a13 + b2 * a23 + b3 * a33;
return out;
}
/**
* Translate a mat4 by the given vector
*
* @param {mat4} out the receiving matrix
* @param {ReadonlyMat4} a the matrix to translate
* @param {ReadonlyVec3} v vector to translate by
* @returns {mat4} out
*/
export function translate(out, a, v) {
const x = v[0];
const y = v[1];
const z = v[2];
let a00;
let a01;
let a02;
let a03;
let a10;
let a11;
let a12;
let a13;
let a20;
let a21;
let a22;
let a23;
if (a === out) {
out[12] = a[0] * x + a[4] * y + a[8] * z + a[12];
out[13] = a[1] * x + a[5] * y + a[9] * z + a[13];
out[14] = a[2] * x + a[6] * y + a[10] * z + a[14];
out[15] = a[3] * x + a[7] * y + a[11] * z + a[15];
} else {
const x = v[0];
const y = v[1];
const z = v[2];
let a00;
let a01;
let a02;
let a03;
let a10;
let a11;
let a12;
let a13;
let a20;
let a21;
let a22;
let a23;
if (a === out) {
out[12] = a[0] * x + a[4] * y + a[8] * z + a[12];
out[13] = a[1] * x + a[5] * y + a[9] * z + a[13];
out[14] = a[2] * x + a[6] * y + a[10] * z + a[14];
out[15] = a[3] * x + a[7] * y + a[11] * z + a[15];
}
else {
a00 = a[0];
a01 = a[1];
a02 = a[2];
a03 = a[3];
a10 = a[4];
a11 = a[5];
a12 = a[6];
a13 = a[7];
a20 = a[8];
a21 = a[9];
a22 = a[10];
a23 = a[11];
out[0] = a00;
out[1] = a01;
out[2] = a02;
out[3] = a03;
out[4] = a10;
out[5] = a11;
out[6] = a12;
out[7] = a13;
out[8] = a20;
out[9] = a21;
out[10] = a22;
out[11] = a23;
out[12] = a00 * x + a10 * y + a20 * z + a[12];
out[13] = a01 * x + a11 * y + a21 * z + a[13];
out[14] = a02 * x + a12 * y + a22 * z + a[14];
out[15] = a03 * x + a13 * y + a23 * z + a[15];
}
return out;
}
/**
* Scales the mat4 by the dimensions in the given vec3 not using vectorization
*
* @param {mat4} out the receiving matrix
* @param {ReadonlyMat4} a the matrix to scale
* @param {ReadonlyVec3} v the vec3 to scale the matrix by
* @returns {mat4} out
**/
export function scale(out, a, v) {
const x = v[0];
const y = v[1];
const z = v[2];
out[0] = a[0] * x;
out[1] = a[1] * x;
out[2] = a[2] * x;
out[3] = a[3] * x;
out[4] = a[4] * y;
out[5] = a[5] * y;
out[6] = a[6] * y;
out[7] = a[7] * y;
out[8] = a[8] * z;
out[9] = a[9] * z;
out[10] = a[10] * z;
out[11] = a[11] * z;
out[12] = a[12];
out[13] = a[13];
out[14] = a[14];
out[15] = a[15];
return out;
}
/**
* Rotates a mat4 by the given angle around the given axis
*
* @param {mat4} out the receiving matrix
* @param {ReadonlyMat4} a the matrix to rotate
* @param {Number} rad the angle to rotate the matrix by
* @param {ReadonlyVec3} axis the axis to rotate around
* @returns {mat4} out
*/
export function rotate(out, a, rad, axis) {
let x = axis[0];
let y = axis[1];
let z = axis[2];
let len = Math.sqrt(x * x + y * y + z * z);
let c;
let s;
let t;
let a00;
let a01;
let a02;
let a03;
let a10;
let a11;
let a12;
let a13;
let a20;
let a21;
let a22;
let a23;
let b00;
let b01;
let b02;
let b10;
let b11;
let b12;
let b20;
let b21;
let b22;
if (len < glMatrix.EPSILON) {
return null;
}
len = 1 / len;
x *= len;
y *= len;
z *= len;
s = Math.sin(rad);
c = Math.cos(rad);
t = 1 - c;
a00 = a[0];

@@ -383,1077 +608,1392 @@ a01 = a[1];

a23 = a[11];
out[0] = a00;
out[1] = a01;
out[2] = a02;
out[3] = a03;
out[4] = a10;
out[5] = a11;
out[6] = a12;
out[7] = a13;
out[8] = a20;
out[9] = a21;
out[10] = a22;
out[11] = a23;
out[12] = a00 * x + a10 * y + a20 * z + a[12];
out[13] = a01 * x + a11 * y + a21 * z + a[13];
out[14] = a02 * x + a12 * y + a22 * z + a[14];
out[15] = a03 * x + a13 * y + a23 * z + a[15];
}
return out;
// Construct the elements of the rotation matrix
b00 = x * x * t + c;
b01 = y * x * t + z * s;
b02 = z * x * t - y * s;
b10 = x * y * t - z * s;
b11 = y * y * t + c;
b12 = z * y * t + x * s;
b20 = x * z * t + y * s;
b21 = y * z * t - x * s;
b22 = z * z * t + c;
// Perform rotation-specific matrix multiplication
out[0] = a00 * b00 + a10 * b01 + a20 * b02;
out[1] = a01 * b00 + a11 * b01 + a21 * b02;
out[2] = a02 * b00 + a12 * b01 + a22 * b02;
out[3] = a03 * b00 + a13 * b01 + a23 * b02;
out[4] = a00 * b10 + a10 * b11 + a20 * b12;
out[5] = a01 * b10 + a11 * b11 + a21 * b12;
out[6] = a02 * b10 + a12 * b11 + a22 * b12;
out[7] = a03 * b10 + a13 * b11 + a23 * b12;
out[8] = a00 * b20 + a10 * b21 + a20 * b22;
out[9] = a01 * b20 + a11 * b21 + a21 * b22;
out[10] = a02 * b20 + a12 * b21 + a22 * b22;
out[11] = a03 * b20 + a13 * b21 + a23 * b22;
if (a !== out) {
// If the source and destination differ, copy the unchanged last row
out[12] = a[12];
out[13] = a[13];
out[14] = a[14];
out[15] = a[15];
}
return out;
}
export function scale(out, a, v) {
const x = v[0];
const y = v[1];
const z = v[2];
out[0] = a[0] * x;
out[1] = a[1] * x;
out[2] = a[2] * x;
out[3] = a[3] * x;
out[4] = a[4] * y;
out[5] = a[5] * y;
out[6] = a[6] * y;
out[7] = a[7] * y;
out[8] = a[8] * z;
out[9] = a[9] * z;
out[10] = a[10] * z;
out[11] = a[11] * z;
out[12] = a[12];
out[13] = a[13];
out[14] = a[14];
out[15] = a[15];
return out;
}
export function rotate(out, a, rad, axis) {
let x = axis[0];
let y = axis[1];
let z = axis[2];
let len = Math.sqrt(x * x + y * y + z * z);
let c;
let s;
let t;
let a00;
let a01;
let a02;
let a03;
let a10;
let a11;
let a12;
let a13;
let a20;
let a21;
let a22;
let a23;
let b00;
let b01;
let b02;
let b10;
let b11;
let b12;
let b20;
let b21;
let b22;
if (len < glMatrix.EPSILON) {
return null;
}
len = 1 / len;
x *= len;
y *= len;
z *= len;
s = Math.sin(rad);
c = Math.cos(rad);
t = 1 - c;
a00 = a[0];
a01 = a[1];
a02 = a[2];
a03 = a[3];
a10 = a[4];
a11 = a[5];
a12 = a[6];
a13 = a[7];
a20 = a[8];
a21 = a[9];
a22 = a[10];
a23 = a[11];
b00 = x * x * t + c;
b01 = y * x * t + z * s;
b02 = z * x * t - y * s;
b10 = x * y * t - z * s;
b11 = y * y * t + c;
b12 = z * y * t + x * s;
b20 = x * z * t + y * s;
b21 = y * z * t - x * s;
b22 = z * z * t + c;
out[0] = a00 * b00 + a10 * b01 + a20 * b02;
out[1] = a01 * b00 + a11 * b01 + a21 * b02;
out[2] = a02 * b00 + a12 * b01 + a22 * b02;
out[3] = a03 * b00 + a13 * b01 + a23 * b02;
out[4] = a00 * b10 + a10 * b11 + a20 * b12;
out[5] = a01 * b10 + a11 * b11 + a21 * b12;
out[6] = a02 * b10 + a12 * b11 + a22 * b12;
out[7] = a03 * b10 + a13 * b11 + a23 * b12;
out[8] = a00 * b20 + a10 * b21 + a20 * b22;
out[9] = a01 * b20 + a11 * b21 + a21 * b22;
out[10] = a02 * b20 + a12 * b21 + a22 * b22;
out[11] = a03 * b20 + a13 * b21 + a23 * b22;
if (a !== out) {
out[12] = a[12];
out[13] = a[13];
out[14] = a[14];
out[15] = a[15];
}
return out;
}
/**
* Rotates a matrix by the given angle around the X axis
*
* @param {mat4} out the receiving matrix
* @param {ReadonlyMat4} a the matrix to rotate
* @param {Number} rad the angle to rotate the matrix by
* @returns {mat4} out
*/
export function rotateX(out, a, rad) {
const s = Math.sin(rad);
const c = Math.cos(rad);
const a10 = a[4];
const a11 = a[5];
const a12 = a[6];
const a13 = a[7];
const a20 = a[8];
const a21 = a[9];
const a22 = a[10];
const a23 = a[11];
if (a !== out) {
out[0] = a[0];
out[1] = a[1];
out[2] = a[2];
out[3] = a[3];
out[12] = a[12];
out[13] = a[13];
out[14] = a[14];
out[15] = a[15];
}
out[4] = a10 * c + a20 * s;
out[5] = a11 * c + a21 * s;
out[6] = a12 * c + a22 * s;
out[7] = a13 * c + a23 * s;
out[8] = a20 * c - a10 * s;
out[9] = a21 * c - a11 * s;
out[10] = a22 * c - a12 * s;
out[11] = a23 * c - a13 * s;
return out;
const s = Math.sin(rad);
const c = Math.cos(rad);
const a10 = a[4];
const a11 = a[5];
const a12 = a[6];
const a13 = a[7];
const a20 = a[8];
const a21 = a[9];
const a22 = a[10];
const a23 = a[11];
if (a !== out) {
// If the source and destination differ, copy the unchanged rows
out[0] = a[0];
out[1] = a[1];
out[2] = a[2];
out[3] = a[3];
out[12] = a[12];
out[13] = a[13];
out[14] = a[14];
out[15] = a[15];
}
// Perform axis-specific matrix multiplication
out[4] = a10 * c + a20 * s;
out[5] = a11 * c + a21 * s;
out[6] = a12 * c + a22 * s;
out[7] = a13 * c + a23 * s;
out[8] = a20 * c - a10 * s;
out[9] = a21 * c - a11 * s;
out[10] = a22 * c - a12 * s;
out[11] = a23 * c - a13 * s;
return out;
}
/**
* Rotates a matrix by the given angle around the Y axis
*
* @param {mat4} out the receiving matrix
* @param {ReadonlyMat4} a the matrix to rotate
* @param {Number} rad the angle to rotate the matrix by
* @returns {mat4} out
*/
export function rotateY(out, a, rad) {
const s = Math.sin(rad);
const c = Math.cos(rad);
const a00 = a[0];
const a01 = a[1];
const a02 = a[2];
const a03 = a[3];
const a20 = a[8];
const a21 = a[9];
const a22 = a[10];
const a23 = a[11];
if (a !== out) {
out[4] = a[4];
out[5] = a[5];
out[6] = a[6];
out[7] = a[7];
out[12] = a[12];
out[13] = a[13];
out[14] = a[14];
out[15] = a[15];
}
out[0] = a00 * c - a20 * s;
out[1] = a01 * c - a21 * s;
out[2] = a02 * c - a22 * s;
out[3] = a03 * c - a23 * s;
out[8] = a00 * s + a20 * c;
out[9] = a01 * s + a21 * c;
out[10] = a02 * s + a22 * c;
out[11] = a03 * s + a23 * c;
return out;
const s = Math.sin(rad);
const c = Math.cos(rad);
const a00 = a[0];
const a01 = a[1];
const a02 = a[2];
const a03 = a[3];
const a20 = a[8];
const a21 = a[9];
const a22 = a[10];
const a23 = a[11];
if (a !== out) {
// If the source and destination differ, copy the unchanged rows
out[4] = a[4];
out[5] = a[5];
out[6] = a[6];
out[7] = a[7];
out[12] = a[12];
out[13] = a[13];
out[14] = a[14];
out[15] = a[15];
}
// Perform axis-specific matrix multiplication
out[0] = a00 * c - a20 * s;
out[1] = a01 * c - a21 * s;
out[2] = a02 * c - a22 * s;
out[3] = a03 * c - a23 * s;
out[8] = a00 * s + a20 * c;
out[9] = a01 * s + a21 * c;
out[10] = a02 * s + a22 * c;
out[11] = a03 * s + a23 * c;
return out;
}
/**
* Rotates a matrix by the given angle around the Z axis
*
* @param {mat4} out the receiving matrix
* @param {ReadonlyMat4} a the matrix to rotate
* @param {Number} rad the angle to rotate the matrix by
* @returns {mat4} out
*/
export function rotateZ(out, a, rad) {
const s = Math.sin(rad);
const c = Math.cos(rad);
const a00 = a[0];
const a01 = a[1];
const a02 = a[2];
const a03 = a[3];
const a10 = a[4];
const a11 = a[5];
const a12 = a[6];
const a13 = a[7];
if (a !== out) {
out[8] = a[8];
out[9] = a[9];
out[10] = a[10];
out[11] = a[11];
out[12] = a[12];
out[13] = a[13];
out[14] = a[14];
out[15] = a[15];
}
out[0] = a00 * c + a10 * s;
out[1] = a01 * c + a11 * s;
out[2] = a02 * c + a12 * s;
out[3] = a03 * c + a13 * s;
out[4] = a10 * c - a00 * s;
out[5] = a11 * c - a01 * s;
out[6] = a12 * c - a02 * s;
out[7] = a13 * c - a03 * s;
return out;
const s = Math.sin(rad);
const c = Math.cos(rad);
const a00 = a[0];
const a01 = a[1];
const a02 = a[2];
const a03 = a[3];
const a10 = a[4];
const a11 = a[5];
const a12 = a[6];
const a13 = a[7];
if (a !== out) {
// If the source and destination differ, copy the unchanged last row
out[8] = a[8];
out[9] = a[9];
out[10] = a[10];
out[11] = a[11];
out[12] = a[12];
out[13] = a[13];
out[14] = a[14];
out[15] = a[15];
}
// Perform axis-specific matrix multiplication
out[0] = a00 * c + a10 * s;
out[1] = a01 * c + a11 * s;
out[2] = a02 * c + a12 * s;
out[3] = a03 * c + a13 * s;
out[4] = a10 * c - a00 * s;
out[5] = a11 * c - a01 * s;
out[6] = a12 * c - a02 * s;
out[7] = a13 * c - a03 * s;
return out;
}
/**
* Creates a matrix from a vector translation
* This is equivalent to (but much faster than):
*
* mat4.identity(dest);
* mat4.translate(dest, dest, vec);
*
* @param {mat4} out mat4 receiving operation result
* @param {ReadonlyVec3} v Translation vector
* @returns {mat4} out
*/
export function fromTranslation(out, v) {
out[0] = 1;
out[1] = 0;
out[2] = 0;
out[3] = 0;
out[4] = 0;
out[5] = 1;
out[6] = 0;
out[7] = 0;
out[8] = 0;
out[9] = 0;
out[10] = 1;
out[11] = 0;
out[12] = v[0];
out[13] = v[1];
out[14] = v[2];
out[15] = 1;
return out;
out[0] = 1;
out[1] = 0;
out[2] = 0;
out[3] = 0;
out[4] = 0;
out[5] = 1;
out[6] = 0;
out[7] = 0;
out[8] = 0;
out[9] = 0;
out[10] = 1;
out[11] = 0;
out[12] = v[0];
out[13] = v[1];
out[14] = v[2];
out[15] = 1;
return out;
}
/**
* Creates a matrix from a vector scaling
* This is equivalent to (but much faster than):
*
* mat4.identity(dest);
* mat4.scale(dest, dest, vec);
*
* @param {mat4} out mat4 receiving operation result
* @param {ReadonlyVec3} v Scaling vector
* @returns {mat4} out
*/
export function fromScaling(out, v) {
out[0] = v[0];
out[1] = 0;
out[2] = 0;
out[3] = 0;
out[4] = 0;
out[5] = v[1];
out[6] = 0;
out[7] = 0;
out[8] = 0;
out[9] = 0;
out[10] = v[2];
out[11] = 0;
out[12] = 0;
out[13] = 0;
out[14] = 0;
out[15] = 1;
return out;
out[0] = v[0];
out[1] = 0;
out[2] = 0;
out[3] = 0;
out[4] = 0;
out[5] = v[1];
out[6] = 0;
out[7] = 0;
out[8] = 0;
out[9] = 0;
out[10] = v[2];
out[11] = 0;
out[12] = 0;
out[13] = 0;
out[14] = 0;
out[15] = 1;
return out;
}
/**
* Creates a matrix from a given angle around a given axis
* This is equivalent to (but much faster than):
*
* mat4.identity(dest);
* mat4.rotate(dest, dest, rad, axis);
*
* @param {mat4} out mat4 receiving operation result
* @param {Number} rad the angle to rotate the matrix by
* @param {ReadonlyVec3} axis the axis to rotate around
* @returns {mat4} out
*/
export function fromRotation(out, rad, axis) {
let x = axis[0];
let y = axis[1];
let z = axis[2];
let len = Math.sqrt(x * x + y * y + z * z);
let c;
let s;
let t;
if (len < glMatrix.EPSILON) {
return null;
}
len = 1 / len;
x *= len;
y *= len;
z *= len;
s = Math.sin(rad);
c = Math.cos(rad);
t = 1 - c;
out[0] = x * x * t + c;
out[1] = y * x * t + z * s;
out[2] = z * x * t - y * s;
out[3] = 0;
out[4] = x * y * t - z * s;
out[5] = y * y * t + c;
out[6] = z * y * t + x * s;
out[7] = 0;
out[8] = x * z * t + y * s;
out[9] = y * z * t - x * s;
out[10] = z * z * t + c;
out[11] = 0;
out[12] = 0;
out[13] = 0;
out[14] = 0;
out[15] = 1;
return out;
let x = axis[0];
let y = axis[1];
let z = axis[2];
let len = Math.sqrt(x * x + y * y + z * z);
let c;
let s;
let t;
if (len < glMatrix.EPSILON) {
return null;
}
len = 1 / len;
x *= len;
y *= len;
z *= len;
s = Math.sin(rad);
c = Math.cos(rad);
t = 1 - c;
// Perform rotation-specific matrix multiplication
out[0] = x * x * t + c;
out[1] = y * x * t + z * s;
out[2] = z * x * t - y * s;
out[3] = 0;
out[4] = x * y * t - z * s;
out[5] = y * y * t + c;
out[6] = z * y * t + x * s;
out[7] = 0;
out[8] = x * z * t + y * s;
out[9] = y * z * t - x * s;
out[10] = z * z * t + c;
out[11] = 0;
out[12] = 0;
out[13] = 0;
out[14] = 0;
out[15] = 1;
return out;
}
/**
* Creates a matrix from the given angle around the X axis
* This is equivalent to (but much faster than):
*
* mat4.identity(dest);
* mat4.rotateX(dest, dest, rad);
*
* @param {mat4} out mat4 receiving operation result
* @param {Number} rad the angle to rotate the matrix by
* @returns {mat4} out
*/
export function fromXRotation(out, rad) {
const s = Math.sin(rad);
const c = Math.cos(rad);
out[0] = 1;
out[1] = 0;
out[2] = 0;
out[3] = 0;
out[4] = 0;
out[5] = c;
out[6] = s;
out[7] = 0;
out[8] = 0;
out[9] = -s;
out[10] = c;
out[11] = 0;
out[12] = 0;
out[13] = 0;
out[14] = 0;
out[15] = 1;
return out;
const s = Math.sin(rad);
const c = Math.cos(rad);
// Perform axis-specific matrix multiplication
out[0] = 1;
out[1] = 0;
out[2] = 0;
out[3] = 0;
out[4] = 0;
out[5] = c;
out[6] = s;
out[7] = 0;
out[8] = 0;
out[9] = -s;
out[10] = c;
out[11] = 0;
out[12] = 0;
out[13] = 0;
out[14] = 0;
out[15] = 1;
return out;
}
/**
* Creates a matrix from the given angle around the Y axis
* This is equivalent to (but much faster than):
*
* mat4.identity(dest);
* mat4.rotateY(dest, dest, rad);
*
* @param {mat4} out mat4 receiving operation result
* @param {Number} rad the angle to rotate the matrix by
* @returns {mat4} out
*/
export function fromYRotation(out, rad) {
const s = Math.sin(rad);
const c = Math.cos(rad);
out[0] = c;
out[1] = 0;
out[2] = -s;
out[3] = 0;
out[4] = 0;
out[5] = 1;
out[6] = 0;
out[7] = 0;
out[8] = s;
out[9] = 0;
out[10] = c;
out[11] = 0;
out[12] = 0;
out[13] = 0;
out[14] = 0;
out[15] = 1;
return out;
const s = Math.sin(rad);
const c = Math.cos(rad);
// Perform axis-specific matrix multiplication
out[0] = c;
out[1] = 0;
out[2] = -s;
out[3] = 0;
out[4] = 0;
out[5] = 1;
out[6] = 0;
out[7] = 0;
out[8] = s;
out[9] = 0;
out[10] = c;
out[11] = 0;
out[12] = 0;
out[13] = 0;
out[14] = 0;
out[15] = 1;
return out;
}
/**
* Creates a matrix from the given angle around the Z axis
* This is equivalent to (but much faster than):
*
* mat4.identity(dest);
* mat4.rotateZ(dest, dest, rad);
*
* @param {mat4} out mat4 receiving operation result
* @param {Number} rad the angle to rotate the matrix by
* @returns {mat4} out
*/
export function fromZRotation(out, rad) {
const s = Math.sin(rad);
const c = Math.cos(rad);
out[0] = c;
out[1] = s;
out[2] = 0;
out[3] = 0;
out[4] = -s;
out[5] = c;
out[6] = 0;
out[7] = 0;
out[8] = 0;
out[9] = 0;
out[10] = 1;
out[11] = 0;
out[12] = 0;
out[13] = 0;
out[14] = 0;
out[15] = 1;
return out;
const s = Math.sin(rad);
const c = Math.cos(rad);
// Perform axis-specific matrix multiplication
out[0] = c;
out[1] = s;
out[2] = 0;
out[3] = 0;
out[4] = -s;
out[5] = c;
out[6] = 0;
out[7] = 0;
out[8] = 0;
out[9] = 0;
out[10] = 1;
out[11] = 0;
out[12] = 0;
out[13] = 0;
out[14] = 0;
out[15] = 1;
return out;
}
/**
* Creates a matrix from a quaternion rotation and vector translation
* This is equivalent to (but much faster than):
*
* mat4.identity(dest);
* mat4.translate(dest, vec);
* let quatMat = mat4.create();
* quat4.toMat4(quat, quatMat);
* mat4.multiply(dest, quatMat);
*
* @param {mat4} out mat4 receiving operation result
* @param {quat4} q Rotation quaternion
* @param {ReadonlyVec3} v Translation vector
* @returns {mat4} out
*/
export function fromRotationTranslation(out, q, v) {
const x = q[0];
const y = q[1];
const z = q[2];
const w = q[3];
const x2 = x + x;
const y2 = y + y;
const z2 = z + z;
const xx = x * x2;
const xy = x * y2;
const xz = x * z2;
const yy = y * y2;
const yz = y * z2;
const zz = z * z2;
const wx = w * x2;
const wy = w * y2;
const wz = w * z2;
out[0] = 1 - (yy + zz);
out[1] = xy + wz;
out[2] = xz - wy;
out[3] = 0;
out[4] = xy - wz;
out[5] = 1 - (xx + zz);
out[6] = yz + wx;
out[7] = 0;
out[8] = xz + wy;
out[9] = yz - wx;
out[10] = 1 - (xx + yy);
out[11] = 0;
out[12] = v[0];
out[13] = v[1];
out[14] = v[2];
out[15] = 1;
return out;
// Quaternion math
const x = q[0];
const y = q[1];
const z = q[2];
const w = q[3];
const x2 = x + x;
const y2 = y + y;
const z2 = z + z;
const xx = x * x2;
const xy = x * y2;
const xz = x * z2;
const yy = y * y2;
const yz = y * z2;
const zz = z * z2;
const wx = w * x2;
const wy = w * y2;
const wz = w * z2;
out[0] = 1 - (yy + zz);
out[1] = xy + wz;
out[2] = xz - wy;
out[3] = 0;
out[4] = xy - wz;
out[5] = 1 - (xx + zz);
out[6] = yz + wx;
out[7] = 0;
out[8] = xz + wy;
out[9] = yz - wx;
out[10] = 1 - (xx + yy);
out[11] = 0;
out[12] = v[0];
out[13] = v[1];
out[14] = v[2];
out[15] = 1;
return out;
}
/**
* Creates a new mat4 from a dual quat.
*
* @param {mat4} out Matrix
* @param {ReadonlyQuat2} a Dual Quaternion
* @returns {mat4} mat4 receiving operation result
*/
export function fromQuat2(out, a) {
const translation = new glMatrix.ARRAY_TYPE(3);
const bx = -a[0];
const by = -a[1];
const bz = -a[2];
const bw = a[3];
const ax = a[4];
const ay = a[5];
const az = a[6];
const aw = a[7];
const magnitude = bx * bx + by * by + bz * bz + bw * bw;
if (magnitude > 0) {
translation[0] = (ax * bw + aw * bx + ay * bz - az * by) * 2 / magnitude;
translation[1] = (ay * bw + aw * by + az * bx - ax * bz) * 2 / magnitude;
translation[2] = (az * bw + aw * bz + ax * by - ay * bx) * 2 / magnitude;
} else {
translation[0] = (ax * bw + aw * bx + ay * bz - az * by) * 2;
translation[1] = (ay * bw + aw * by + az * bx - ax * bz) * 2;
translation[2] = (az * bw + aw * bz + ax * by - ay * bx) * 2;
}
fromRotationTranslation(out, a, translation);
return out;
const translation = new glMatrix.ARRAY_TYPE(3);
const bx = -a[0];
const by = -a[1];
const bz = -a[2];
const bw = a[3];
const ax = a[4];
const ay = a[5];
const az = a[6];
const aw = a[7];
const magnitude = bx * bx + by * by + bz * bz + bw * bw;
// Only scale if it makes sense
if (magnitude > 0) {
translation[0] = ((ax * bw + aw * bx + ay * bz - az * by) * 2) / magnitude;
translation[1] = ((ay * bw + aw * by + az * bx - ax * bz) * 2) / magnitude;
translation[2] = ((az * bw + aw * bz + ax * by - ay * bx) * 2) / magnitude;
}
else {
translation[0] = (ax * bw + aw * bx + ay * bz - az * by) * 2;
translation[1] = (ay * bw + aw * by + az * bx - ax * bz) * 2;
translation[2] = (az * bw + aw * bz + ax * by - ay * bx) * 2;
}
fromRotationTranslation(out, a, translation);
return out;
}
/**
* Returns the translation vector component of a transformation
* matrix. If a matrix is built with fromRotationTranslation,
* the returned vector will be the same as the translation vector
* originally supplied.
* @param {vec3} out Vector to receive translation component
* @param {ReadonlyMat4} mat Matrix to be decomposed (input)
* @return {vec3} out
*/
export function getTranslation(out, mat) {
out[0] = mat[12];
out[1] = mat[13];
out[2] = mat[14];
return out;
out[0] = mat[12];
out[1] = mat[13];
out[2] = mat[14];
return out;
}
/**
* Returns the scaling factor component of a transformation
* matrix. If a matrix is built with fromRotationTranslationScale
* with a normalized Quaternion paramter, the returned vector will be
* the same as the scaling vector
* originally supplied.
* @param {vec3} out Vector to receive scaling factor component
* @param {ReadonlyMat4} mat Matrix to be decomposed (input)
* @return {vec3} out
*/
export function getScaling(out, mat) {
const m11 = mat[0];
const m12 = mat[1];
const m13 = mat[2];
const m21 = mat[4];
const m22 = mat[5];
const m23 = mat[6];
const m31 = mat[8];
const m32 = mat[9];
const m33 = mat[10];
out[0] = Math.sqrt(m11 * m11 + m12 * m12 + m13 * m13);
out[1] = Math.sqrt(m21 * m21 + m22 * m22 + m23 * m23);
out[2] = Math.sqrt(m31 * m31 + m32 * m32 + m33 * m33);
return out;
const m11 = mat[0];
const m12 = mat[1];
const m13 = mat[2];
const m21 = mat[4];
const m22 = mat[5];
const m23 = mat[6];
const m31 = mat[8];
const m32 = mat[9];
const m33 = mat[10];
out[0] = Math.sqrt(m11 * m11 + m12 * m12 + m13 * m13);
out[1] = Math.sqrt(m21 * m21 + m22 * m22 + m23 * m23);
out[2] = Math.sqrt(m31 * m31 + m32 * m32 + m33 * m33);
return out;
}
/**
* Returns a quaternion representing the rotational component
* of a transformation matrix. If a matrix is built with
* fromRotationTranslation, the returned quaternion will be the
* same as the quaternion originally supplied.
* @param {quat} out Quaternion to receive the rotation component
* @param {ReadonlyMat4} mat Matrix to be decomposed (input)
* @return {quat} out
*/
export function getRotation(out, mat) {
const scaling = new glMatrix.ARRAY_TYPE(3);
getScaling(scaling, mat);
const is1 = 1 / scaling[0];
const is2 = 1 / scaling[1];
const is3 = 1 / scaling[2];
const sm11 = mat[0] * is1;
const sm12 = mat[1] * is2;
const sm13 = mat[2] * is3;
const sm21 = mat[4] * is1;
const sm22 = mat[5] * is2;
const sm23 = mat[6] * is3;
const sm31 = mat[8] * is1;
const sm32 = mat[9] * is2;
const sm33 = mat[10] * is3;
const trace = sm11 + sm22 + sm33;
let S = 0;
if (trace > 0) {
S = Math.sqrt(trace + 1.0) * 2;
out[3] = 0.25 * S;
out[0] = (sm23 - sm32) / S;
out[1] = (sm31 - sm13) / S;
out[2] = (sm12 - sm21) / S;
} else if (sm11 > sm22 && sm11 > sm33) {
S = Math.sqrt(1.0 + sm11 - sm22 - sm33) * 2;
out[3] = (sm23 - sm32) / S;
out[0] = 0.25 * S;
out[1] = (sm12 + sm21) / S;
out[2] = (sm31 + sm13) / S;
} else if (sm22 > sm33) {
S = Math.sqrt(1.0 + sm22 - sm11 - sm33) * 2;
out[3] = (sm31 - sm13) / S;
out[0] = (sm12 + sm21) / S;
out[1] = 0.25 * S;
out[2] = (sm23 + sm32) / S;
} else {
S = Math.sqrt(1.0 + sm33 - sm11 - sm22) * 2;
out[3] = (sm12 - sm21) / S;
out[0] = (sm31 + sm13) / S;
out[1] = (sm23 + sm32) / S;
out[2] = 0.25 * S;
}
return out;
const scaling = new glMatrix.ARRAY_TYPE(3);
getScaling(scaling, mat);
const is1 = 1 / scaling[0];
const is2 = 1 / scaling[1];
const is3 = 1 / scaling[2];
const sm11 = mat[0] * is1;
const sm12 = mat[1] * is2;
const sm13 = mat[2] * is3;
const sm21 = mat[4] * is1;
const sm22 = mat[5] * is2;
const sm23 = mat[6] * is3;
const sm31 = mat[8] * is1;
const sm32 = mat[9] * is2;
const sm33 = mat[10] * is3;
const trace = sm11 + sm22 + sm33;
let S = 0;
if (trace > 0) {
S = Math.sqrt(trace + 1.0) * 2;
out[3] = 0.25 * S;
out[0] = (sm23 - sm32) / S;
out[1] = (sm31 - sm13) / S;
out[2] = (sm12 - sm21) / S;
}
else if (sm11 > sm22 && sm11 > sm33) {
S = Math.sqrt(1.0 + sm11 - sm22 - sm33) * 2;
out[3] = (sm23 - sm32) / S;
out[0] = 0.25 * S;
out[1] = (sm12 + sm21) / S;
out[2] = (sm31 + sm13) / S;
}
else if (sm22 > sm33) {
S = Math.sqrt(1.0 + sm22 - sm11 - sm33) * 2;
out[3] = (sm31 - sm13) / S;
out[0] = (sm12 + sm21) / S;
out[1] = 0.25 * S;
out[2] = (sm23 + sm32) / S;
}
else {
S = Math.sqrt(1.0 + sm33 - sm11 - sm22) * 2;
out[3] = (sm12 - sm21) / S;
out[0] = (sm31 + sm13) / S;
out[1] = (sm23 + sm32) / S;
out[2] = 0.25 * S;
}
return out;
}
/**
* Decomposes a transformation matrix into its rotation, translation
* and scale components. Returns only the rotation component
* @param {quat} out_r Quaternion to receive the rotation component
* @param {vec3} out_t Vector to receive the translation vector
* @param {vec3} out_s Vector to receive the scaling factor
* @param {ReadonlyMat4} mat Matrix to be decomposed (input)
* @returns {quat} out_r
*/
export function decompose(out_r, out_t, out_s, mat) {
out_t[0] = mat[12];
out_t[1] = mat[13];
out_t[2] = mat[14];
const m11 = mat[0];
const m12 = mat[1];
const m13 = mat[2];
const m21 = mat[4];
const m22 = mat[5];
const m23 = mat[6];
const m31 = mat[8];
const m32 = mat[9];
const m33 = mat[10];
out_s[0] = Math.sqrt(m11 * m11 + m12 * m12 + m13 * m13);
out_s[1] = Math.sqrt(m21 * m21 + m22 * m22 + m23 * m23);
out_s[2] = Math.sqrt(m31 * m31 + m32 * m32 + m33 * m33);
const is1 = 1 / out_s[0];
const is2 = 1 / out_s[1];
const is3 = 1 / out_s[2];
const sm11 = m11 * is1;
const sm12 = m12 * is2;
const sm13 = m13 * is3;
const sm21 = m21 * is1;
const sm22 = m22 * is2;
const sm23 = m23 * is3;
const sm31 = m31 * is1;
const sm32 = m32 * is2;
const sm33 = m33 * is3;
const trace = sm11 + sm22 + sm33;
let S = 0;
if (trace > 0) {
S = Math.sqrt(trace + 1.0) * 2;
out_r[3] = 0.25 * S;
out_r[0] = (sm23 - sm32) / S;
out_r[1] = (sm31 - sm13) / S;
out_r[2] = (sm12 - sm21) / S;
} else if (sm11 > sm22 && sm11 > sm33) {
S = Math.sqrt(1.0 + sm11 - sm22 - sm33) * 2;
out_r[3] = (sm23 - sm32) / S;
out_r[0] = 0.25 * S;
out_r[1] = (sm12 + sm21) / S;
out_r[2] = (sm31 + sm13) / S;
} else if (sm22 > sm33) {
S = Math.sqrt(1.0 + sm22 - sm11 - sm33) * 2;
out_r[3] = (sm31 - sm13) / S;
out_r[0] = (sm12 + sm21) / S;
out_r[1] = 0.25 * S;
out_r[2] = (sm23 + sm32) / S;
} else {
S = Math.sqrt(1.0 + sm33 - sm11 - sm22) * 2;
out_r[3] = (sm12 - sm21) / S;
out_r[0] = (sm31 + sm13) / S;
out_r[1] = (sm23 + sm32) / S;
out_r[2] = 0.25 * S;
}
return out_r;
out_t[0] = mat[12];
out_t[1] = mat[13];
out_t[2] = mat[14];
const m11 = mat[0];
const m12 = mat[1];
const m13 = mat[2];
const m21 = mat[4];
const m22 = mat[5];
const m23 = mat[6];
const m31 = mat[8];
const m32 = mat[9];
const m33 = mat[10];
out_s[0] = Math.sqrt(m11 * m11 + m12 * m12 + m13 * m13);
out_s[1] = Math.sqrt(m21 * m21 + m22 * m22 + m23 * m23);
out_s[2] = Math.sqrt(m31 * m31 + m32 * m32 + m33 * m33);
const is1 = 1 / out_s[0];
const is2 = 1 / out_s[1];
const is3 = 1 / out_s[2];
const sm11 = m11 * is1;
const sm12 = m12 * is2;
const sm13 = m13 * is3;
const sm21 = m21 * is1;
const sm22 = m22 * is2;
const sm23 = m23 * is3;
const sm31 = m31 * is1;
const sm32 = m32 * is2;
const sm33 = m33 * is3;
const trace = sm11 + sm22 + sm33;
let S = 0;
if (trace > 0) {
S = Math.sqrt(trace + 1.0) * 2;
out_r[3] = 0.25 * S;
out_r[0] = (sm23 - sm32) / S;
out_r[1] = (sm31 - sm13) / S;
out_r[2] = (sm12 - sm21) / S;
}
else if (sm11 > sm22 && sm11 > sm33) {
S = Math.sqrt(1.0 + sm11 - sm22 - sm33) * 2;
out_r[3] = (sm23 - sm32) / S;
out_r[0] = 0.25 * S;
out_r[1] = (sm12 + sm21) / S;
out_r[2] = (sm31 + sm13) / S;
}
else if (sm22 > sm33) {
S = Math.sqrt(1.0 + sm22 - sm11 - sm33) * 2;
out_r[3] = (sm31 - sm13) / S;
out_r[0] = (sm12 + sm21) / S;
out_r[1] = 0.25 * S;
out_r[2] = (sm23 + sm32) / S;
}
else {
S = Math.sqrt(1.0 + sm33 - sm11 - sm22) * 2;
out_r[3] = (sm12 - sm21) / S;
out_r[0] = (sm31 + sm13) / S;
out_r[1] = (sm23 + sm32) / S;
out_r[2] = 0.25 * S;
}
return out_r;
}
/**
* Creates a matrix from a quaternion rotation, vector translation and vector scale
* This is equivalent to (but much faster than):
*
* mat4.identity(dest);
* mat4.translate(dest, vec);
* let quatMat = mat4.create();
* quat4.toMat4(quat, quatMat);
* mat4.multiply(dest, quatMat);
* mat4.scale(dest, scale)
*
* @param {mat4} out mat4 receiving operation result
* @param {quat4} q Rotation quaternion
* @param {ReadonlyVec3} v Translation vector
* @param {ReadonlyVec3} s Scaling vector
* @returns {mat4} out
*/
export function fromRotationTranslationScale(out, q, v, s) {
const x = q[0];
const y = q[1];
const z = q[2];
const w = q[3];
const x2 = x + x;
const y2 = y + y;
const z2 = z + z;
const xx = x * x2;
const xy = x * y2;
const xz = x * z2;
const yy = y * y2;
const yz = y * z2;
const zz = z * z2;
const wx = w * x2;
const wy = w * y2;
const wz = w * z2;
const sx = s[0];
const sy = s[1];
const sz = s[2];
out[0] = (1 - (yy + zz)) * sx;
out[1] = (xy + wz) * sx;
out[2] = (xz - wy) * sx;
out[3] = 0;
out[4] = (xy - wz) * sy;
out[5] = (1 - (xx + zz)) * sy;
out[6] = (yz + wx) * sy;
out[7] = 0;
out[8] = (xz + wy) * sz;
out[9] = (yz - wx) * sz;
out[10] = (1 - (xx + yy)) * sz;
out[11] = 0;
out[12] = v[0];
out[13] = v[1];
out[14] = v[2];
out[15] = 1;
return out;
// Quaternion math
const x = q[0];
const y = q[1];
const z = q[2];
const w = q[3];
const x2 = x + x;
const y2 = y + y;
const z2 = z + z;
const xx = x * x2;
const xy = x * y2;
const xz = x * z2;
const yy = y * y2;
const yz = y * z2;
const zz = z * z2;
const wx = w * x2;
const wy = w * y2;
const wz = w * z2;
const sx = s[0];
const sy = s[1];
const sz = s[2];
out[0] = (1 - (yy + zz)) * sx;
out[1] = (xy + wz) * sx;
out[2] = (xz - wy) * sx;
out[3] = 0;
out[4] = (xy - wz) * sy;
out[5] = (1 - (xx + zz)) * sy;
out[6] = (yz + wx) * sy;
out[7] = 0;
out[8] = (xz + wy) * sz;
out[9] = (yz - wx) * sz;
out[10] = (1 - (xx + yy)) * sz;
out[11] = 0;
out[12] = v[0];
out[13] = v[1];
out[14] = v[2];
out[15] = 1;
return out;
}
/**
* Creates a matrix from a quaternion rotation, vector translation and vector scale, rotating and scaling around the given origin
* This is equivalent to (but much faster than):
*
* mat4.identity(dest);
* mat4.translate(dest, vec);
* mat4.translate(dest, origin);
* let quatMat = mat4.create();
* quat4.toMat4(quat, quatMat);
* mat4.multiply(dest, quatMat);
* mat4.scale(dest, scale)
* mat4.translate(dest, negativeOrigin);
*
* @param {mat4} out mat4 receiving operation result
* @param {quat4} q Rotation quaternion
* @param {ReadonlyVec3} v Translation vector
* @param {ReadonlyVec3} s Scaling vector
* @param {ReadonlyVec3} o The origin vector around which to scale and rotate
* @returns {mat4} out
*/
export function fromRotationTranslationScaleOrigin(out, q, v, s, o) {
const x = q[0];
const y = q[1];
const z = q[2];
const w = q[3];
const x2 = x + x;
const y2 = y + y;
const z2 = z + z;
const xx = x * x2;
const xy = x * y2;
const xz = x * z2;
const yy = y * y2;
const yz = y * z2;
const zz = z * z2;
const wx = w * x2;
const wy = w * y2;
const wz = w * z2;
const sx = s[0];
const sy = s[1];
const sz = s[2];
const ox = o[0];
const oy = o[1];
const oz = o[2];
const out0 = (1 - (yy + zz)) * sx;
const out1 = (xy + wz) * sx;
const out2 = (xz - wy) * sx;
const out4 = (xy - wz) * sy;
const out5 = (1 - (xx + zz)) * sy;
const out6 = (yz + wx) * sy;
const out8 = (xz + wy) * sz;
const out9 = (yz - wx) * sz;
const out10 = (1 - (xx + yy)) * sz;
out[0] = out0;
out[1] = out1;
out[2] = out2;
out[3] = 0;
out[4] = out4;
out[5] = out5;
out[6] = out6;
out[7] = 0;
out[8] = out8;
out[9] = out9;
out[10] = out10;
out[11] = 0;
out[12] = v[0] + ox - (out0 * ox + out4 * oy + out8 * oz);
out[13] = v[1] + oy - (out1 * ox + out5 * oy + out9 * oz);
out[14] = v[2] + oz - (out2 * ox + out6 * oy + out10 * oz);
out[15] = 1;
return out;
// Quaternion math
const x = q[0];
const y = q[1];
const z = q[2];
const w = q[3];
const x2 = x + x;
const y2 = y + y;
const z2 = z + z;
const xx = x * x2;
const xy = x * y2;
const xz = x * z2;
const yy = y * y2;
const yz = y * z2;
const zz = z * z2;
const wx = w * x2;
const wy = w * y2;
const wz = w * z2;
const sx = s[0];
const sy = s[1];
const sz = s[2];
const ox = o[0];
const oy = o[1];
const oz = o[2];
const out0 = (1 - (yy + zz)) * sx;
const out1 = (xy + wz) * sx;
const out2 = (xz - wy) * sx;
const out4 = (xy - wz) * sy;
const out5 = (1 - (xx + zz)) * sy;
const out6 = (yz + wx) * sy;
const out8 = (xz + wy) * sz;
const out9 = (yz - wx) * sz;
const out10 = (1 - (xx + yy)) * sz;
out[0] = out0;
out[1] = out1;
out[2] = out2;
out[3] = 0;
out[4] = out4;
out[5] = out5;
out[6] = out6;
out[7] = 0;
out[8] = out8;
out[9] = out9;
out[10] = out10;
out[11] = 0;
out[12] = v[0] + ox - (out0 * ox + out4 * oy + out8 * oz);
out[13] = v[1] + oy - (out1 * ox + out5 * oy + out9 * oz);
out[14] = v[2] + oz - (out2 * ox + out6 * oy + out10 * oz);
out[15] = 1;
return out;
}
/**
* Calculates a 4x4 matrix from the given quaternion
*
* @param {mat4} out mat4 receiving operation result
* @param {ReadonlyQuat} q Quaternion to create matrix from
*
* @returns {mat4} out
*/
export function fromQuat(out, q) {
const x = q[0];
const y = q[1];
const z = q[2];
const w = q[3];
const x2 = x + x;
const y2 = y + y;
const z2 = z + z;
const xx = x * x2;
const yx = y * x2;
const yy = y * y2;
const zx = z * x2;
const zy = z * y2;
const zz = z * z2;
const wx = w * x2;
const wy = w * y2;
const wz = w * z2;
out[0] = 1 - yy - zz;
out[1] = yx + wz;
out[2] = zx - wy;
out[3] = 0;
out[4] = yx - wz;
out[5] = 1 - xx - zz;
out[6] = zy + wx;
out[7] = 0;
out[8] = zx + wy;
out[9] = zy - wx;
out[10] = 1 - xx - yy;
out[11] = 0;
out[12] = 0;
out[13] = 0;
out[14] = 0;
out[15] = 1;
return out;
const x = q[0];
const y = q[1];
const z = q[2];
const w = q[3];
const x2 = x + x;
const y2 = y + y;
const z2 = z + z;
const xx = x * x2;
const yx = y * x2;
const yy = y * y2;
const zx = z * x2;
const zy = z * y2;
const zz = z * z2;
const wx = w * x2;
const wy = w * y2;
const wz = w * z2;
out[0] = 1 - yy - zz;
out[1] = yx + wz;
out[2] = zx - wy;
out[3] = 0;
out[4] = yx - wz;
out[5] = 1 - xx - zz;
out[6] = zy + wx;
out[7] = 0;
out[8] = zx + wy;
out[9] = zy - wx;
out[10] = 1 - xx - yy;
out[11] = 0;
out[12] = 0;
out[13] = 0;
out[14] = 0;
out[15] = 1;
return out;
}
/**
* Generates a frustum matrix with the given bounds
*
* @param {mat4} out mat4 frustum matrix will be written into
* @param {Number} left Left bound of the frustum
* @param {Number} right Right bound of the frustum
* @param {Number} bottom Bottom bound of the frustum
* @param {Number} top Top bound of the frustum
* @param {Number} near Near bound of the frustum
* @param {Number} far Far bound of the frustum
* @returns {mat4} out
*/
export function frustum(out, left, right, bottom, top, near, far) {
const rl = 1 / (right - left);
const tb = 1 / (top - bottom);
const nf = 1 / (near - far);
out[0] = near * 2 * rl;
out[1] = 0;
out[2] = 0;
out[3] = 0;
out[4] = 0;
out[5] = near * 2 * tb;
out[6] = 0;
out[7] = 0;
out[8] = (right + left) * rl;
out[9] = (top + bottom) * tb;
out[10] = (far + near) * nf;
out[11] = -1;
out[12] = 0;
out[13] = 0;
out[14] = far * near * 2 * nf;
out[15] = 0;
return out;
}
export function perspectiveNO(out, fovy, aspect, near, far) {
const f = 1.0 / Math.tan(fovy / 2);
out[0] = f / aspect;
out[1] = 0;
out[2] = 0;
out[3] = 0;
out[4] = 0;
out[5] = f;
out[6] = 0;
out[7] = 0;
out[8] = 0;
out[9] = 0;
out[11] = -1;
out[12] = 0;
out[13] = 0;
out[15] = 0;
if (far != null && far !== Infinity) {
const rl = 1 / (right - left);
const tb = 1 / (top - bottom);
const nf = 1 / (near - far);
out[0] = near * 2 * rl;
out[1] = 0;
out[2] = 0;
out[3] = 0;
out[4] = 0;
out[5] = near * 2 * tb;
out[6] = 0;
out[7] = 0;
out[8] = (right + left) * rl;
out[9] = (top + bottom) * tb;
out[10] = (far + near) * nf;
out[14] = 2 * far * near * nf;
} else {
out[10] = -1;
out[14] = -2 * near;
}
return out;
out[11] = -1;
out[12] = 0;
out[13] = 0;
out[14] = far * near * 2 * nf;
out[15] = 0;
return out;
}
/**
* Generates a perspective projection matrix with the given bounds.
* The near/far clip planes correspond to a normalized device coordinate Z range of [-1, 1],
* which matches WebGL/OpenGL's clip volume.
* Passing null/undefined/no value for far will generate infinite projection matrix.
*
* @param {mat4} out mat4 frustum matrix will be written into
* @param {number} fovy Vertical field of view in radians
* @param {number} aspect Aspect ratio. typically viewport width/height
* @param {number} near Near bound of the frustum
* @param {number} far Far bound of the frustum, can be null or Infinity
* @returns {mat4} out
*/
export function perspectiveNO(out, fovy, aspect, near, far) {
const f = 1.0 / Math.tan(fovy / 2);
out[0] = f / aspect;
out[1] = 0;
out[2] = 0;
out[3] = 0;
out[4] = 0;
out[5] = f;
out[6] = 0;
out[7] = 0;
out[8] = 0;
out[9] = 0;
out[11] = -1;
out[12] = 0;
out[13] = 0;
out[15] = 0;
if (far != null && far !== Infinity) {
const nf = 1 / (near - far);
out[10] = (far + near) * nf;
out[14] = 2 * far * near * nf;
}
else {
out[10] = -1;
out[14] = -2 * near;
}
return out;
}
/**
* Alias for {@link mat4.perspectiveNO}
* @function
*/
export const perspective = perspectiveNO;
/**
* Generates a perspective projection matrix suitable for WebGPU with the given bounds.
* The near/far clip planes correspond to a normalized device coordinate Z range of [0, 1],
* which matches WebGPU/Vulkan/DirectX/Metal's clip volume.
* Passing null/undefined/no value for far will generate infinite projection matrix.
*
* @param {mat4} out mat4 frustum matrix will be written into
* @param {number} fovy Vertical field of view in radians
* @param {number} aspect Aspect ratio. typically viewport width/height
* @param {number} near Near bound of the frustum
* @param {number} far Far bound of the frustum, can be null or Infinity
* @returns {mat4} out
*/
export function perspectiveZO(out, fovy, aspect, near, far) {
const f = 1.0 / Math.tan(fovy / 2);
out[0] = f / aspect;
out[1] = 0;
out[2] = 0;
out[3] = 0;
out[4] = 0;
out[5] = f;
out[6] = 0;
out[7] = 0;
out[8] = 0;
out[9] = 0;
out[11] = -1;
out[12] = 0;
out[13] = 0;
out[15] = 0;
if (far != null && far !== Infinity) {
const nf = 1 / (near - far);
out[10] = far * nf;
out[14] = far * near * nf;
} else {
out[10] = -1;
out[14] = -near;
}
return out;
const f = 1.0 / Math.tan(fovy / 2);
out[0] = f / aspect;
out[1] = 0;
out[2] = 0;
out[3] = 0;
out[4] = 0;
out[5] = f;
out[6] = 0;
out[7] = 0;
out[8] = 0;
out[9] = 0;
out[11] = -1;
out[12] = 0;
out[13] = 0;
out[15] = 0;
if (far != null && far !== Infinity) {
const nf = 1 / (near - far);
out[10] = far * nf;
out[14] = far * near * nf;
}
else {
out[10] = -1;
out[14] = -near;
}
return out;
}
/**
* Generates a perspective projection matrix with the given field of view.
* This is primarily useful for generating projection matrices to be used
* with the still experiemental WebVR API.
*
* @param {mat4} out mat4 frustum matrix will be written into
* @param {Object} fov Object containing the following values: upDegrees, downDegrees, leftDegrees, rightDegrees
* @param {number} near Near bound of the frustum
* @param {number} far Far bound of the frustum
* @returns {mat4} out
*/
export function perspectiveFromFieldOfView(out, fov, near, far) {
const upTan = Math.tan(fov.upDegrees * Math.PI / 180.0);
const downTan = Math.tan(fov.downDegrees * Math.PI / 180.0);
const leftTan = Math.tan(fov.leftDegrees * Math.PI / 180.0);
const rightTan = Math.tan(fov.rightDegrees * Math.PI / 180.0);
const xScale = 2.0 / (leftTan + rightTan);
const yScale = 2.0 / (upTan + downTan);
out[0] = xScale;
out[1] = 0.0;
out[2] = 0.0;
out[3] = 0.0;
out[4] = 0.0;
out[5] = yScale;
out[6] = 0.0;
out[7] = 0.0;
out[8] = -((leftTan - rightTan) * xScale * 0.5);
out[9] = (upTan - downTan) * yScale * 0.5;
out[10] = far / (near - far);
out[11] = -1.0;
out[12] = 0.0;
out[13] = 0.0;
out[14] = far * near / (near - far);
out[15] = 0.0;
return out;
const upTan = Math.tan((fov.upDegrees * Math.PI) / 180.0);
const downTan = Math.tan((fov.downDegrees * Math.PI) / 180.0);
const leftTan = Math.tan((fov.leftDegrees * Math.PI) / 180.0);
const rightTan = Math.tan((fov.rightDegrees * Math.PI) / 180.0);
const xScale = 2.0 / (leftTan + rightTan);
const yScale = 2.0 / (upTan + downTan);
out[0] = xScale;
out[1] = 0.0;
out[2] = 0.0;
out[3] = 0.0;
out[4] = 0.0;
out[5] = yScale;
out[6] = 0.0;
out[7] = 0.0;
out[8] = -((leftTan - rightTan) * xScale * 0.5);
out[9] = (upTan - downTan) * yScale * 0.5;
out[10] = far / (near - far);
out[11] = -1.0;
out[12] = 0.0;
out[13] = 0.0;
out[14] = (far * near) / (near - far);
out[15] = 0.0;
return out;
}
/**
* Generates a orthogonal projection matrix with the given bounds.
* The near/far clip planes correspond to a normalized device coordinate Z range of [-1, 1],
* which matches WebGL/OpenGL's clip volume.
*
* @param {mat4} out mat4 frustum matrix will be written into
* @param {number} left Left bound of the frustum
* @param {number} right Right bound of the frustum
* @param {number} bottom Bottom bound of the frustum
* @param {number} top Top bound of the frustum
* @param {number} near Near bound of the frustum
* @param {number} far Far bound of the frustum
* @returns {mat4} out
*/
export function orthoNO(out, left, right, bottom, top, near, far) {
const lr = 1 / (left - right);
const bt = 1 / (bottom - top);
const nf = 1 / (near - far);
out[0] = -2 * lr;
out[1] = 0;
out[2] = 0;
out[3] = 0;
out[4] = 0;
out[5] = -2 * bt;
out[6] = 0;
out[7] = 0;
out[8] = 0;
out[9] = 0;
out[10] = 2 * nf;
out[11] = 0;
out[12] = (left + right) * lr;
out[13] = (top + bottom) * bt;
out[14] = (far + near) * nf;
out[15] = 1;
return out;
const lr = 1 / (left - right);
const bt = 1 / (bottom - top);
const nf = 1 / (near - far);
out[0] = -2 * lr;
out[1] = 0;
out[2] = 0;
out[3] = 0;
out[4] = 0;
out[5] = -2 * bt;
out[6] = 0;
out[7] = 0;
out[8] = 0;
out[9] = 0;
out[10] = 2 * nf;
out[11] = 0;
out[12] = (left + right) * lr;
out[13] = (top + bottom) * bt;
out[14] = (far + near) * nf;
out[15] = 1;
return out;
}
/**
* Alias for {@link mat4.orthoNO}
* @function
*/
export const ortho = orthoNO;
/**
* Generates a orthogonal projection matrix with the given bounds.
* The near/far clip planes correspond to a normalized device coordinate Z range of [0, 1],
* which matches WebGPU/Vulkan/DirectX/Metal's clip volume.
*
* @param {mat4} out mat4 frustum matrix will be written into
* @param {number} left Left bound of the frustum
* @param {number} right Right bound of the frustum
* @param {number} bottom Bottom bound of the frustum
* @param {number} top Top bound of the frustum
* @param {number} near Near bound of the frustum
* @param {number} far Far bound of the frustum
* @returns {mat4} out
*/
export function orthoZO(out, left, right, bottom, top, near, far) {
const lr = 1 / (left - right);
const bt = 1 / (bottom - top);
const nf = 1 / (near - far);
out[0] = -2 * lr;
out[1] = 0;
out[2] = 0;
out[3] = 0;
out[4] = 0;
out[5] = -2 * bt;
out[6] = 0;
out[7] = 0;
out[8] = 0;
out[9] = 0;
out[10] = nf;
out[11] = 0;
out[12] = (left + right) * lr;
out[13] = (top + bottom) * bt;
out[14] = near * nf;
out[15] = 1;
return out;
const lr = 1 / (left - right);
const bt = 1 / (bottom - top);
const nf = 1 / (near - far);
out[0] = -2 * lr;
out[1] = 0;
out[2] = 0;
out[3] = 0;
out[4] = 0;
out[5] = -2 * bt;
out[6] = 0;
out[7] = 0;
out[8] = 0;
out[9] = 0;
out[10] = nf;
out[11] = 0;
out[12] = (left + right) * lr;
out[13] = (top + bottom) * bt;
out[14] = near * nf;
out[15] = 1;
return out;
}
/**
* Generates a look-at matrix with the given eye position, focal point, and up axis.
* If you want a matrix that actually makes an object look at another object, you should use targetTo instead.
*
* @param {mat4} out mat4 frustum matrix will be written into
* @param {ReadonlyVec3} eye Position of the viewer
* @param {ReadonlyVec3} center Point the viewer is looking at
* @param {ReadonlyVec3} up vec3 pointing up
* @returns {mat4} out
*/
export function lookAt(out, eye, center, up) {
let len;
let x0;
let x1;
let x2;
let y0;
let y1;
let y2;
let z0;
let z1;
let z2;
const eyex = eye[0];
const eyey = eye[1];
const eyez = eye[2];
const upx = up[0];
const upy = up[1];
const upz = up[2];
const centerx = center[0];
const centery = center[1];
const centerz = center[2];
if (Math.abs(eyex - centerx) < glMatrix.EPSILON && Math.abs(eyey - centery) < glMatrix.EPSILON && Math.abs(eyez - centerz) < glMatrix.EPSILON) {
return identity(out);
}
z0 = eyex - centerx;
z1 = eyey - centery;
z2 = eyez - centerz;
len = 1 / Math.sqrt(z0 * z0 + z1 * z1 + z2 * z2);
z0 *= len;
z1 *= len;
z2 *= len;
x0 = upy * z2 - upz * z1;
x1 = upz * z0 - upx * z2;
x2 = upx * z1 - upy * z0;
len = Math.sqrt(x0 * x0 + x1 * x1 + x2 * x2);
if (!len) {
x0 = 0;
x1 = 0;
x2 = 0;
} else {
len = 1 / len;
x0 *= len;
x1 *= len;
x2 *= len;
}
y0 = z1 * x2 - z2 * x1;
y1 = z2 * x0 - z0 * x2;
y2 = z0 * x1 - z1 * x0;
len = Math.sqrt(y0 * y0 + y1 * y1 + y2 * y2);
if (!len) {
y0 = 0;
y1 = 0;
y2 = 0;
} else {
len = 1 / len;
y0 *= len;
y1 *= len;
y2 *= len;
}
out[0] = x0;
out[1] = y0;
out[2] = z0;
out[3] = 0;
out[4] = x1;
out[5] = y1;
out[6] = z1;
out[7] = 0;
out[8] = x2;
out[9] = y2;
out[10] = z2;
out[11] = 0;
out[12] = -(x0 * eyex + x1 * eyey + x2 * eyez);
out[13] = -(y0 * eyex + y1 * eyey + y2 * eyez);
out[14] = -(z0 * eyex + z1 * eyey + z2 * eyez);
out[15] = 1;
return out;
}
export function targetTo(out, eye, target, up) {
const eyex = eye[0];
const eyey = eye[1];
const eyez = eye[2];
const upx = up[0];
const upy = up[1];
const upz = up[2];
let z0 = eyex - target[0];
let z1 = eyey - target[1];
let z2 = eyez - target[2];
let len = z0 * z0 + z1 * z1 + z2 * z2;
if (len > 0) {
len = 1 / Math.sqrt(len);
let len;
let x0;
let x1;
let x2;
let y0;
let y1;
let y2;
let z0;
let z1;
let z2;
const eyex = eye[0];
const eyey = eye[1];
const eyez = eye[2];
const upx = up[0];
const upy = up[1];
const upz = up[2];
const centerx = center[0];
const centery = center[1];
const centerz = center[2];
if (Math.abs(eyex - centerx) < glMatrix.EPSILON &&
Math.abs(eyey - centery) < glMatrix.EPSILON &&
Math.abs(eyez - centerz) < glMatrix.EPSILON) {
return identity(out);
}
z0 = eyex - centerx;
z1 = eyey - centery;
z2 = eyez - centerz;
len = 1 / Math.sqrt(z0 * z0 + z1 * z1 + z2 * z2);
z0 *= len;
z1 *= len;
z2 *= len;
}
let x0 = upy * z2 - upz * z1;
let x1 = upz * z0 - upx * z2;
let x2 = upx * z1 - upy * z0;
len = x0 * x0 + x1 * x1 + x2 * x2;
if (len > 0) {
len = 1 / Math.sqrt(len);
x0 *= len;
x1 *= len;
x2 *= len;
}
out[0] = x0;
out[1] = x1;
out[2] = x2;
out[3] = 0;
out[4] = z1 * x2 - z2 * x1;
out[5] = z2 * x0 - z0 * x2;
out[6] = z0 * x1 - z1 * x0;
out[7] = 0;
out[8] = z0;
out[9] = z1;
out[10] = z2;
out[11] = 0;
out[12] = eyex;
out[13] = eyey;
out[14] = eyez;
out[15] = 1;
return out;
x0 = upy * z2 - upz * z1;
x1 = upz * z0 - upx * z2;
x2 = upx * z1 - upy * z0;
len = Math.sqrt(x0 * x0 + x1 * x1 + x2 * x2);
if (!len) {
x0 = 0;
x1 = 0;
x2 = 0;
}
else {
len = 1 / len;
x0 *= len;
x1 *= len;
x2 *= len;
}
y0 = z1 * x2 - z2 * x1;
y1 = z2 * x0 - z0 * x2;
y2 = z0 * x1 - z1 * x0;
len = Math.sqrt(y0 * y0 + y1 * y1 + y2 * y2);
if (!len) {
y0 = 0;
y1 = 0;
y2 = 0;
}
else {
len = 1 / len;
y0 *= len;
y1 *= len;
y2 *= len;
}
out[0] = x0;
out[1] = y0;
out[2] = z0;
out[3] = 0;
out[4] = x1;
out[5] = y1;
out[6] = z1;
out[7] = 0;
out[8] = x2;
out[9] = y2;
out[10] = z2;
out[11] = 0;
out[12] = -(x0 * eyex + x1 * eyey + x2 * eyez);
out[13] = -(y0 * eyex + y1 * eyey + y2 * eyez);
out[14] = -(z0 * eyex + z1 * eyey + z2 * eyez);
out[15] = 1;
return out;
}
/**
* Generates a matrix that makes something look at something else.
*
* @param {mat4} out mat4 frustum matrix will be written into
* @param {ReadonlyVec3} eye Position of the viewer
* @param {ReadonlyVec3} center Point the viewer is looking at
* @param {ReadonlyVec3} up vec3 pointing up
* @returns {mat4} out
*/
export function targetTo(out, eye, target, up) {
const eyex = eye[0];
const eyey = eye[1];
const eyez = eye[2];
const upx = up[0];
const upy = up[1];
const upz = up[2];
let z0 = eyex - target[0];
let z1 = eyey - target[1];
let z2 = eyez - target[2];
let len = z0 * z0 + z1 * z1 + z2 * z2;
if (len > 0) {
len = 1 / Math.sqrt(len);
z0 *= len;
z1 *= len;
z2 *= len;
}
let x0 = upy * z2 - upz * z1;
let x1 = upz * z0 - upx * z2;
let x2 = upx * z1 - upy * z0;
len = x0 * x0 + x1 * x1 + x2 * x2;
if (len > 0) {
len = 1 / Math.sqrt(len);
x0 *= len;
x1 *= len;
x2 *= len;
}
out[0] = x0;
out[1] = x1;
out[2] = x2;
out[3] = 0;
out[4] = z1 * x2 - z2 * x1;
out[5] = z2 * x0 - z0 * x2;
out[6] = z0 * x1 - z1 * x0;
out[7] = 0;
out[8] = z0;
out[9] = z1;
out[10] = z2;
out[11] = 0;
out[12] = eyex;
out[13] = eyey;
out[14] = eyez;
out[15] = 1;
return out;
}
/**
* Returns a string representation of a mat4
*
* @param {ReadonlyMat4} a matrix to represent as a string
* @returns {String} string representation of the matrix
*/
export function str(a) {
return "mat4(".concat(a[0], ", ").concat(a[1], ", ").concat(a[2], ", ").concat(a[3], ", ").concat(a[4], ", ").concat(a[5], ", ").concat(a[6], ", ").concat(a[7], ", ").concat(a[8], ", ").concat(a[9], ", ").concat(a[10], ", ").concat(a[11], ", ").concat(a[12], ", ").concat(a[13], ", ").concat(a[14], ", ").concat(a[15], ")");
return `mat4(${a[0]}, ${a[1]}, ${a[2]}, ${a[3]}, ${a[4]}, ${a[5]}, ${a[6]}, ${a[7]}, ${a[8]}, ${a[9]}, ${a[10]}, ${a[11]}, ${a[12]}, ${a[13]}, ${a[14]}, ${a[15]})`;
}
/**
* Returns Frobenius norm of a mat4
*
* @param {ReadonlyMat4} a the matrix to calculate Frobenius norm of
* @returns {Number} Frobenius norm
*/
export function frob(a) {
return Math.sqrt(a[0] * a[0] + a[1] * a[1] + a[2] * a[2] + a[3] * a[3] + a[4] * a[4] + a[5] * a[5] + a[6] * a[6] + a[7] * a[7] + a[8] * a[8] + a[9] * a[9] + a[10] * a[10] + a[11] * a[11] + a[12] * a[12] + a[13] * a[13] + a[14] * a[14] + a[15] * a[15]);
return Math.sqrt(a[0] * a[0] +
a[1] * a[1] +
a[2] * a[2] +
a[3] * a[3] +
a[4] * a[4] +
a[5] * a[5] +
a[6] * a[6] +
a[7] * a[7] +
a[8] * a[8] +
a[9] * a[9] +
a[10] * a[10] +
a[11] * a[11] +
a[12] * a[12] +
a[13] * a[13] +
a[14] * a[14] +
a[15] * a[15]);
}
/**
* Adds two mat4's
*
* @param {mat4} out the receiving matrix
* @param {ReadonlyMat4} a the first operand
* @param {ReadonlyMat4} b the second operand
* @returns {mat4} out
*/
export function add(out, a, b) {
out[0] = a[0] + b[0];
out[1] = a[1] + b[1];
out[2] = a[2] + b[2];
out[3] = a[3] + b[3];
out[4] = a[4] + b[4];
out[5] = a[5] + b[5];
out[6] = a[6] + b[6];
out[7] = a[7] + b[7];
out[8] = a[8] + b[8];
out[9] = a[9] + b[9];
out[10] = a[10] + b[10];
out[11] = a[11] + b[11];
out[12] = a[12] + b[12];
out[13] = a[13] + b[13];
out[14] = a[14] + b[14];
out[15] = a[15] + b[15];
return out;
out[0] = a[0] + b[0];
out[1] = a[1] + b[1];
out[2] = a[2] + b[2];
out[3] = a[3] + b[3];
out[4] = a[4] + b[4];
out[5] = a[5] + b[5];
out[6] = a[6] + b[6];
out[7] = a[7] + b[7];
out[8] = a[8] + b[8];
out[9] = a[9] + b[9];
out[10] = a[10] + b[10];
out[11] = a[11] + b[11];
out[12] = a[12] + b[12];
out[13] = a[13] + b[13];
out[14] = a[14] + b[14];
out[15] = a[15] + b[15];
return out;
}
/**
* Subtracts matrix b from matrix a
*
* @param {mat4} out the receiving matrix
* @param {ReadonlyMat4} a the first operand
* @param {ReadonlyMat4} b the second operand
* @returns {mat4} out
*/
export function subtract(out, a, b) {
out[0] = a[0] - b[0];
out[1] = a[1] - b[1];
out[2] = a[2] - b[2];
out[3] = a[3] - b[3];
out[4] = a[4] - b[4];
out[5] = a[5] - b[5];
out[6] = a[6] - b[6];
out[7] = a[7] - b[7];
out[8] = a[8] - b[8];
out[9] = a[9] - b[9];
out[10] = a[10] - b[10];
out[11] = a[11] - b[11];
out[12] = a[12] - b[12];
out[13] = a[13] - b[13];
out[14] = a[14] - b[14];
out[15] = a[15] - b[15];
return out;
out[0] = a[0] - b[0];
out[1] = a[1] - b[1];
out[2] = a[2] - b[2];
out[3] = a[3] - b[3];
out[4] = a[4] - b[4];
out[5] = a[5] - b[5];
out[6] = a[6] - b[6];
out[7] = a[7] - b[7];
out[8] = a[8] - b[8];
out[9] = a[9] - b[9];
out[10] = a[10] - b[10];
out[11] = a[11] - b[11];
out[12] = a[12] - b[12];
out[13] = a[13] - b[13];
out[14] = a[14] - b[14];
out[15] = a[15] - b[15];
return out;
}
/**
* Multiply each element of the matrix by a scalar.
*
* @param {mat4} out the receiving matrix
* @param {ReadonlyMat4} a the matrix to scale
* @param {Number} b amount to scale the matrix's elements by
* @returns {mat4} out
*/
export function multiplyScalar(out, a, b) {
out[0] = a[0] * b;
out[1] = a[1] * b;
out[2] = a[2] * b;
out[3] = a[3] * b;
out[4] = a[4] * b;
out[5] = a[5] * b;
out[6] = a[6] * b;
out[7] = a[7] * b;
out[8] = a[8] * b;
out[9] = a[9] * b;
out[10] = a[10] * b;
out[11] = a[11] * b;
out[12] = a[12] * b;
out[13] = a[13] * b;
out[14] = a[14] * b;
out[15] = a[15] * b;
return out;
out[0] = a[0] * b;
out[1] = a[1] * b;
out[2] = a[2] * b;
out[3] = a[3] * b;
out[4] = a[4] * b;
out[5] = a[5] * b;
out[6] = a[6] * b;
out[7] = a[7] * b;
out[8] = a[8] * b;
out[9] = a[9] * b;
out[10] = a[10] * b;
out[11] = a[11] * b;
out[12] = a[12] * b;
out[13] = a[13] * b;
out[14] = a[14] * b;
out[15] = a[15] * b;
return out;
}
/**
* Adds two mat4's after multiplying each element of the second operand by a scalar value.
*
* @param {mat4} out the receiving vector
* @param {ReadonlyMat4} a the first operand
* @param {ReadonlyMat4} b the second operand
* @param {Number} scale the amount to scale b's elements by before adding
* @returns {mat4} out
*/
export function multiplyScalarAndAdd(out, a, b, scale) {
out[0] = a[0] + b[0] * scale;
out[1] = a[1] + b[1] * scale;
out[2] = a[2] + b[2] * scale;
out[3] = a[3] + b[3] * scale;
out[4] = a[4] + b[4] * scale;
out[5] = a[5] + b[5] * scale;
out[6] = a[6] + b[6] * scale;
out[7] = a[7] + b[7] * scale;
out[8] = a[8] + b[8] * scale;
out[9] = a[9] + b[9] * scale;
out[10] = a[10] + b[10] * scale;
out[11] = a[11] + b[11] * scale;
out[12] = a[12] + b[12] * scale;
out[13] = a[13] + b[13] * scale;
out[14] = a[14] + b[14] * scale;
out[15] = a[15] + b[15] * scale;
return out;
out[0] = a[0] + b[0] * scale;
out[1] = a[1] + b[1] * scale;
out[2] = a[2] + b[2] * scale;
out[3] = a[3] + b[3] * scale;
out[4] = a[4] + b[4] * scale;
out[5] = a[5] + b[5] * scale;
out[6] = a[6] + b[6] * scale;
out[7] = a[7] + b[7] * scale;
out[8] = a[8] + b[8] * scale;
out[9] = a[9] + b[9] * scale;
out[10] = a[10] + b[10] * scale;
out[11] = a[11] + b[11] * scale;
out[12] = a[12] + b[12] * scale;
out[13] = a[13] + b[13] * scale;
out[14] = a[14] + b[14] * scale;
out[15] = a[15] + b[15] * scale;
return out;
}
/**
* Returns whether or not the matrices have exactly the same elements in the same position (when compared with ===)
*
* @param {ReadonlyMat4} a The first matrix.
* @param {ReadonlyMat4} b The second matrix.
* @returns {Boolean} True if the matrices are equal, false otherwise.
*/
export function exactEquals(a, b) {
return a[0] === b[0] && a[1] === b[1] && a[2] === b[2] && a[3] === b[3] && a[4] === b[4] && a[5] === b[5] && a[6] === b[6] && a[7] === b[7] && a[8] === b[8] && a[9] === b[9] && a[10] === b[10] && a[11] === b[11] && a[12] === b[12] && a[13] === b[13] && a[14] === b[14] && a[15] === b[15];
return (a[0] === b[0] &&
a[1] === b[1] &&
a[2] === b[2] &&
a[3] === b[3] &&
a[4] === b[4] &&
a[5] === b[5] &&
a[6] === b[6] &&
a[7] === b[7] &&
a[8] === b[8] &&
a[9] === b[9] &&
a[10] === b[10] &&
a[11] === b[11] &&
a[12] === b[12] &&
a[13] === b[13] &&
a[14] === b[14] &&
a[15] === b[15]);
}
/**
* Returns whether or not the matrices have approximately the same elements in the same position.
*
* @param {ReadonlyMat4} a The first matrix.
* @param {ReadonlyMat4} b The second matrix.
* @returns {Boolean} True if the matrices are equal, false otherwise.
*/
export function equals(a, b) {
const a0 = a[0];
const a1 = a[1];
const a2 = a[2];
const a3 = a[3];
const a4 = a[4];
const a5 = a[5];
const a6 = a[6];
const a7 = a[7];
const a8 = a[8];
const a9 = a[9];
const a10 = a[10];
const a11 = a[11];
const a12 = a[12];
const a13 = a[13];
const a14 = a[14];
const a15 = a[15];
const b0 = b[0];
const b1 = b[1];
const b2 = b[2];
const b3 = b[3];
const b4 = b[4];
const b5 = b[5];
const b6 = b[6];
const b7 = b[7];
const b8 = b[8];
const b9 = b[9];
const b10 = b[10];
const b11 = b[11];
const b12 = b[12];
const b13 = b[13];
const b14 = b[14];
const b15 = b[15];
return Math.abs(a0 - b0) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a0), Math.abs(b0)) && Math.abs(a1 - b1) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a1), Math.abs(b1)) && Math.abs(a2 - b2) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a2), Math.abs(b2)) && Math.abs(a3 - b3) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a3), Math.abs(b3)) && Math.abs(a4 - b4) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a4), Math.abs(b4)) && Math.abs(a5 - b5) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a5), Math.abs(b5)) && Math.abs(a6 - b6) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a6), Math.abs(b6)) && Math.abs(a7 - b7) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a7), Math.abs(b7)) && Math.abs(a8 - b8) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a8), Math.abs(b8)) && Math.abs(a9 - b9) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a9), Math.abs(b9)) && Math.abs(a10 - b10) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a10), Math.abs(b10)) && Math.abs(a11 - b11) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a11), Math.abs(b11)) && Math.abs(a12 - b12) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a12), Math.abs(b12)) && Math.abs(a13 - b13) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a13), Math.abs(b13)) && Math.abs(a14 - b14) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a14), Math.abs(b14)) && Math.abs(a15 - b15) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a15), Math.abs(b15));
const a0 = a[0];
const a1 = a[1];
const a2 = a[2];
const a3 = a[3];
const a4 = a[4];
const a5 = a[5];
const a6 = a[6];
const a7 = a[7];
const a8 = a[8];
const a9 = a[9];
const a10 = a[10];
const a11 = a[11];
const a12 = a[12];
const a13 = a[13];
const a14 = a[14];
const a15 = a[15];
const b0 = b[0];
const b1 = b[1];
const b2 = b[2];
const b3 = b[3];
const b4 = b[4];
const b5 = b[5];
const b6 = b[6];
const b7 = b[7];
const b8 = b[8];
const b9 = b[9];
const b10 = b[10];
const b11 = b[11];
const b12 = b[12];
const b13 = b[13];
const b14 = b[14];
const b15 = b[15];
return (Math.abs(a0 - b0) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a0), Math.abs(b0)) &&
Math.abs(a1 - b1) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a1), Math.abs(b1)) &&
Math.abs(a2 - b2) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a2), Math.abs(b2)) &&
Math.abs(a3 - b3) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a3), Math.abs(b3)) &&
Math.abs(a4 - b4) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a4), Math.abs(b4)) &&
Math.abs(a5 - b5) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a5), Math.abs(b5)) &&
Math.abs(a6 - b6) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a6), Math.abs(b6)) &&
Math.abs(a7 - b7) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a7), Math.abs(b7)) &&
Math.abs(a8 - b8) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a8), Math.abs(b8)) &&
Math.abs(a9 - b9) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a9), Math.abs(b9)) &&
Math.abs(a10 - b10) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a10), Math.abs(b10)) &&
Math.abs(a11 - b11) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a11), Math.abs(b11)) &&
Math.abs(a12 - b12) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a12), Math.abs(b12)) &&
Math.abs(a13 - b13) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a13), Math.abs(b13)) &&
Math.abs(a14 - b14) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a14), Math.abs(b14)) &&
Math.abs(a15 - b15) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a15), Math.abs(b15)));
}
/**
* Alias for {@link mat4.multiply}
* @function
*/
export const mul = multiply;
/**
* Alias for {@link mat4.subtract}
* @function
*/
export const sub = subtract;
//# sourceMappingURL=mat4.js.map

@@ -357,2 +357,1 @@ import * as vec4 from './vec4.js';

export declare const setAxes: (out: any, view: any, right: any, up: any) => any;
//# sourceMappingURL=quat.d.ts.map

@@ -0,1 +1,3 @@

// @eslint-disable
// @ts-nocheck
import * as glMatrix from './common.js';

@@ -5,312 +7,708 @@ import * as mat3 from './mat3.js';

import * as vec4 from './vec4.js';
// const glMatrix: {EPSILON = 0.000001};
/**
* Quaternion in the format XYZW
* @module quat
*/
/**
* Creates a new identity quat
*
* @returns {quat} a new quaternion
*/
export function create() {
const out = new glMatrix.ARRAY_TYPE(4);
if (glMatrix.ARRAY_TYPE != Float32Array) {
const out = new glMatrix.ARRAY_TYPE(4);
if (glMatrix.ARRAY_TYPE != Float32Array) {
out[0] = 0;
out[1] = 0;
out[2] = 0;
}
out[3] = 1;
return out;
}
/**
* Set a quat to the identity quaternion
*
* @param {quat} out the receiving quaternion
* @returns {quat} out
*/
export function identity(out) {
out[0] = 0;
out[1] = 0;
out[2] = 0;
}
out[3] = 1;
return out;
out[3] = 1;
return out;
}
export function identity(out) {
out[0] = 0;
out[1] = 0;
out[2] = 0;
out[3] = 1;
return out;
}
/**
* Sets a quat from the given angle and rotation axis,
* then returns it.
*
* @param {quat} out the receiving quaternion
* @param {ReadonlyVec3} axis the axis around which to rotate
* @param {Number} rad the angle in radians
* @returns {quat} out
**/
export function setAxisAngle(out, axis, rad) {
rad = rad * 0.5;
const s = Math.sin(rad);
out[0] = s * axis[0];
out[1] = s * axis[1];
out[2] = s * axis[2];
out[3] = Math.cos(rad);
return out;
rad = rad * 0.5;
const s = Math.sin(rad);
out[0] = s * axis[0];
out[1] = s * axis[1];
out[2] = s * axis[2];
out[3] = Math.cos(rad);
return out;
}
/**
* Gets the rotation axis and angle for a given
* quaternion. If a quaternion is created with
* setAxisAngle, this method will return the same
* values as providied in the original parameter list
* OR functionally equivalent values.
* Example: The quaternion formed by axis [0, 0, 1] and
* angle -90 is the same as the quaternion formed by
* [0, 0, 1] and 270. This method favors the latter.
* @param {vec3} out_axis Vector receiving the axis of rotation
* @param {ReadonlyQuat} q Quaternion to be decomposed
* @return {Number} Angle, in radians, of the rotation
*/
export function getAxisAngle(out_axis, q) {
const rad = Math.acos(q[3]) * 2.0;
const s = Math.sin(rad / 2.0);
if (s > glMatrix.EPSILON) {
out_axis[0] = q[0] / s;
out_axis[1] = q[1] / s;
out_axis[2] = q[2] / s;
} else {
out_axis[0] = 1;
out_axis[1] = 0;
out_axis[2] = 0;
}
return rad;
const rad = Math.acos(q[3]) * 2.0;
const s = Math.sin(rad / 2.0);
if (s > glMatrix.EPSILON) {
out_axis[0] = q[0] / s;
out_axis[1] = q[1] / s;
out_axis[2] = q[2] / s;
}
else {
// If s is zero, return any axis (no rotation - axis does not matter)
out_axis[0] = 1;
out_axis[1] = 0;
out_axis[2] = 0;
}
return rad;
}
/**
* Gets the angular distance between two unit quaternions
*
* @param {ReadonlyQuat} a Origin unit quaternion
* @param {ReadonlyQuat} b Destination unit quaternion
* @return {Number} Angle, in radians, between the two quaternions
*/
export function getAngle(a, b) {
const dotproduct = dot(a, b);
return Math.acos(2 * dotproduct * dotproduct - 1);
const dotproduct = dot(a, b);
return Math.acos(2 * dotproduct * dotproduct - 1);
}
/**
* Multiplies two quat's
*
* @param {quat} out the receiving quaternion
* @param {ReadonlyQuat} a the first operand
* @param {ReadonlyQuat} b the second operand
* @returns {quat} out
*/
export function multiply(out, a, b) {
const ax = a[0];
const ay = a[1];
const az = a[2];
const aw = a[3];
const bx = b[0];
const by = b[1];
const bz = b[2];
const bw = b[3];
out[0] = ax * bw + aw * bx + ay * bz - az * by;
out[1] = ay * bw + aw * by + az * bx - ax * bz;
out[2] = az * bw + aw * bz + ax * by - ay * bx;
out[3] = aw * bw - ax * bx - ay * by - az * bz;
return out;
const ax = a[0];
const ay = a[1];
const az = a[2];
const aw = a[3];
const bx = b[0];
const by = b[1];
const bz = b[2];
const bw = b[3];
out[0] = ax * bw + aw * bx + ay * bz - az * by;
out[1] = ay * bw + aw * by + az * bx - ax * bz;
out[2] = az * bw + aw * bz + ax * by - ay * bx;
out[3] = aw * bw - ax * bx - ay * by - az * bz;
return out;
}
/**
* Rotates a quaternion by the given angle about the X axis
*
* @param {quat} out quat receiving operation result
* @param {ReadonlyQuat} a quat to rotate
* @param {number} rad angle (in radians) to rotate
* @returns {quat} out
*/
export function rotateX(out, a, rad) {
rad *= 0.5;
const ax = a[0];
const ay = a[1];
const az = a[2];
const aw = a[3];
const bx = Math.sin(rad);
const bw = Math.cos(rad);
out[0] = ax * bw + aw * bx;
out[1] = ay * bw + az * bx;
out[2] = az * bw - ay * bx;
out[3] = aw * bw - ax * bx;
return out;
rad *= 0.5;
const ax = a[0];
const ay = a[1];
const az = a[2];
const aw = a[3];
const bx = Math.sin(rad);
const bw = Math.cos(rad);
out[0] = ax * bw + aw * bx;
out[1] = ay * bw + az * bx;
out[2] = az * bw - ay * bx;
out[3] = aw * bw - ax * bx;
return out;
}
/**
* Rotates a quaternion by the given angle about the Y axis
*
* @param {quat} out quat receiving operation result
* @param {ReadonlyQuat} a quat to rotate
* @param {number} rad angle (in radians) to rotate
* @returns {quat} out
*/
export function rotateY(out, a, rad) {
rad *= 0.5;
const ax = a[0];
const ay = a[1];
const az = a[2];
const aw = a[3];
const by = Math.sin(rad);
const bw = Math.cos(rad);
out[0] = ax * bw - az * by;
out[1] = ay * bw + aw * by;
out[2] = az * bw + ax * by;
out[3] = aw * bw - ay * by;
return out;
rad *= 0.5;
const ax = a[0];
const ay = a[1];
const az = a[2];
const aw = a[3];
const by = Math.sin(rad);
const bw = Math.cos(rad);
out[0] = ax * bw - az * by;
out[1] = ay * bw + aw * by;
out[2] = az * bw + ax * by;
out[3] = aw * bw - ay * by;
return out;
}
/**
* Rotates a quaternion by the given angle about the Z axis
*
* @param {quat} out quat receiving operation result
* @param {ReadonlyQuat} a quat to rotate
* @param {number} rad angle (in radians) to rotate
* @returns {quat} out
*/
export function rotateZ(out, a, rad) {
rad *= 0.5;
const ax = a[0];
const ay = a[1];
const az = a[2];
const aw = a[3];
const bz = Math.sin(rad);
const bw = Math.cos(rad);
out[0] = ax * bw + ay * bz;
out[1] = ay * bw - ax * bz;
out[2] = az * bw + aw * bz;
out[3] = aw * bw - az * bz;
return out;
rad *= 0.5;
const ax = a[0];
const ay = a[1];
const az = a[2];
const aw = a[3];
const bz = Math.sin(rad);
const bw = Math.cos(rad);
out[0] = ax * bw + ay * bz;
out[1] = ay * bw - ax * bz;
out[2] = az * bw + aw * bz;
out[3] = aw * bw - az * bz;
return out;
}
/**
* Calculates the W component of a quat from the X, Y, and Z components.
* Assumes that quaternion is 1 unit in length.
* Any existing W component will be ignored.
*
* @param {quat} out the receiving quaternion
* @param {ReadonlyQuat} a quat to calculate W component of
* @returns {quat} out
*/
export function calculateW(out, a) {
const x = a[0];
const y = a[1];
const z = a[2];
out[0] = x;
out[1] = y;
out[2] = z;
out[3] = Math.sqrt(Math.abs(1.0 - x * x - y * y - z * z));
return out;
const x = a[0];
const y = a[1];
const z = a[2];
out[0] = x;
out[1] = y;
out[2] = z;
out[3] = Math.sqrt(Math.abs(1.0 - x * x - y * y - z * z));
return out;
}
/**
* Calculate the exponential of a unit quaternion.
*
* @param {quat} out the receiving quaternion
* @param {ReadonlyQuat} a quat to calculate the exponential of
* @returns {quat} out
*/
export function exp(out, a) {
const x = a[0];
const y = a[1];
const z = a[2];
const w = a[3];
const r = Math.sqrt(x * x + y * y + z * z);
const et = Math.exp(w);
const s = r > 0 ? et * Math.sin(r) / r : 0;
out[0] = x * s;
out[1] = y * s;
out[2] = z * s;
out[3] = et * Math.cos(r);
return out;
const x = a[0];
const y = a[1];
const z = a[2];
const w = a[3];
const r = Math.sqrt(x * x + y * y + z * z);
const et = Math.exp(w);
const s = r > 0 ? (et * Math.sin(r)) / r : 0;
out[0] = x * s;
out[1] = y * s;
out[2] = z * s;
out[3] = et * Math.cos(r);
return out;
}
/**
* Calculate the natural logarithm of a unit quaternion.
*
* @param {quat} out the receiving quaternion
* @param {ReadonlyQuat} a quat to calculate the exponential of
* @returns {quat} out
*/
export function ln(out, a) {
const x = a[0];
const y = a[1];
const z = a[2];
const w = a[3];
const r = Math.sqrt(x * x + y * y + z * z);
const t = r > 0 ? Math.atan2(r, w) / r : 0;
out[0] = x * t;
out[1] = y * t;
out[2] = z * t;
out[3] = 0.5 * Math.log(x * x + y * y + z * z + w * w);
return out;
const x = a[0];
const y = a[1];
const z = a[2];
const w = a[3];
const r = Math.sqrt(x * x + y * y + z * z);
const t = r > 0 ? Math.atan2(r, w) / r : 0;
out[0] = x * t;
out[1] = y * t;
out[2] = z * t;
out[3] = 0.5 * Math.log(x * x + y * y + z * z + w * w);
return out;
}
/**
* Calculate the scalar power of a unit quaternion.
*
* @param {quat} out the receiving quaternion
* @param {ReadonlyQuat} a quat to calculate the exponential of
* @param {Number} b amount to scale the quaternion by
* @returns {quat} out
*/
export function pow(out, a, b) {
ln(out, a);
scale(out, out, b);
exp(out, out);
return out;
ln(out, a);
scale(out, out, b);
exp(out, out);
return out;
}
/**
* Performs a spherical linear interpolation between two quat
*
* @param {quat} out the receiving quaternion
* @param {ReadonlyQuat} a the first operand
* @param {ReadonlyQuat} b the second operand
* @param {Number} t interpolation amount, in the range [0-1], between the two inputs
* @returns {quat} out
*/
export function slerp(out, a, b, t) {
const ax = a[0];
const ay = a[1];
const az = a[2];
const aw = a[3];
let bx = b[0];
let by = b[1];
let bz = b[2];
let bw = b[3];
let cosom;
let omega;
let scale0;
let scale1;
let sinom;
cosom = ax * bx + ay * by + az * bz + aw * bw;
if (cosom < 0.0) {
cosom = -cosom;
bx = -bx;
by = -by;
bz = -bz;
bw = -bw;
}
if (1.0 - cosom > glMatrix.EPSILON) {
omega = Math.acos(cosom);
sinom = Math.sin(omega);
scale0 = Math.sin((1.0 - t) * omega) / sinom;
scale1 = Math.sin(t * omega) / sinom;
} else {
scale0 = 1.0 - t;
scale1 = t;
}
out[0] = scale0 * ax + scale1 * bx;
out[1] = scale0 * ay + scale1 * by;
out[2] = scale0 * az + scale1 * bz;
out[3] = scale0 * aw + scale1 * bw;
return out;
// benchmarks:
// http://jsperf.com/quaternion-slerp-implementations
const ax = a[0];
const ay = a[1];
const az = a[2];
const aw = a[3];
let bx = b[0];
let by = b[1];
let bz = b[2];
let bw = b[3];
let cosom;
let omega;
let scale0;
let scale1;
let sinom;
// calc cosine
cosom = ax * bx + ay * by + az * bz + aw * bw;
// adjust signs (if necessary)
if (cosom < 0.0) {
cosom = -cosom;
bx = -bx;
by = -by;
bz = -bz;
bw = -bw;
}
// calculate coefficients
if (1.0 - cosom > glMatrix.EPSILON) {
// standard case (slerp)
omega = Math.acos(cosom);
sinom = Math.sin(omega);
scale0 = Math.sin((1.0 - t) * omega) / sinom;
scale1 = Math.sin(t * omega) / sinom;
}
else {
// "from" and "to" quaternions are very close
// ... so we can do a linear interpolation
scale0 = 1.0 - t;
scale1 = t;
}
// calculate final values
out[0] = scale0 * ax + scale1 * bx;
out[1] = scale0 * ay + scale1 * by;
out[2] = scale0 * az + scale1 * bz;
out[3] = scale0 * aw + scale1 * bw;
return out;
}
/**
* Generates a random unit quaternion
*
* @param {quat} out the receiving quaternion
* @returns {quat} out
*/
// export function random(out) {
// // Implementation of http://planning.cs.uiuc.edu/node198.html
// // TODO: Calling random 3 times is probably not the fastest solution
// let u1 = glMatrix.RANDOM();
// let u2 = glMatrix.RANDOM();
// let u3 = glMatrix.RANDOM();
// let sqrt1MinusU1 = Math.sqrt(1 - u1);
// let sqrtU1 = Math.sqrt(u1);
// out[0] = sqrt1MinusU1 * Math.sin(2.0 * Math.PI * u2);
// out[1] = sqrt1MinusU1 * Math.cos(2.0 * Math.PI * u2);
// out[2] = sqrtU1 * Math.sin(2.0 * Math.PI * u3);
// out[3] = sqrtU1 * Math.cos(2.0 * Math.PI * u3);
// return out;
// }
/**
* Calculates the inverse of a quat
*
* @param {quat} out the receiving quaternion
* @param {ReadonlyQuat} a quat to calculate inverse of
* @returns {quat} out
*/
export function invert(out, a) {
const a0 = a[0];
const a1 = a[1];
const a2 = a[2];
const a3 = a[3];
const dot = a0 * a0 + a1 * a1 + a2 * a2 + a3 * a3;
const invDot = dot ? 1.0 / dot : 0;
out[0] = -a0 * invDot;
out[1] = -a1 * invDot;
out[2] = -a2 * invDot;
out[3] = a3 * invDot;
return out;
const a0 = a[0];
const a1 = a[1];
const a2 = a[2];
const a3 = a[3];
const dot = a0 * a0 + a1 * a1 + a2 * a2 + a3 * a3;
const invDot = dot ? 1.0 / dot : 0;
// TODO: Would be faster to return [0,0,0,0] immediately if dot == 0
out[0] = -a0 * invDot;
out[1] = -a1 * invDot;
out[2] = -a2 * invDot;
out[3] = a3 * invDot;
return out;
}
/**
* Calculates the conjugate of a quat
* If the quaternion is normalized, this function is faster than quat.inverse and produces the same result.
*
* @param {quat} out the receiving quaternion
* @param {ReadonlyQuat} a quat to calculate conjugate of
* @returns {quat} out
*/
export function conjugate(out, a) {
out[0] = -a[0];
out[1] = -a[1];
out[2] = -a[2];
out[3] = a[3];
return out;
out[0] = -a[0];
out[1] = -a[1];
out[2] = -a[2];
out[3] = a[3];
return out;
}
/**
* Creates a quaternion from the given 3x3 rotation matrix.
*
* NOTE: The resultant quaternion is not normalized, so you should be sure
* to renormalize the quaternion yourself where necessary.
*
* @param {quat} out the receiving quaternion
* @param {ReadonlyMat3} m rotation matrix
* @returns {quat} out
* @function
*/
export function fromMat3(out, m) {
const fTrace = m[0] + m[4] + m[8];
let fRoot;
if (fTrace > 0.0) {
fRoot = Math.sqrt(fTrace + 1.0);
out[3] = 0.5 * fRoot;
fRoot = 0.5 / fRoot;
out[0] = (m[5] - m[7]) * fRoot;
out[1] = (m[6] - m[2]) * fRoot;
out[2] = (m[1] - m[3]) * fRoot;
} else {
let i = 0;
if (m[4] > m[0]) i = 1;
if (m[8] > m[i * 3 + i]) i = 2;
const j = (i + 1) % 3;
const k = (i + 2) % 3;
fRoot = Math.sqrt(m[i * 3 + i] - m[j * 3 + j] - m[k * 3 + k] + 1.0);
out[i] = 0.5 * fRoot;
fRoot = 0.5 / fRoot;
out[3] = (m[j * 3 + k] - m[k * 3 + j]) * fRoot;
out[j] = (m[j * 3 + i] + m[i * 3 + j]) * fRoot;
out[k] = (m[k * 3 + i] + m[i * 3 + k]) * fRoot;
}
return out;
// Algorithm in Ken Shoemake's article in 1987 SIGGRAPH course notes
// article "Quaternion Calculus and Fast Animation".
const fTrace = m[0] + m[4] + m[8];
let fRoot;
if (fTrace > 0.0) {
// |w| > 1/2, may as well choose w > 1/2
fRoot = Math.sqrt(fTrace + 1.0); // 2w
out[3] = 0.5 * fRoot;
fRoot = 0.5 / fRoot; // 1/(4w)
out[0] = (m[5] - m[7]) * fRoot;
out[1] = (m[6] - m[2]) * fRoot;
out[2] = (m[1] - m[3]) * fRoot;
}
else {
// |w| <= 1/2
let i = 0;
if (m[4] > m[0])
i = 1;
if (m[8] > m[i * 3 + i])
i = 2;
const j = (i + 1) % 3;
const k = (i + 2) % 3;
fRoot = Math.sqrt(m[i * 3 + i] - m[j * 3 + j] - m[k * 3 + k] + 1.0);
out[i] = 0.5 * fRoot;
fRoot = 0.5 / fRoot;
out[3] = (m[j * 3 + k] - m[k * 3 + j]) * fRoot;
out[j] = (m[j * 3 + i] + m[i * 3 + j]) * fRoot;
out[k] = (m[k * 3 + i] + m[i * 3 + k]) * fRoot;
}
return out;
}
/**
* Creates a quaternion from the given euler angle x, y, z using the provided intrinsic order for the conversion.
*
* @param {quat} out the receiving quaternion
* @param {Number} x Angle to rotate around X axis in degrees.
* @param {Number} y Angle to rotate around Y axis in degrees.
* @param {Number} z Angle to rotate around Z axis in degrees.
* @param {'zyx'|'xyz'|'yxz'|'yzx'|'zxy'|'zyx'} order Intrinsic order for conversion, default is zyx.
* @returns {quat} out
* @function
*/
// export function fromEuler(out, x, y, z, order = glMatrix.ANGLE_ORDER) {
// let halfToRad = Math.PI / 360;
// x *= halfToRad;
// z *= halfToRad;
// y *= halfToRad;
// let sx = Math.sin(x);
// let cx = Math.cos(x);
// let sy = Math.sin(y);
// let cy = Math.cos(y);
// let sz = Math.sin(z);
// let cz = Math.cos(z);
// switch (order) {
// case "xyz":
// out[0] = sx * cy * cz + cx * sy * sz;
// out[1] = cx * sy * cz - sx * cy * sz;
// out[2] = cx * cy * sz + sx * sy * cz;
// out[3] = cx * cy * cz - sx * sy * sz;
// break;
// case "xzy":
// out[0] = sx * cy * cz - cx * sy * sz;
// out[1] = cx * sy * cz - sx * cy * sz;
// out[2] = cx * cy * sz + sx * sy * cz;
// out[3] = cx * cy * cz + sx * sy * sz;
// break;
// case "yxz":
// out[0] = sx * cy * cz + cx * sy * sz;
// out[1] = cx * sy * cz - sx * cy * sz;
// out[2] = cx * cy * sz - sx * sy * cz;
// out[3] = cx * cy * cz + sx * sy * sz;
// break;
// case "yzx":
// out[0] = sx * cy * cz + cx * sy * sz;
// out[1] = cx * sy * cz + sx * cy * sz;
// out[2] = cx * cy * sz - sx * sy * cz;
// out[3] = cx * cy * cz - sx * sy * sz;
// break;
// case "zxy":
// out[0] = sx * cy * cz - cx * sy * sz;
// out[1] = cx * sy * cz + sx * cy * sz;
// out[2] = cx * cy * sz + sx * sy * cz;
// out[3] = cx * cy * cz - sx * sy * sz;
// break;
// case "zyx":
// out[0] = sx * cy * cz - cx * sy * sz;
// out[1] = cx * sy * cz + sx * cy * sz;
// out[2] = cx * cy * sz - sx * sy * cz;
// out[3] = cx * cy * cz + sx * sy * sz;
// break;
// default:
// throw new Error('Unknown angle order ' + order);
// }
// return out;
// }
/**
* Returns a string representation of a quaternion
*
* @param {ReadonlyQuat} a vector to represent as a string
* @returns {String} string representation of the vector
*/
export function str(a) {
return "quat(".concat(a[0], ", ").concat(a[1], ", ").concat(a[2], ", ").concat(a[3], ")");
return `quat(${a[0]}, ${a[1]}, ${a[2]}, ${a[3]})`;
}
/**
* Creates a new quat initialized with values from an existing quaternion
*
* @param {ReadonlyQuat} a quaternion to clone
* @returns {quat} a new quaternion
* @function
*/
export const clone = vec4.clone;
/**
* Creates a new quat initialized with the given values
*
* @param {Number} x X component
* @param {Number} y Y component
* @param {Number} z Z component
* @param {Number} w W component
* @returns {quat} a new quaternion
* @function
*/
export const fromValues = vec4.fromValues;
/**
* Copy the values from one quat to another
*
* @param {quat} out the receiving quaternion
* @param {ReadonlyQuat} a the source quaternion
* @returns {quat} out
* @function
*/
export const copy = vec4.copy;
/**
* Set the components of a quat to the given values
*
* @param {quat} out the receiving quaternion
* @param {Number} x X component
* @param {Number} y Y component
* @param {Number} z Z component
* @param {Number} w W component
* @returns {quat} out
* @function
*/
export const set = vec4.set;
/**
* Adds two quat's
*
* @param {quat} out the receiving quaternion
* @param {ReadonlyQuat} a the first operand
* @param {ReadonlyQuat} b the second operand
* @returns {quat} out
* @function
*/
export const add = vec4.add;
/**
* Alias for {@link quat.multiply}
* @function
*/
export const mul = multiply;
/**
* Scales a quat by a scalar number
*
* @param {quat} out the receiving vector
* @param {ReadonlyQuat} a the vector to scale
* @param {Number} b amount to scale the vector by
* @returns {quat} out
* @function
*/
export const scale = vec4.scale;
/**
* Calculates the dot product of two quat's
*
* @param {ReadonlyQuat} a the first operand
* @param {ReadonlyQuat} b the second operand
* @returns {Number} dot product of a and b
* @function
*/
export const dot = vec4.dot;
/**
* Performs a linear interpolation between two quat's
*
* @param {quat} out the receiving quaternion
* @param {ReadonlyQuat} a the first operand
* @param {ReadonlyQuat} b the second operand
* @param {Number} t interpolation amount, in the range [0-1], between the two inputs
* @returns {quat} out
* @function
*/
export const lerp = vec4.lerp;
/**
* Calculates the length of a quat
*
* @param {ReadonlyQuat} a vector to calculate length of
* @returns {Number} length of a
*/
export const length = vec4.length;
/**
* Alias for {@link quat.length}
* @function
*/
export const len = length;
/**
* Calculates the squared length of a quat
*
* @param {ReadonlyQuat} a vector to calculate squared length of
* @returns {Number} squared length of a
* @function
*/
export const squaredLength = vec4.squaredLength;
/**
* Alias for {@link quat.squaredLength}
* @function
*/
export const sqrLen = squaredLength;
/**
* Normalize a quat
*
* @param {quat} out the receiving quaternion
* @param {ReadonlyQuat} a quaternion to normalize
* @returns {quat} out
* @function
*/
export const normalize = vec4.normalize;
/**
* Returns whether or not the quaternions have exactly the same elements in the same position (when compared with ===)
*
* @param {ReadonlyQuat} a The first quaternion.
* @param {ReadonlyQuat} b The second quaternion.
* @returns {Boolean} True if the vectors are equal, false otherwise.
*/
export const exactEquals = vec4.exactEquals;
/**
* Returns whether or not the quaternions point approximately to the same direction.
*
* Both quaternions are assumed to be unit length.
*
* @param {ReadonlyQuat} a The first unit quaternion.
* @param {ReadonlyQuat} b The second unit quaternion.
* @returns {Boolean} True if the quaternions are equal, false otherwise.
*/
export function equals(a, b) {
return Math.abs(vec4.dot(a, b)) >= 1 - glMatrix.EPSILON;
return Math.abs(vec4.dot(a, b)) >= 1 - glMatrix.EPSILON;
}
export const rotationTo = function () {
const tmpvec3 = vec3.create();
const xUnitVec3 = vec3.fromValues(1, 0, 0);
const yUnitVec3 = vec3.fromValues(0, 1, 0);
return function (out, a, b) {
const dot = vec3.dot(a, b);
if (dot < -0.999999) {
vec3.cross(tmpvec3, xUnitVec3, a);
if (vec3.len(tmpvec3) < 0.000001) vec3.cross(tmpvec3, yUnitVec3, a);
vec3.normalize(tmpvec3, tmpvec3);
setAxisAngle(out, tmpvec3, Math.PI);
return out;
} else if (dot > 0.999999) {
out[0] = 0;
out[1] = 0;
out[2] = 0;
out[3] = 1;
return out;
}
vec3.cross(tmpvec3, a, b);
out[0] = tmpvec3[0];
out[1] = tmpvec3[1];
out[2] = tmpvec3[2];
out[3] = 1 + dot;
return normalize(out, out);
};
}();
export const sqlerp = function () {
const temp1 = create();
const temp2 = create();
return function (out, a, b, c, d, t) {
slerp(temp1, a, d, t);
slerp(temp2, b, c, t);
slerp(out, temp1, temp2, 2 * t * (1 - t));
return out;
};
}();
export const setAxes = function () {
const matr = mat3.create();
return function (out, view, right, up) {
matr[0] = right[0];
matr[3] = right[1];
matr[6] = right[2];
matr[1] = up[0];
matr[4] = up[1];
matr[7] = up[2];
matr[2] = -view[0];
matr[5] = -view[1];
matr[8] = -view[2];
return normalize(out, fromMat3(out, matr));
};
}();
//# sourceMappingURL=quat.js.map
/**
* Sets a quaternion to represent the shortest rotation from one
* vector to another.
*
* Both vectors are assumed to be unit length.
*
* @param {quat} out the receiving quaternion.
* @param {ReadonlyVec3} a the initial vector
* @param {ReadonlyVec3} b the destination vector
* @returns {quat} out
*/
export const rotationTo = (function () {
const tmpvec3 = vec3.create();
const xUnitVec3 = vec3.fromValues(1, 0, 0);
const yUnitVec3 = vec3.fromValues(0, 1, 0);
return function (out, a, b) {
const dot = vec3.dot(a, b);
if (dot < -0.999999) {
vec3.cross(tmpvec3, xUnitVec3, a);
if (vec3.len(tmpvec3) < 0.000001)
vec3.cross(tmpvec3, yUnitVec3, a);
vec3.normalize(tmpvec3, tmpvec3);
setAxisAngle(out, tmpvec3, Math.PI);
return out;
}
else if (dot > 0.999999) {
out[0] = 0;
out[1] = 0;
out[2] = 0;
out[3] = 1;
return out;
}
vec3.cross(tmpvec3, a, b);
out[0] = tmpvec3[0];
out[1] = tmpvec3[1];
out[2] = tmpvec3[2];
out[3] = 1 + dot;
return normalize(out, out);
};
})();
/**
* Performs a spherical linear interpolation with two control points
*
* @param {quat} out the receiving quaternion
* @param {ReadonlyQuat} a the first operand
* @param {ReadonlyQuat} b the second operand
* @param {ReadonlyQuat} c the third operand
* @param {ReadonlyQuat} d the fourth operand
* @param {Number} t interpolation amount, in the range [0-1], between the two inputs
* @returns {quat} out
*/
export const sqlerp = (function () {
const temp1 = create();
const temp2 = create();
return function (out, a, b, c, d, t) {
slerp(temp1, a, d, t);
slerp(temp2, b, c, t);
slerp(out, temp1, temp2, 2 * t * (1 - t));
return out;
};
})();
/**
* Sets the specified quaternion with values corresponding to the given
* axes. Each axis is a vec3 and is expected to be unit length and
* perpendicular to all other specified axes.
*
* @param {ReadonlyVec3} view the vector representing the viewing direction
* @param {ReadonlyVec3} right the vector representing the local "right" direction
* @param {ReadonlyVec3} up the vector representing the local "up" direction
* @returns {quat} out
*/
export const setAxes = (function () {
const matr = mat3.create();
return function (out, view, right, up) {
matr[0] = right[0];
matr[3] = right[1];
matr[6] = right[2];
matr[1] = up[0];
matr[4] = up[1];
matr[7] = up[2];
matr[2] = -view[0];
matr[5] = -view[1];
matr[8] = -view[2];
return normalize(out, fromMat3(out, matr));
};
})();

@@ -363,2 +363,1 @@ /**

export declare const forEach: (a: any, stride: any, offset: any, count: any, fn: any, arg: any) => any;
//# sourceMappingURL=vec2.d.ts.map

@@ -0,257 +1,574 @@

// @eslint-disable
// @ts-nocheck
import * as glMatrix from './common.js';
/**
* 2 Dimensional Vector
* @module vec2
*/
/**
* Creates a new, empty vec2
*
* @returns {NumericArray} a new 2D vector
*/
export function create() {
const out = new glMatrix.ARRAY_TYPE(2);
if (glMatrix.ARRAY_TYPE != Float32Array) {
out[0] = 0;
out[1] = 0;
}
return out;
const out = new glMatrix.ARRAY_TYPE(2);
if (glMatrix.ARRAY_TYPE != Float32Array) {
out[0] = 0;
out[1] = 0;
}
return out;
}
/**
* Creates a new vec2 initialized with values from an existing vector
*
* @param {Readonly<NumericArray>} a vector to clone
* @returns {NumericArray} a new 2D vector
*/
export function clone(a) {
const out = new glMatrix.ARRAY_TYPE(2);
out[0] = a[0];
out[1] = a[1];
return out;
const out = new glMatrix.ARRAY_TYPE(2);
out[0] = a[0];
out[1] = a[1];
return out;
}
/**
* Creates a new vec2 initialized with the given values
*
* @param {Number} x X component
* @param {Number} y Y component
* @returns {NumericArray} a new 2D vector
*/
export function fromValues(x, y) {
const out = new glMatrix.ARRAY_TYPE(2);
out[0] = x;
out[1] = y;
return out;
const out = new glMatrix.ARRAY_TYPE(2);
out[0] = x;
out[1] = y;
return out;
}
/**
* Copy the values from one vec2 to another
*
* @param {NumericArray} out the receiving vector
* @param {Readonly<NumericArray>} a the source vector
* @returns {NumericArray} out
*/
export function copy(out, a) {
out[0] = a[0];
out[1] = a[1];
return out;
out[0] = a[0];
out[1] = a[1];
return out;
}
/**
* Set the components of a vec2 to the given values
*
* @param {NumericArray} out the receiving vector
* @param {Number} x X component
* @param {Number} y Y component
* @returns {NumericArray} out
*/
export function set(out, x, y) {
out[0] = x;
out[1] = y;
return out;
out[0] = x;
out[1] = y;
return out;
}
/**
* Adds two vec2's
*
* @param {NumericArray} out the receiving vector
* @param {Readonly<NumericArray>} a the first operand
* @param {Readonly<NumericArray>} b the second operand
* @returns {NumericArray} out
*/
export function add(out, a, b) {
out[0] = a[0] + b[0];
out[1] = a[1] + b[1];
return out;
out[0] = a[0] + b[0];
out[1] = a[1] + b[1];
return out;
}
/**
* Subtracts vector b from vector a
*
* @param {NumericArray} out the receiving vector
* @param {Readonly<NumericArray>} a the first operand
* @param {Readonly<NumericArray>} b the second operand
* @returns {NumericArray} out
*/
export function subtract(out, a, b) {
out[0] = a[0] - b[0];
out[1] = a[1] - b[1];
return out;
out[0] = a[0] - b[0];
out[1] = a[1] - b[1];
return out;
}
/**
* Multiplies two vec2's
*
* @param {NumericArray} out the receiving vector
* @param {Readonly<NumericArray>} a the first operand
* @param {Readonly<NumericArray>} b the second operand
* @returns {NumericArray} out
*/
export function multiply(out, a, b) {
out[0] = a[0] * b[0];
out[1] = a[1] * b[1];
return out;
out[0] = a[0] * b[0];
out[1] = a[1] * b[1];
return out;
}
/**
* Divides two vec2's
*
* @param {NumericArray} out the receiving vector
* @param {Readonly<NumericArray>} a the first operand
* @param {Readonly<NumericArray>} b the second operand
* @returns {NumericArray} out
*/
export function divide(out, a, b) {
out[0] = a[0] / b[0];
out[1] = a[1] / b[1];
return out;
out[0] = a[0] / b[0];
out[1] = a[1] / b[1];
return out;
}
/**
* Math.ceil the components of a vec2
*
* @param {NumericArray} out the receiving vector
* @param {Readonly<NumericArray>} a vector to ceil
* @returns {NumericArray} out
*/
export function ceil(out, a) {
out[0] = Math.ceil(a[0]);
out[1] = Math.ceil(a[1]);
return out;
out[0] = Math.ceil(a[0]);
out[1] = Math.ceil(a[1]);
return out;
}
/**
* Math.floor the components of a vec2
*
* @param {NumericArray} out the receiving vector
* @param {Readonly<NumericArray>} a vector to floor
* @returns {NumericArray} out
*/
export function floor(out, a) {
out[0] = Math.floor(a[0]);
out[1] = Math.floor(a[1]);
return out;
out[0] = Math.floor(a[0]);
out[1] = Math.floor(a[1]);
return out;
}
/**
* Returns the minimum of two vec2's
*
* @param {NumericArray} out the receiving vector
* @param {Readonly<NumericArray>} a the first operand
* @param {Readonly<NumericArray>} b the second operand
* @returns {NumericArray} out
*/
export function min(out, a, b) {
out[0] = Math.min(a[0], b[0]);
out[1] = Math.min(a[1], b[1]);
return out;
out[0] = Math.min(a[0], b[0]);
out[1] = Math.min(a[1], b[1]);
return out;
}
/**
* Returns the maximum of two vec2's
*
* @param {NumericArray} out the receiving vector
* @param {Readonly<NumericArray>} a the first operand
* @param {Readonly<NumericArray>} b the second operand
* @returns {NumericArray} out
*/
export function max(out, a, b) {
out[0] = Math.max(a[0], b[0]);
out[1] = Math.max(a[1], b[1]);
return out;
out[0] = Math.max(a[0], b[0]);
out[1] = Math.max(a[1], b[1]);
return out;
}
/**
* symmetric round the components of a vec2
*
* @param {NumericArray} out the receiving vector
* @param {Readonly<NumericArray>} a vector to round
* @returns {NumericArray} out
*/
export function round(out, a) {
out[0] = glMatrix.round(a[0]);
out[1] = glMatrix.round(a[1]);
return out;
out[0] = glMatrix.round(a[0]);
out[1] = glMatrix.round(a[1]);
return out;
}
/**
* Scales a vec2 by a scalar number
*
* @param {NumericArray} out the receiving vector
* @param {Readonly<NumericArray>} a the vector to scale
* @param {Number} b amount to scale the vector by
* @returns {NumericArray} out
*/
export function scale(out, a, b) {
out[0] = a[0] * b;
out[1] = a[1] * b;
return out;
out[0] = a[0] * b;
out[1] = a[1] * b;
return out;
}
/**
* Adds two vec2's after scaling the second operand by a scalar value
*
* @param {NumericArray} out the receiving vector
* @param {Readonly<NumericArray>} a the first operand
* @param {Readonly<NumericArray>} b the second operand
* @param {Number} scale the amount to scale b by before adding
* @returns {NumericArray} out
*/
export function scaleAndAdd(out, a, b, scale) {
out[0] = a[0] + b[0] * scale;
out[1] = a[1] + b[1] * scale;
return out;
out[0] = a[0] + b[0] * scale;
out[1] = a[1] + b[1] * scale;
return out;
}
/**
* Calculates the euclidian distance between two vec2's
*
* @param {Readonly<NumericArray>} a the first operand
* @param {Readonly<NumericArray>} b the second operand
* @returns {Number} distance between a and b
*/
export function distance(a, b) {
const x = b[0] - a[0];
const y = b[1] - a[1];
return Math.sqrt(x * x + y * y);
const x = b[0] - a[0];
const y = b[1] - a[1];
return Math.sqrt(x * x + y * y);
}
/**
* Calculates the squared euclidian distance between two vec2's
*
* @param {Readonly<NumericArray>} a the first operand
* @param {Readonly<NumericArray>} b the second operand
* @returns {Number} squared distance between a and b
*/
export function squaredDistance(a, b) {
const x = b[0] - a[0];
const y = b[1] - a[1];
return x * x + y * y;
const x = b[0] - a[0];
const y = b[1] - a[1];
return x * x + y * y;
}
/**
* Calculates the length of a vec2
*
* @param {Readonly<NumericArray>} a vector to calculate length of
* @returns {Number} length of a
*/
export function length(a) {
const x = a[0];
const y = a[1];
return Math.sqrt(x * x + y * y);
const x = a[0];
const y = a[1];
return Math.sqrt(x * x + y * y);
}
/**
* Calculates the squared length of a vec2
*
* @param {Readonly<NumericArray>} a vector to calculate squared length of
* @returns {Number} squared length of a
*/
export function squaredLength(a) {
const x = a[0];
const y = a[1];
return x * x + y * y;
const x = a[0];
const y = a[1];
return x * x + y * y;
}
/**
* Negates the components of a vec2
*
* @param {NumericArray} out the receiving vector
* @param {Readonly<NumericArray>} a vector to negate
* @returns {NumericArray} out
*/
export function negate(out, a) {
out[0] = -a[0];
out[1] = -a[1];
return out;
out[0] = -a[0];
out[1] = -a[1];
return out;
}
/**
* Returns the inverse of the components of a vec2
*
* @param {NumericArray} out the receiving vector
* @param {Readonly<NumericArray>} a vector to invert
* @returns {NumericArray} out
*/
export function inverse(out, a) {
out[0] = 1.0 / a[0];
out[1] = 1.0 / a[1];
return out;
out[0] = 1.0 / a[0];
out[1] = 1.0 / a[1];
return out;
}
/**
* Normalize a vec2
*
* @param {NumericArray} out the receiving vector
* @param {Readonly<NumericArray>} a vector to normalize
* @returns {NumericArray} out
*/
export function normalize(out, a) {
const x = a[0];
const y = a[1];
let len = x * x + y * y;
if (len > 0) {
len = 1 / Math.sqrt(len);
}
out[0] = a[0] * len;
out[1] = a[1] * len;
return out;
const x = a[0];
const y = a[1];
let len = x * x + y * y;
if (len > 0) {
// TODO: evaluate use of glm_invsqrt here?
len = 1 / Math.sqrt(len);
}
out[0] = a[0] * len;
out[1] = a[1] * len;
return out;
}
/**
* Calculates the dot product of two vec2's
*
* @param {Readonly<NumericArray>} a the first operand
* @param {Readonly<NumericArray>} b the second operand
* @returns {Number} dot product of a and b
*/
export function dot(a, b) {
return a[0] * b[0] + a[1] * b[1];
return a[0] * b[0] + a[1] * b[1];
}
/**
* Computes the cross product of two vec2's
* Note that the cross product must by definition produce a 3D vector
*
* @param {vec3} out the receiving vector
* @param {Readonly<NumericArray>} a the first operand
* @param {Readonly<NumericArray>} b the second operand
* @returns {vec3} out
*/
export function cross(out, a, b) {
const z = a[0] * b[1] - a[1] * b[0];
out[0] = out[1] = 0;
out[2] = z;
return out;
const z = a[0] * b[1] - a[1] * b[0];
out[0] = out[1] = 0;
out[2] = z;
return out;
}
/**
* Performs a linear interpolation between two vec2's
*
* @param {NumericArray} out the receiving vector
* @param {Readonly<NumericArray>} a the first operand
* @param {Readonly<NumericArray>} b the second operand
* @param {Number} t interpolation amount, in the range [0-1], between the two inputs
* @returns {NumericArray} out
*/
export function lerp(out, a, b, t) {
const ax = a[0];
const ay = a[1];
out[0] = ax + t * (b[0] - ax);
out[1] = ay + t * (b[1] - ay);
return out;
const ax = a[0];
const ay = a[1];
out[0] = ax + t * (b[0] - ax);
out[1] = ay + t * (b[1] - ay);
return out;
}
/**
* Generates a random vector with the given scale
*
* @param {NumericArray} out the receiving vector
* @param {Number} [scale] Length of the resulting vector. If omitted, a unit vector will be returned
* @returns {NumericArray} out
*/
export function random(out, scale) {
scale = scale === undefined ? 1.0 : scale;
const r = glMatrix.RANDOM() * 2.0 * Math.PI;
out[0] = Math.cos(r) * scale;
out[1] = Math.sin(r) * scale;
return out;
scale = scale === undefined ? 1.0 : scale;
const r = glMatrix.RANDOM() * 2.0 * Math.PI;
out[0] = Math.cos(r) * scale;
out[1] = Math.sin(r) * scale;
return out;
}
/**
* Transforms the vec2 with a mat2
*
* @param {NumericArray} out the receiving vector
* @param {Readonly<NumericArray>} a the vector to transform
* @param {ReadonlyMat2} m matrix to transform with
* @returns {NumericArray} out
*/
export function transformMat2(out, a, m) {
const x = a[0];
const y = a[1];
out[0] = m[0] * x + m[2] * y;
out[1] = m[1] * x + m[3] * y;
return out;
const x = a[0];
const y = a[1];
out[0] = m[0] * x + m[2] * y;
out[1] = m[1] * x + m[3] * y;
return out;
}
/**
* Transforms the vec2 with a mat2d
*
* @param {NumericArray} out the receiving vector
* @param {Readonly<NumericArray>} a the vector to transform
* @param {ReadonlyMat2d} m matrix to transform with
* @returns {NumericArray} out
*/
export function transformMat2d(out, a, m) {
const x = a[0];
const y = a[1];
out[0] = m[0] * x + m[2] * y + m[4];
out[1] = m[1] * x + m[3] * y + m[5];
return out;
const x = a[0];
const y = a[1];
out[0] = m[0] * x + m[2] * y + m[4];
out[1] = m[1] * x + m[3] * y + m[5];
return out;
}
/**
* Transforms the vec2 with a mat3
* 3rd vector component is implicitly '1'
*
* @param {NumericArray} out the receiving vector
* @param {Readonly<NumericArray>} a the vector to transform
* @param {ReadonlyMat3} m matrix to transform with
* @returns {NumericArray} out
*/
export function transformMat3(out, a, m) {
const x = a[0];
const y = a[1];
out[0] = m[0] * x + m[3] * y + m[6];
out[1] = m[1] * x + m[4] * y + m[7];
return out;
const x = a[0];
const y = a[1];
out[0] = m[0] * x + m[3] * y + m[6];
out[1] = m[1] * x + m[4] * y + m[7];
return out;
}
/**
* Transforms the vec2 with a mat4
* 3rd vector component is implicitly '0'
* 4th vector component is implicitly '1'
*
* @param {NumericArray} out the receiving vector
* @param {Readonly<NumericArray>} a the vector to transform
* @param {ReadonlyMat4} m matrix to transform with
* @returns {NumericArray} out
*/
export function transformMat4(out, a, m) {
const x = a[0];
const y = a[1];
out[0] = m[0] * x + m[4] * y + m[12];
out[1] = m[1] * x + m[5] * y + m[13];
return out;
const x = a[0];
const y = a[1];
out[0] = m[0] * x + m[4] * y + m[12];
out[1] = m[1] * x + m[5] * y + m[13];
return out;
}
/**
* Rotate a 2D vector
* @param {NumericArray} out The receiving vec2
* @param {Readonly<NumericArray>} a The vec2 point to rotate
* @param {Readonly<NumericArray>} b The origin of the rotation
* @param {Number} rad The angle of rotation in radians
* @returns {NumericArray} out
*/
export function rotate(out, a, b, rad) {
const p0 = a[0] - b[0];
const p1 = a[1] - b[1];
const sinC = Math.sin(rad);
const cosC = Math.cos(rad);
out[0] = p0 * cosC - p1 * sinC + b[0];
out[1] = p0 * sinC + p1 * cosC + b[1];
return out;
// Translate point to the origin
const p0 = a[0] - b[0];
const p1 = a[1] - b[1];
const sinC = Math.sin(rad);
const cosC = Math.cos(rad);
// perform rotation and translate to correct position
out[0] = p0 * cosC - p1 * sinC + b[0];
out[1] = p0 * sinC + p1 * cosC + b[1];
return out;
}
/**
* Get the angle between two 2D vectors
* @param {Readonly<NumericArray>} a The first operand
* @param {Readonly<NumericArray>} b The second operand
* @returns {Number} The angle in radians
*/
export function angle(a, b) {
const x1 = a[0];
const y1 = a[1];
const x2 = b[0];
const y2 = b[1];
const mag = Math.sqrt((x1 * x1 + y1 * y1) * (x2 * x2 + y2 * y2));
const cosine = mag && (x1 * x2 + y1 * y2) / mag;
return Math.acos(Math.min(Math.max(cosine, -1), 1));
const x1 = a[0];
const y1 = a[1];
const x2 = b[0];
const y2 = b[1];
// mag is the product of the magnitudes of a and b
const mag = Math.sqrt((x1 * x1 + y1 * y1) * (x2 * x2 + y2 * y2));
// mag &&.. short circuits if mag == 0
const cosine = mag && (x1 * x2 + y1 * y2) / mag;
// Math.min(Math.max(cosine, -1), 1) clamps the cosine between -1 and 1
return Math.acos(Math.min(Math.max(cosine, -1), 1));
}
/**
* Set the components of a vec2 to zero
*
* @param {NumericArray} out the receiving vector
* @returns {NumericArray} out
*/
export function zero(out) {
out[0] = 0.0;
out[1] = 0.0;
return out;
out[0] = 0.0;
out[1] = 0.0;
return out;
}
/**
* Returns a string representation of a vector
*
* @param {Readonly<NumericArray>} a vector to represent as a string
* @returns {String} string representation of the vector
*/
export function str(a) {
return "vec2(".concat(a[0], ", ").concat(a[1], ")");
return `vec2(${a[0]}, ${a[1]})`;
}
/**
* Returns whether or not the vectors exactly have the same elements in the same position (when compared with ===)
*
* @param {Readonly<NumericArray>} a The first vector.
* @param {Readonly<NumericArray>} b The second vector.
* @returns {Boolean} True if the vectors are equal, false otherwise.
*/
export function exactEquals(a, b) {
return a[0] === b[0] && a[1] === b[1];
return a[0] === b[0] && a[1] === b[1];
}
/**
* Returns whether or not the vectors have approximately the same elements in the same position.
*
* @param {Readonly<NumericArray>} a The first vector.
* @param {Readonly<NumericArray>} b The second vector.
* @returns {Boolean} True if the vectors are equal, false otherwise.
*/
export function equals(a, b) {
const a0 = a[0];
const a1 = a[1];
const b0 = b[0];
const b1 = b[1];
return Math.abs(a0 - b0) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a0), Math.abs(b0)) && Math.abs(a1 - b1) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a1), Math.abs(b1));
const a0 = a[0];
const a1 = a[1];
const b0 = b[0];
const b1 = b[1];
return (Math.abs(a0 - b0) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a0), Math.abs(b0)) &&
Math.abs(a1 - b1) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a1), Math.abs(b1)));
}
/**
* Alias for {@link vec2.length}
* @function
*/
export const len = length;
/**
* Alias for {@link vec2.subtract}
* @function
*/
export const sub = subtract;
/**
* Alias for {@link vec2.multiply}
* @function
*/
export const mul = multiply;
/**
* Alias for {@link vec2.divide}
* @function
*/
export const div = divide;
/**
* Alias for {@link vec2.distance}
* @function
*/
export const dist = distance;
/**
* Alias for {@link vec2.squaredDistance}
* @function
*/
export const sqrDist = squaredDistance;
/**
* Alias for {@link vec2.squaredLength}
* @function
*/
export const sqrLen = squaredLength;
export const forEach = function () {
const vec = create();
return function (a, stride, offset, count, fn, arg) {
let i;
let l;
if (!stride) {
stride = 2;
}
if (!offset) {
offset = 0;
}
if (count) {
l = Math.min(count * stride + offset, a.length);
} else {
l = a.length;
}
for (i = offset; i < l; i += stride) {
vec[0] = a[i];
vec[1] = a[i + 1];
fn(vec, vec, arg);
a[i] = vec[0];
a[i + 1] = vec[1];
}
return a;
};
}();
//# sourceMappingURL=vec2.js.map
/**
* Perform some operation over an array of vec2s.
*
* @param {Array} a the array of vectors to iterate over
* @param {Number} stride Number of elements between the start of each vec2. If 0 assumes tightly packed
* @param {Number} offset Number of elements to skip at the beginning of the array
* @param {Number} count Number of vec2s to iterate over. If 0 iterates over entire array
* @param {Function} fn Function to call for each vector in the array
* @param {Object} [arg] additional argument to pass to fn
* @returns {Array} a
* @function
*/
export const forEach = (function () {
const vec = create();
return function (a, stride, offset, count, fn, arg) {
let i;
let l;
if (!stride) {
stride = 2;
}
if (!offset) {
offset = 0;
}
if (count) {
l = Math.min(count * stride + offset, a.length);
}
else {
l = a.length;
}
for (i = offset; i < l; i += stride) {
vec[0] = a[i];
vec[1] = a[i + 1];
fn(vec, vec, arg);
a[i] = vec[0];
a[i + 1] = vec[1];
}
return a;
};
})();

@@ -406,2 +406,1 @@ /**

export declare const forEach: (a: any, stride: any, offset: any, count: any, fn: any, arg: any) => any;
//# sourceMappingURL=vec3.d.ts.map

@@ -0,384 +1,752 @@

// @eslint-disable
// @ts-nocheck
import * as glMatrix from './common.js';
/**
* 3 Dimensional Vector
* @module vec3
*/
/**
* Creates a new, empty vec3
*
* @returns {vec3} a new 3D vector
*/
export function create() {
const out = new glMatrix.ARRAY_TYPE(3);
if (glMatrix.ARRAY_TYPE != Float32Array) {
out[0] = 0;
out[1] = 0;
out[2] = 0;
}
return out;
const out = new glMatrix.ARRAY_TYPE(3);
if (glMatrix.ARRAY_TYPE != Float32Array) {
out[0] = 0;
out[1] = 0;
out[2] = 0;
}
return out;
}
/**
* Creates a new vec3 initialized with values from an existing vector
*
* @param {ReadonlyVec3} a vector to clone
* @returns {vec3} a new 3D vector
*/
export function clone(a) {
const out = new glMatrix.ARRAY_TYPE(3);
out[0] = a[0];
out[1] = a[1];
out[2] = a[2];
return out;
const out = new glMatrix.ARRAY_TYPE(3);
out[0] = a[0];
out[1] = a[1];
out[2] = a[2];
return out;
}
/**
* Calculates the length of a vec3
*
* @param {ReadonlyVec3} a vector to calculate length of
* @returns {Number} length of a
*/
export function length(a) {
const x = a[0];
const y = a[1];
const z = a[2];
return Math.sqrt(x * x + y * y + z * z);
const x = a[0];
const y = a[1];
const z = a[2];
return Math.sqrt(x * x + y * y + z * z);
}
/**
* Creates a new vec3 initialized with the given values
*
* @param {Number} x X component
* @param {Number} y Y component
* @param {Number} z Z component
* @returns {vec3} a new 3D vector
*/
export function fromValues(x, y, z) {
const out = new glMatrix.ARRAY_TYPE(3);
out[0] = x;
out[1] = y;
out[2] = z;
return out;
const out = new glMatrix.ARRAY_TYPE(3);
out[0] = x;
out[1] = y;
out[2] = z;
return out;
}
/**
* Copy the values from one vec3 to another
*
* @param {vec3} out the receiving vector
* @param {ReadonlyVec3} a the source vector
* @returns {vec3} out
*/
export function copy(out, a) {
out[0] = a[0];
out[1] = a[1];
out[2] = a[2];
return out;
out[0] = a[0];
out[1] = a[1];
out[2] = a[2];
return out;
}
/**
* Set the components of a vec3 to the given values
*
* @param {vec3} out the receiving vector
* @param {Number} x X component
* @param {Number} y Y component
* @param {Number} z Z component
* @returns {vec3} out
*/
export function set(out, x, y, z) {
out[0] = x;
out[1] = y;
out[2] = z;
return out;
out[0] = x;
out[1] = y;
out[2] = z;
return out;
}
/**
* Adds two vec3's
*
* @param {vec3} out the receiving vector
* @param {ReadonlyVec3} a the first operand
* @param {ReadonlyVec3} b the second operand
* @returns {vec3} out
*/
export function add(out, a, b) {
out[0] = a[0] + b[0];
out[1] = a[1] + b[1];
out[2] = a[2] + b[2];
return out;
out[0] = a[0] + b[0];
out[1] = a[1] + b[1];
out[2] = a[2] + b[2];
return out;
}
/**
* Subtracts vector b from vector a
*
* @param {vec3} out the receiving vector
* @param {ReadonlyVec3} a the first operand
* @param {ReadonlyVec3} b the second operand
* @returns {vec3} out
*/
export function subtract(out, a, b) {
out[0] = a[0] - b[0];
out[1] = a[1] - b[1];
out[2] = a[2] - b[2];
return out;
out[0] = a[0] - b[0];
out[1] = a[1] - b[1];
out[2] = a[2] - b[2];
return out;
}
/**
* Multiplies two vec3's
*
* @param {vec3} out the receiving vector
* @param {ReadonlyVec3} a the first operand
* @param {ReadonlyVec3} b the second operand
* @returns {vec3} out
*/
export function multiply(out, a, b) {
out[0] = a[0] * b[0];
out[1] = a[1] * b[1];
out[2] = a[2] * b[2];
return out;
out[0] = a[0] * b[0];
out[1] = a[1] * b[1];
out[2] = a[2] * b[2];
return out;
}
/**
* Divides two vec3's
*
* @param {vec3} out the receiving vector
* @param {ReadonlyVec3} a the first operand
* @param {ReadonlyVec3} b the second operand
* @returns {vec3} out
*/
export function divide(out, a, b) {
out[0] = a[0] / b[0];
out[1] = a[1] / b[1];
out[2] = a[2] / b[2];
return out;
out[0] = a[0] / b[0];
out[1] = a[1] / b[1];
out[2] = a[2] / b[2];
return out;
}
/**
* Math.ceil the components of a vec3
*
* @param {vec3} out the receiving vector
* @param {ReadonlyVec3} a vector to ceil
* @returns {vec3} out
*/
export function ceil(out, a) {
out[0] = Math.ceil(a[0]);
out[1] = Math.ceil(a[1]);
out[2] = Math.ceil(a[2]);
return out;
out[0] = Math.ceil(a[0]);
out[1] = Math.ceil(a[1]);
out[2] = Math.ceil(a[2]);
return out;
}
/**
* Math.floor the components of a vec3
*
* @param {vec3} out the receiving vector
* @param {ReadonlyVec3} a vector to floor
* @returns {vec3} out
*/
export function floor(out, a) {
out[0] = Math.floor(a[0]);
out[1] = Math.floor(a[1]);
out[2] = Math.floor(a[2]);
return out;
out[0] = Math.floor(a[0]);
out[1] = Math.floor(a[1]);
out[2] = Math.floor(a[2]);
return out;
}
/**
* Returns the minimum of two vec3's
*
* @param {vec3} out the receiving vector
* @param {ReadonlyVec3} a the first operand
* @param {ReadonlyVec3} b the second operand
* @returns {vec3} out
*/
export function min(out, a, b) {
out[0] = Math.min(a[0], b[0]);
out[1] = Math.min(a[1], b[1]);
out[2] = Math.min(a[2], b[2]);
return out;
out[0] = Math.min(a[0], b[0]);
out[1] = Math.min(a[1], b[1]);
out[2] = Math.min(a[2], b[2]);
return out;
}
/**
* Returns the maximum of two vec3's
*
* @param {vec3} out the receiving vector
* @param {ReadonlyVec3} a the first operand
* @param {ReadonlyVec3} b the second operand
* @returns {vec3} out
*/
export function max(out, a, b) {
out[0] = Math.max(a[0], b[0]);
out[1] = Math.max(a[1], b[1]);
out[2] = Math.max(a[2], b[2]);
return out;
out[0] = Math.max(a[0], b[0]);
out[1] = Math.max(a[1], b[1]);
out[2] = Math.max(a[2], b[2]);
return out;
}
/**
* symmetric round the components of a vec3
*
* @param {vec3} out the receiving vector
* @param {ReadonlyVec3} a vector to round
* @returns {vec3} out
*/
export function round(out, a) {
out[0] = glMatrix.round(a[0]);
out[1] = glMatrix.round(a[1]);
out[2] = glMatrix.round(a[2]);
return out;
out[0] = glMatrix.round(a[0]);
out[1] = glMatrix.round(a[1]);
out[2] = glMatrix.round(a[2]);
return out;
}
/**
* Scales a vec3 by a scalar number
*
* @param {vec3} out the receiving vector
* @param {ReadonlyVec3} a the vector to scale
* @param {Number} b amount to scale the vector by
* @returns {vec3} out
*/
export function scale(out, a, b) {
out[0] = a[0] * b;
out[1] = a[1] * b;
out[2] = a[2] * b;
return out;
out[0] = a[0] * b;
out[1] = a[1] * b;
out[2] = a[2] * b;
return out;
}
/**
* Adds two vec3's after scaling the second operand by a scalar value
*
* @param {vec3} out the receiving vector
* @param {ReadonlyVec3} a the first operand
* @param {ReadonlyVec3} b the second operand
* @param {Number} scale the amount to scale b by before adding
* @returns {vec3} out
*/
export function scaleAndAdd(out, a, b, scale) {
out[0] = a[0] + b[0] * scale;
out[1] = a[1] + b[1] * scale;
out[2] = a[2] + b[2] * scale;
return out;
out[0] = a[0] + b[0] * scale;
out[1] = a[1] + b[1] * scale;
out[2] = a[2] + b[2] * scale;
return out;
}
/**
* Calculates the euclidian distance between two vec3's
*
* @param {ReadonlyVec3} a the first operand
* @param {ReadonlyVec3} b the second operand
* @returns {Number} distance between a and b
*/
export function distance(a, b) {
const x = b[0] - a[0];
const y = b[1] - a[1];
const z = b[2] - a[2];
return Math.sqrt(x * x + y * y + z * z);
const x = b[0] - a[0];
const y = b[1] - a[1];
const z = b[2] - a[2];
return Math.sqrt(x * x + y * y + z * z);
}
/**
* Calculates the squared euclidian distance between two vec3's
*
* @param {ReadonlyVec3} a the first operand
* @param {ReadonlyVec3} b the second operand
* @returns {Number} squared distance between a and b
*/
export function squaredDistance(a, b) {
const x = b[0] - a[0];
const y = b[1] - a[1];
const z = b[2] - a[2];
return x * x + y * y + z * z;
const x = b[0] - a[0];
const y = b[1] - a[1];
const z = b[2] - a[2];
return x * x + y * y + z * z;
}
/**
* Calculates the squared length of a vec3
*
* @param {ReadonlyVec3} a vector to calculate squared length of
* @returns {Number} squared length of a
*/
export function squaredLength(a) {
const x = a[0];
const y = a[1];
const z = a[2];
return x * x + y * y + z * z;
const x = a[0];
const y = a[1];
const z = a[2];
return x * x + y * y + z * z;
}
/**
* Negates the components of a vec3
*
* @param {vec3} out the receiving vector
* @param {ReadonlyVec3} a vector to negate
* @returns {vec3} out
*/
export function negate(out, a) {
out[0] = -a[0];
out[1] = -a[1];
out[2] = -a[2];
return out;
out[0] = -a[0];
out[1] = -a[1];
out[2] = -a[2];
return out;
}
/**
* Returns the inverse of the components of a vec3
*
* @param {vec3} out the receiving vector
* @param {ReadonlyVec3} a vector to invert
* @returns {vec3} out
*/
export function inverse(out, a) {
out[0] = 1.0 / a[0];
out[1] = 1.0 / a[1];
out[2] = 1.0 / a[2];
return out;
out[0] = 1.0 / a[0];
out[1] = 1.0 / a[1];
out[2] = 1.0 / a[2];
return out;
}
/**
* Normalize a vec3
*
* @param {vec3} out the receiving vector
* @param {ReadonlyVec3} a vector to normalize
* @returns {vec3} out
*/
export function normalize(out, a) {
const x = a[0];
const y = a[1];
const z = a[2];
let len = x * x + y * y + z * z;
if (len > 0) {
len = 1 / Math.sqrt(len);
}
out[0] = a[0] * len;
out[1] = a[1] * len;
out[2] = a[2] * len;
return out;
const x = a[0];
const y = a[1];
const z = a[2];
let len = x * x + y * y + z * z;
if (len > 0) {
// TODO: evaluate use of glm_invsqrt here?
len = 1 / Math.sqrt(len);
}
out[0] = a[0] * len;
out[1] = a[1] * len;
out[2] = a[2] * len;
return out;
}
/**
* Calculates the dot product of two vec3's
*
* @param {ReadonlyVec3} a the first operand
* @param {ReadonlyVec3} b the second operand
* @returns {Number} dot product of a and b
*/
export function dot(a, b) {
return a[0] * b[0] + a[1] * b[1] + a[2] * b[2];
return a[0] * b[0] + a[1] * b[1] + a[2] * b[2];
}
/**
* Computes the cross product of two vec3's
*
* @param {vec3} out the receiving vector
* @param {ReadonlyVec3} a the first operand
* @param {ReadonlyVec3} b the second operand
* @returns {vec3} out
*/
export function cross(out, a, b) {
const ax = a[0];
const ay = a[1];
const az = a[2];
const bx = b[0];
const by = b[1];
const bz = b[2];
out[0] = ay * bz - az * by;
out[1] = az * bx - ax * bz;
out[2] = ax * by - ay * bx;
return out;
const ax = a[0];
const ay = a[1];
const az = a[2];
const bx = b[0];
const by = b[1];
const bz = b[2];
out[0] = ay * bz - az * by;
out[1] = az * bx - ax * bz;
out[2] = ax * by - ay * bx;
return out;
}
/**
* Performs a linear interpolation between two vec3's
*
* @param {vec3} out the receiving vector
* @param {ReadonlyVec3} a the first operand
* @param {ReadonlyVec3} b the second operand
* @param {Number} t interpolation amount, in the range [0-1], between the two inputs
* @returns {vec3} out
*/
export function lerp(out, a, b, t) {
const ax = a[0];
const ay = a[1];
const az = a[2];
out[0] = ax + t * (b[0] - ax);
out[1] = ay + t * (b[1] - ay);
out[2] = az + t * (b[2] - az);
return out;
const ax = a[0];
const ay = a[1];
const az = a[2];
out[0] = ax + t * (b[0] - ax);
out[1] = ay + t * (b[1] - ay);
out[2] = az + t * (b[2] - az);
return out;
}
/**
* Performs a spherical linear interpolation between two vec3's
*
* @param {vec3} out the receiving vector
* @param {ReadonlyVec3} a the first operand
* @param {ReadonlyVec3} b the second operand
* @param {Number} t interpolation amount, in the range [0-1], between the two inputs
* @returns {vec3} out
*/
export function slerp(out, a, b, t) {
const angle = Math.acos(Math.min(Math.max(dot(a, b), -1), 1));
const sinTotal = Math.sin(angle);
const ratioA = Math.sin((1 - t) * angle) / sinTotal;
const ratioB = Math.sin(t * angle) / sinTotal;
out[0] = ratioA * a[0] + ratioB * b[0];
out[1] = ratioA * a[1] + ratioB * b[1];
out[2] = ratioA * a[2] + ratioB * b[2];
return out;
const angle = Math.acos(Math.min(Math.max(dot(a, b), -1), 1));
const sinTotal = Math.sin(angle);
const ratioA = Math.sin((1 - t) * angle) / sinTotal;
const ratioB = Math.sin(t * angle) / sinTotal;
out[0] = ratioA * a[0] + ratioB * b[0];
out[1] = ratioA * a[1] + ratioB * b[1];
out[2] = ratioA * a[2] + ratioB * b[2];
return out;
}
/**
* Performs a hermite interpolation with two control points
*
* @param {vec3} out the receiving vector
* @param {ReadonlyVec3} a the first operand
* @param {ReadonlyVec3} b the second operand
* @param {ReadonlyVec3} c the third operand
* @param {ReadonlyVec3} d the fourth operand
* @param {Number} t interpolation amount, in the range [0-1], between the two inputs
* @returns {vec3} out
*/
export function hermite(out, a, b, c, d, t) {
const factorTimes2 = t * t;
const factor1 = factorTimes2 * (2 * t - 3) + 1;
const factor2 = factorTimes2 * (t - 2) + t;
const factor3 = factorTimes2 * (t - 1);
const factor4 = factorTimes2 * (3 - 2 * t);
out[0] = a[0] * factor1 + b[0] * factor2 + c[0] * factor3 + d[0] * factor4;
out[1] = a[1] * factor1 + b[1] * factor2 + c[1] * factor3 + d[1] * factor4;
out[2] = a[2] * factor1 + b[2] * factor2 + c[2] * factor3 + d[2] * factor4;
return out;
const factorTimes2 = t * t;
const factor1 = factorTimes2 * (2 * t - 3) + 1;
const factor2 = factorTimes2 * (t - 2) + t;
const factor3 = factorTimes2 * (t - 1);
const factor4 = factorTimes2 * (3 - 2 * t);
out[0] = a[0] * factor1 + b[0] * factor2 + c[0] * factor3 + d[0] * factor4;
out[1] = a[1] * factor1 + b[1] * factor2 + c[1] * factor3 + d[1] * factor4;
out[2] = a[2] * factor1 + b[2] * factor2 + c[2] * factor3 + d[2] * factor4;
return out;
}
/**
* Performs a bezier interpolation with two control points
*
* @param {vec3} out the receiving vector
* @param {ReadonlyVec3} a the first operand
* @param {ReadonlyVec3} b the second operand
* @param {ReadonlyVec3} c the third operand
* @param {ReadonlyVec3} d the fourth operand
* @param {Number} t interpolation amount, in the range [0-1], between the two inputs
* @returns {vec3} out
*/
export function bezier(out, a, b, c, d, t) {
const inverseFactor = 1 - t;
const inverseFactorTimesTwo = inverseFactor * inverseFactor;
const factorTimes2 = t * t;
const factor1 = inverseFactorTimesTwo * inverseFactor;
const factor2 = 3 * t * inverseFactorTimesTwo;
const factor3 = 3 * factorTimes2 * inverseFactor;
const factor4 = factorTimes2 * t;
out[0] = a[0] * factor1 + b[0] * factor2 + c[0] * factor3 + d[0] * factor4;
out[1] = a[1] * factor1 + b[1] * factor2 + c[1] * factor3 + d[1] * factor4;
out[2] = a[2] * factor1 + b[2] * factor2 + c[2] * factor3 + d[2] * factor4;
return out;
const inverseFactor = 1 - t;
const inverseFactorTimesTwo = inverseFactor * inverseFactor;
const factorTimes2 = t * t;
const factor1 = inverseFactorTimesTwo * inverseFactor;
const factor2 = 3 * t * inverseFactorTimesTwo;
const factor3 = 3 * factorTimes2 * inverseFactor;
const factor4 = factorTimes2 * t;
out[0] = a[0] * factor1 + b[0] * factor2 + c[0] * factor3 + d[0] * factor4;
out[1] = a[1] * factor1 + b[1] * factor2 + c[1] * factor3 + d[1] * factor4;
out[2] = a[2] * factor1 + b[2] * factor2 + c[2] * factor3 + d[2] * factor4;
return out;
}
/**
* Generates a random vector with the given scale
*
* @param {vec3} out the receiving vector
* @param {Number} [scale] Length of the resulting vector. If omitted, a unit vector will be returned
* @returns {vec3} out
*/
export function random(out, scale) {
scale = scale === undefined ? 1.0 : scale;
const r = glMatrix.RANDOM() * 2.0 * Math.PI;
const z = glMatrix.RANDOM() * 2.0 - 1.0;
const zScale = Math.sqrt(1.0 - z * z) * scale;
out[0] = Math.cos(r) * zScale;
out[1] = Math.sin(r) * zScale;
out[2] = z * scale;
return out;
scale = scale === undefined ? 1.0 : scale;
const r = glMatrix.RANDOM() * 2.0 * Math.PI;
const z = glMatrix.RANDOM() * 2.0 - 1.0;
const zScale = Math.sqrt(1.0 - z * z) * scale;
out[0] = Math.cos(r) * zScale;
out[1] = Math.sin(r) * zScale;
out[2] = z * scale;
return out;
}
/**
* Transforms the vec3 with a mat4.
* 4th vector component is implicitly '1'
*
* @param {vec3} out the receiving vector
* @param {ReadonlyVec3} a the vector to transform
* @param {ReadonlyMat4} m matrix to transform with
* @returns {vec3} out
*/
export function transformMat4(out, a, m) {
const x = a[0];
const y = a[1];
const z = a[2];
let w = m[3] * x + m[7] * y + m[11] * z + m[15];
w = w || 1.0;
out[0] = (m[0] * x + m[4] * y + m[8] * z + m[12]) / w;
out[1] = (m[1] * x + m[5] * y + m[9] * z + m[13]) / w;
out[2] = (m[2] * x + m[6] * y + m[10] * z + m[14]) / w;
return out;
const x = a[0];
const y = a[1];
const z = a[2];
let w = m[3] * x + m[7] * y + m[11] * z + m[15];
w = w || 1.0;
out[0] = (m[0] * x + m[4] * y + m[8] * z + m[12]) / w;
out[1] = (m[1] * x + m[5] * y + m[9] * z + m[13]) / w;
out[2] = (m[2] * x + m[6] * y + m[10] * z + m[14]) / w;
return out;
}
/**
* Transforms the vec3 with a mat3.
*
* @param {vec3} out the receiving vector
* @param {ReadonlyVec3} a the vector to transform
* @param {ReadonlyMat3} m the 3x3 matrix to transform with
* @returns {vec3} out
*/
export function transformMat3(out, a, m) {
const x = a[0];
const y = a[1];
const z = a[2];
out[0] = x * m[0] + y * m[3] + z * m[6];
out[1] = x * m[1] + y * m[4] + z * m[7];
out[2] = x * m[2] + y * m[5] + z * m[8];
return out;
const x = a[0];
const y = a[1];
const z = a[2];
out[0] = x * m[0] + y * m[3] + z * m[6];
out[1] = x * m[1] + y * m[4] + z * m[7];
out[2] = x * m[2] + y * m[5] + z * m[8];
return out;
}
/**
* Transforms the vec3 with a quat
* Can also be used for dual quaternions. (Multiply it with the real part)
*
* @param {vec3} out the receiving vector
* @param {ReadonlyVec3} a the vector to transform
* @param {ReadonlyQuat} q quaternion to transform with
* @returns {vec3} out
*/
export function transformQuat(out, a, q) {
const qx = q[0];
const qy = q[1];
const qz = q[2];
const qw = q[3];
const x = a[0];
const y = a[1];
const z = a[2];
let uvx = qy * z - qz * y;
let uvy = qz * x - qx * z;
let uvz = qx * y - qy * x;
let uuvx = qy * uvz - qz * uvy;
let uuvy = qz * uvx - qx * uvz;
let uuvz = qx * uvy - qy * uvx;
const w2 = qw * 2;
uvx *= w2;
uvy *= w2;
uvz *= w2;
uuvx *= 2;
uuvy *= 2;
uuvz *= 2;
out[0] = x + uvx + uuvx;
out[1] = y + uvy + uuvy;
out[2] = z + uvz + uuvz;
return out;
// benchmarks: https://jsperf.com/quaternion-transform-vec3-implementations-fixed
const qx = q[0];
const qy = q[1];
const qz = q[2];
const qw = q[3];
const x = a[0];
const y = a[1];
const z = a[2];
// var qvec = [qx, qy, qz];
// var uv = vec3.cross([], qvec, a);
let uvx = qy * z - qz * y;
let uvy = qz * x - qx * z;
let uvz = qx * y - qy * x;
// var uuv = vec3.cross([], qvec, uv);
let uuvx = qy * uvz - qz * uvy;
let uuvy = qz * uvx - qx * uvz;
let uuvz = qx * uvy - qy * uvx;
// vec3.scale(uv, uv, 2 * w);
const w2 = qw * 2;
uvx *= w2;
uvy *= w2;
uvz *= w2;
// vec3.scale(uuv, uuv, 2);
uuvx *= 2;
uuvy *= 2;
uuvz *= 2;
// return vec3.add(out, a, vec3.add(out, uv, uuv));
out[0] = x + uvx + uuvx;
out[1] = y + uvy + uuvy;
out[2] = z + uvz + uuvz;
return out;
}
/**
* Rotate a 3D vector around the x-axis
* @param {vec3} out The receiving vec3
* @param {ReadonlyVec3} a The vec3 point to rotate
* @param {ReadonlyVec3} b The origin of the rotation
* @param {Number} rad The angle of rotation in radians
* @returns {vec3} out
*/
export function rotateX(out, a, b, rad) {
const p = [];
const r = [];
p[0] = a[0] - b[0];
p[1] = a[1] - b[1];
p[2] = a[2] - b[2];
r[0] = p[0];
r[1] = p[1] * Math.cos(rad) - p[2] * Math.sin(rad);
r[2] = p[1] * Math.sin(rad) + p[2] * Math.cos(rad);
out[0] = r[0] + b[0];
out[1] = r[1] + b[1];
out[2] = r[2] + b[2];
return out;
const p = [];
const r = [];
// Translate point to the origin
p[0] = a[0] - b[0];
p[1] = a[1] - b[1];
p[2] = a[2] - b[2];
// perform rotation
r[0] = p[0];
r[1] = p[1] * Math.cos(rad) - p[2] * Math.sin(rad);
r[2] = p[1] * Math.sin(rad) + p[2] * Math.cos(rad);
// translate to correct position
out[0] = r[0] + b[0];
out[1] = r[1] + b[1];
out[2] = r[2] + b[2];
return out;
}
/**
* Rotate a 3D vector around the y-axis
* @param {vec3} out The receiving vec3
* @param {ReadonlyVec3} a The vec3 point to rotate
* @param {ReadonlyVec3} b The origin of the rotation
* @param {Number} rad The angle of rotation in radians
* @returns {vec3} out
*/
export function rotateY(out, a, b, rad) {
const p = [];
const r = [];
p[0] = a[0] - b[0];
p[1] = a[1] - b[1];
p[2] = a[2] - b[2];
r[0] = p[2] * Math.sin(rad) + p[0] * Math.cos(rad);
r[1] = p[1];
r[2] = p[2] * Math.cos(rad) - p[0] * Math.sin(rad);
out[0] = r[0] + b[0];
out[1] = r[1] + b[1];
out[2] = r[2] + b[2];
return out;
const p = [];
const r = [];
// Translate point to the origin
p[0] = a[0] - b[0];
p[1] = a[1] - b[1];
p[2] = a[2] - b[2];
// perform rotation
r[0] = p[2] * Math.sin(rad) + p[0] * Math.cos(rad);
r[1] = p[1];
r[2] = p[2] * Math.cos(rad) - p[0] * Math.sin(rad);
// translate to correct position
out[0] = r[0] + b[0];
out[1] = r[1] + b[1];
out[2] = r[2] + b[2];
return out;
}
/**
* Rotate a 3D vector around the z-axis
* @param {vec3} out The receiving vec3
* @param {ReadonlyVec3} a The vec3 point to rotate
* @param {ReadonlyVec3} b The origin of the rotation
* @param {Number} rad The angle of rotation in radians
* @returns {vec3} out
*/
export function rotateZ(out, a, b, rad) {
const p = [];
const r = [];
p[0] = a[0] - b[0];
p[1] = a[1] - b[1];
p[2] = a[2] - b[2];
r[0] = p[0] * Math.cos(rad) - p[1] * Math.sin(rad);
r[1] = p[0] * Math.sin(rad) + p[1] * Math.cos(rad);
r[2] = p[2];
out[0] = r[0] + b[0];
out[1] = r[1] + b[1];
out[2] = r[2] + b[2];
return out;
const p = [];
const r = [];
// Translate point to the origin
p[0] = a[0] - b[0];
p[1] = a[1] - b[1];
p[2] = a[2] - b[2];
// perform rotation
r[0] = p[0] * Math.cos(rad) - p[1] * Math.sin(rad);
r[1] = p[0] * Math.sin(rad) + p[1] * Math.cos(rad);
r[2] = p[2];
// translate to correct position
out[0] = r[0] + b[0];
out[1] = r[1] + b[1];
out[2] = r[2] + b[2];
return out;
}
/**
* Get the angle between two 3D vectors
* @param {ReadonlyVec3} a The first operand
* @param {ReadonlyVec3} b The second operand
* @returns {Number} The angle in radians
*/
export function angle(a, b) {
const ax = a[0];
const ay = a[1];
const az = a[2];
const bx = b[0];
const by = b[1];
const bz = b[2];
const mag = Math.sqrt((ax * ax + ay * ay + az * az) * (bx * bx + by * by + bz * bz));
const cosine = mag && dot(a, b) / mag;
return Math.acos(Math.min(Math.max(cosine, -1), 1));
const ax = a[0];
const ay = a[1];
const az = a[2];
const bx = b[0];
const by = b[1];
const bz = b[2];
const mag = Math.sqrt((ax * ax + ay * ay + az * az) * (bx * bx + by * by + bz * bz));
const cosine = mag && dot(a, b) / mag;
return Math.acos(Math.min(Math.max(cosine, -1), 1));
}
/**
* Set the components of a vec3 to zero
*
* @param {vec3} out the receiving vector
* @returns {vec3} out
*/
export function zero(out) {
out[0] = 0.0;
out[1] = 0.0;
out[2] = 0.0;
return out;
out[0] = 0.0;
out[1] = 0.0;
out[2] = 0.0;
return out;
}
/**
* Returns a string representation of a vector
*
* @param {ReadonlyVec3} a vector to represent as a string
* @returns {String} string representation of the vector
*/
export function str(a) {
return "vec3(".concat(a[0], ", ").concat(a[1], ", ").concat(a[2], ")");
return `vec3(${a[0]}, ${a[1]}, ${a[2]})`;
}
/**
* Returns whether or not the vectors have exactly the same elements in the same position (when compared with ===)
*
* @param {ReadonlyVec3} a The first vector.
* @param {ReadonlyVec3} b The second vector.
* @returns {Boolean} True if the vectors are equal, false otherwise.
*/
export function exactEquals(a, b) {
return a[0] === b[0] && a[1] === b[1] && a[2] === b[2];
return a[0] === b[0] && a[1] === b[1] && a[2] === b[2];
}
/**
* Returns whether or not the vectors have approximately the same elements in the same position.
*
* @param {ReadonlyVec3} a The first vector.
* @param {ReadonlyVec3} b The second vector.
* @returns {Boolean} True if the vectors are equal, false otherwise.
*/
export function equals(a, b) {
const a0 = a[0];
const a1 = a[1];
const a2 = a[2];
const b0 = b[0];
const b1 = b[1];
const b2 = b[2];
return Math.abs(a0 - b0) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a0), Math.abs(b0)) && Math.abs(a1 - b1) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a1), Math.abs(b1)) && Math.abs(a2 - b2) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a2), Math.abs(b2));
const a0 = a[0];
const a1 = a[1];
const a2 = a[2];
const b0 = b[0];
const b1 = b[1];
const b2 = b[2];
return (Math.abs(a0 - b0) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a0), Math.abs(b0)) &&
Math.abs(a1 - b1) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a1), Math.abs(b1)) &&
Math.abs(a2 - b2) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a2), Math.abs(b2)));
}
/**
* Alias for {@link vec3.subtract}
* @function
*/
export const sub = subtract;
/**
* Alias for {@link vec3.multiply}
* @function
*/
export const mul = multiply;
/**
* Alias for {@link vec3.divide}
* @function
*/
export const div = divide;
/**
* Alias for {@link vec3.distance}
* @function
*/
export const dist = distance;
/**
* Alias for {@link vec3.squaredDistance}
* @function
*/
export const sqrDist = squaredDistance;
/**
* Alias for {@link vec3.length}
* @function
*/
export const len = length;
/**
* Alias for {@link vec3.squaredLength}
* @function
*/
export const sqrLen = squaredLength;
export const forEach = function () {
const vec = create();
return function (a, stride, offset, count, fn, arg) {
let i;
let l;
if (!stride) {
stride = 3;
}
if (!offset) {
offset = 0;
}
if (count) {
l = Math.min(count * stride + offset, a.length);
} else {
l = a.length;
}
for (i = offset; i < l; i += stride) {
vec[0] = a[i];
vec[1] = a[i + 1];
vec[2] = a[i + 2];
fn(vec, vec, arg);
a[i] = vec[0];
a[i + 1] = vec[1];
a[i + 2] = vec[2];
}
return a;
};
}();
//# sourceMappingURL=vec3.js.map
/**
* Perform some operation over an array of vec3s.
*
* @param {Array} a the array of vectors to iterate over
* @param {Number} stride Number of elements between the start of each vec3. If 0 assumes tightly packed
* @param {Number} offset Number of elements to skip at the beginning of the array
* @param {Number} count Number of vec3s to iterate over. If 0 iterates over entire array
* @param {Function} fn Function to call for each vector in the array
* @param {Object} [arg] additional argument to pass to fn
* @returns {Array} a
* @function
*/
export const forEach = (function () {
const vec = create();
return function (a, stride, offset, count, fn, arg) {
let i;
let l;
if (!stride) {
stride = 3;
}
if (!offset) {
offset = 0;
}
if (count) {
l = Math.min(count * stride + offset, a.length);
}
else {
l = a.length;
}
for (i = offset; i < l; i += stride) {
vec[0] = a[i];
vec[1] = a[i + 1];
vec[2] = a[i + 2];
fn(vec, vec, arg);
a[i] = vec[0];
a[i + 1] = vec[1];
a[i + 2] = vec[2];
}
return a;
};
})();

@@ -330,2 +330,1 @@ /**

export declare const forEach: (a: any, stride: any, offset: any, count: any, fn: any, arg: any) => any;
//# sourceMappingURL=vec4.d.ts.map

@@ -0,334 +1,620 @@

// @eslint-disable
// @ts-nocheck
import * as glMatrix from './common.js';
/**
* 4 Dimensional Vector
* @module vec4
*/
/**
* Creates a new, empty vec4
*
* @returns {vec4} a new 4D vector
*/
export function create() {
const out = new glMatrix.ARRAY_TYPE(4);
if (glMatrix.ARRAY_TYPE != Float32Array) {
out[0] = 0;
out[1] = 0;
out[2] = 0;
out[3] = 0;
}
return out;
const out = new glMatrix.ARRAY_TYPE(4);
if (glMatrix.ARRAY_TYPE != Float32Array) {
out[0] = 0;
out[1] = 0;
out[2] = 0;
out[3] = 0;
}
return out;
}
/**
* Creates a new vec4 initialized with values from an existing vector
*
* @param {ReadonlyVec4} a vector to clone
* @returns {vec4} a new 4D vector
*/
export function clone(a) {
const out = new glMatrix.ARRAY_TYPE(4);
out[0] = a[0];
out[1] = a[1];
out[2] = a[2];
out[3] = a[3];
return out;
const out = new glMatrix.ARRAY_TYPE(4);
out[0] = a[0];
out[1] = a[1];
out[2] = a[2];
out[3] = a[3];
return out;
}
/**
* Creates a new vec4 initialized with the given values
*
* @param {Number} x X component
* @param {Number} y Y component
* @param {Number} z Z component
* @param {Number} w W component
* @returns {vec4} a new 4D vector
*/
export function fromValues(x, y, z, w) {
const out = new glMatrix.ARRAY_TYPE(4);
out[0] = x;
out[1] = y;
out[2] = z;
out[3] = w;
return out;
const out = new glMatrix.ARRAY_TYPE(4);
out[0] = x;
out[1] = y;
out[2] = z;
out[3] = w;
return out;
}
/**
* Copy the values from one vec4 to another
*
* @param {vec4} out the receiving vector
* @param {ReadonlyVec4} a the source vector
* @returns {vec4} out
*/
export function copy(out, a) {
out[0] = a[0];
out[1] = a[1];
out[2] = a[2];
out[3] = a[3];
return out;
out[0] = a[0];
out[1] = a[1];
out[2] = a[2];
out[3] = a[3];
return out;
}
/**
* Set the components of a vec4 to the given values
*
* @param {vec4} out the receiving vector
* @param {Number} x X component
* @param {Number} y Y component
* @param {Number} z Z component
* @param {Number} w W component
* @returns {vec4} out
*/
export function set(out, x, y, z, w) {
out[0] = x;
out[1] = y;
out[2] = z;
out[3] = w;
return out;
out[0] = x;
out[1] = y;
out[2] = z;
out[3] = w;
return out;
}
/**
* Adds two vec4's
*
* @param {vec4} out the receiving vector
* @param {ReadonlyVec4} a the first operand
* @param {ReadonlyVec4} b the second operand
* @returns {vec4} out
*/
export function add(out, a, b) {
out[0] = a[0] + b[0];
out[1] = a[1] + b[1];
out[2] = a[2] + b[2];
out[3] = a[3] + b[3];
return out;
out[0] = a[0] + b[0];
out[1] = a[1] + b[1];
out[2] = a[2] + b[2];
out[3] = a[3] + b[3];
return out;
}
/**
* Subtracts vector b from vector a
*
* @param {vec4} out the receiving vector
* @param {ReadonlyVec4} a the first operand
* @param {ReadonlyVec4} b the second operand
* @returns {vec4} out
*/
export function subtract(out, a, b) {
out[0] = a[0] - b[0];
out[1] = a[1] - b[1];
out[2] = a[2] - b[2];
out[3] = a[3] - b[3];
return out;
out[0] = a[0] - b[0];
out[1] = a[1] - b[1];
out[2] = a[2] - b[2];
out[3] = a[3] - b[3];
return out;
}
/**
* Multiplies two vec4's
*
* @param {vec4} out the receiving vector
* @param {ReadonlyVec4} a the first operand
* @param {ReadonlyVec4} b the second operand
* @returns {vec4} out
*/
export function multiply(out, a, b) {
out[0] = a[0] * b[0];
out[1] = a[1] * b[1];
out[2] = a[2] * b[2];
out[3] = a[3] * b[3];
return out;
out[0] = a[0] * b[0];
out[1] = a[1] * b[1];
out[2] = a[2] * b[2];
out[3] = a[3] * b[3];
return out;
}
/**
* Divides two vec4's
*
* @param {vec4} out the receiving vector
* @param {ReadonlyVec4} a the first operand
* @param {ReadonlyVec4} b the second operand
* @returns {vec4} out
*/
export function divide(out, a, b) {
out[0] = a[0] / b[0];
out[1] = a[1] / b[1];
out[2] = a[2] / b[2];
out[3] = a[3] / b[3];
return out;
out[0] = a[0] / b[0];
out[1] = a[1] / b[1];
out[2] = a[2] / b[2];
out[3] = a[3] / b[3];
return out;
}
/**
* Math.ceil the components of a vec4
*
* @param {vec4} out the receiving vector
* @param {ReadonlyVec4} a vector to ceil
* @returns {vec4} out
*/
export function ceil(out, a) {
out[0] = Math.ceil(a[0]);
out[1] = Math.ceil(a[1]);
out[2] = Math.ceil(a[2]);
out[3] = Math.ceil(a[3]);
return out;
out[0] = Math.ceil(a[0]);
out[1] = Math.ceil(a[1]);
out[2] = Math.ceil(a[2]);
out[3] = Math.ceil(a[3]);
return out;
}
/**
* Math.floor the components of a vec4
*
* @param {vec4} out the receiving vector
* @param {ReadonlyVec4} a vector to floor
* @returns {vec4} out
*/
export function floor(out, a) {
out[0] = Math.floor(a[0]);
out[1] = Math.floor(a[1]);
out[2] = Math.floor(a[2]);
out[3] = Math.floor(a[3]);
return out;
out[0] = Math.floor(a[0]);
out[1] = Math.floor(a[1]);
out[2] = Math.floor(a[2]);
out[3] = Math.floor(a[3]);
return out;
}
/**
* Returns the minimum of two vec4's
*
* @param {vec4} out the receiving vector
* @param {ReadonlyVec4} a the first operand
* @param {ReadonlyVec4} b the second operand
* @returns {vec4} out
*/
export function min(out, a, b) {
out[0] = Math.min(a[0], b[0]);
out[1] = Math.min(a[1], b[1]);
out[2] = Math.min(a[2], b[2]);
out[3] = Math.min(a[3], b[3]);
return out;
out[0] = Math.min(a[0], b[0]);
out[1] = Math.min(a[1], b[1]);
out[2] = Math.min(a[2], b[2]);
out[3] = Math.min(a[3], b[3]);
return out;
}
/**
* Returns the maximum of two vec4's
*
* @param {vec4} out the receiving vector
* @param {ReadonlyVec4} a the first operand
* @param {ReadonlyVec4} b the second operand
* @returns {vec4} out
*/
export function max(out, a, b) {
out[0] = Math.max(a[0], b[0]);
out[1] = Math.max(a[1], b[1]);
out[2] = Math.max(a[2], b[2]);
out[3] = Math.max(a[3], b[3]);
return out;
out[0] = Math.max(a[0], b[0]);
out[1] = Math.max(a[1], b[1]);
out[2] = Math.max(a[2], b[2]);
out[3] = Math.max(a[3], b[3]);
return out;
}
/**
* symmetric round the components of a vec4
*
* @param {vec4} out the receiving vector
* @param {ReadonlyVec4} a vector to round
* @returns {vec4} out
*/
export function round(out, a) {
out[0] = glMatrix.round(a[0]);
out[1] = glMatrix.round(a[1]);
out[2] = glMatrix.round(a[2]);
out[3] = glMatrix.round(a[3]);
return out;
out[0] = glMatrix.round(a[0]);
out[1] = glMatrix.round(a[1]);
out[2] = glMatrix.round(a[2]);
out[3] = glMatrix.round(a[3]);
return out;
}
/**
* Scales a vec4 by a scalar number
*
* @param {vec4} out the receiving vector
* @param {ReadonlyVec4} a the vector to scale
* @param {Number} b amount to scale the vector by
* @returns {vec4} out
*/
export function scale(out, a, b) {
out[0] = a[0] * b;
out[1] = a[1] * b;
out[2] = a[2] * b;
out[3] = a[3] * b;
return out;
out[0] = a[0] * b;
out[1] = a[1] * b;
out[2] = a[2] * b;
out[3] = a[3] * b;
return out;
}
/**
* Adds two vec4's after scaling the second operand by a scalar value
*
* @param {vec4} out the receiving vector
* @param {ReadonlyVec4} a the first operand
* @param {ReadonlyVec4} b the second operand
* @param {Number} scale the amount to scale b by before adding
* @returns {vec4} out
*/
export function scaleAndAdd(out, a, b, scale) {
out[0] = a[0] + b[0] * scale;
out[1] = a[1] + b[1] * scale;
out[2] = a[2] + b[2] * scale;
out[3] = a[3] + b[3] * scale;
return out;
out[0] = a[0] + b[0] * scale;
out[1] = a[1] + b[1] * scale;
out[2] = a[2] + b[2] * scale;
out[3] = a[3] + b[3] * scale;
return out;
}
/**
* Calculates the euclidian distance between two vec4's
*
* @param {ReadonlyVec4} a the first operand
* @param {ReadonlyVec4} b the second operand
* @returns {Number} distance between a and b
*/
export function distance(a, b) {
const x = b[0] - a[0];
const y = b[1] - a[1];
const z = b[2] - a[2];
const w = b[3] - a[3];
return Math.sqrt(x * x + y * y + z * z + w * w);
const x = b[0] - a[0];
const y = b[1] - a[1];
const z = b[2] - a[2];
const w = b[3] - a[3];
return Math.sqrt(x * x + y * y + z * z + w * w);
}
/**
* Calculates the squared euclidian distance between two vec4's
*
* @param {ReadonlyVec4} a the first operand
* @param {ReadonlyVec4} b the second operand
* @returns {Number} squared distance between a and b
*/
export function squaredDistance(a, b) {
const x = b[0] - a[0];
const y = b[1] - a[1];
const z = b[2] - a[2];
const w = b[3] - a[3];
return x * x + y * y + z * z + w * w;
const x = b[0] - a[0];
const y = b[1] - a[1];
const z = b[2] - a[2];
const w = b[3] - a[3];
return x * x + y * y + z * z + w * w;
}
/**
* Calculates the length of a vec4
*
* @param {ReadonlyVec4} a vector to calculate length of
* @returns {Number} length of a
*/
export function length(a) {
const x = a[0];
const y = a[1];
const z = a[2];
const w = a[3];
return Math.sqrt(x * x + y * y + z * z + w * w);
const x = a[0];
const y = a[1];
const z = a[2];
const w = a[3];
return Math.sqrt(x * x + y * y + z * z + w * w);
}
/**
* Calculates the squared length of a vec4
*
* @param {ReadonlyVec4} a vector to calculate squared length of
* @returns {Number} squared length of a
*/
export function squaredLength(a) {
const x = a[0];
const y = a[1];
const z = a[2];
const w = a[3];
return x * x + y * y + z * z + w * w;
const x = a[0];
const y = a[1];
const z = a[2];
const w = a[3];
return x * x + y * y + z * z + w * w;
}
/**
* Negates the components of a vec4
*
* @param {vec4} out the receiving vector
* @param {ReadonlyVec4} a vector to negate
* @returns {vec4} out
*/
export function negate(out, a) {
out[0] = -a[0];
out[1] = -a[1];
out[2] = -a[2];
out[3] = -a[3];
return out;
out[0] = -a[0];
out[1] = -a[1];
out[2] = -a[2];
out[3] = -a[3];
return out;
}
/**
* Returns the inverse of the components of a vec4
*
* @param {vec4} out the receiving vector
* @param {ReadonlyVec4} a vector to invert
* @returns {vec4} out
*/
export function inverse(out, a) {
out[0] = 1.0 / a[0];
out[1] = 1.0 / a[1];
out[2] = 1.0 / a[2];
out[3] = 1.0 / a[3];
return out;
out[0] = 1.0 / a[0];
out[1] = 1.0 / a[1];
out[2] = 1.0 / a[2];
out[3] = 1.0 / a[3];
return out;
}
/**
* Normalize a vec4
*
* @param {vec4} out the receiving vector
* @param {ReadonlyVec4} a vector to normalize
* @returns {vec4} out
*/
export function normalize(out, a) {
const x = a[0];
const y = a[1];
const z = a[2];
const w = a[3];
let len = x * x + y * y + z * z + w * w;
if (len > 0) {
len = 1 / Math.sqrt(len);
}
out[0] = x * len;
out[1] = y * len;
out[2] = z * len;
out[3] = w * len;
return out;
const x = a[0];
const y = a[1];
const z = a[2];
const w = a[3];
let len = x * x + y * y + z * z + w * w;
if (len > 0) {
len = 1 / Math.sqrt(len);
}
out[0] = x * len;
out[1] = y * len;
out[2] = z * len;
out[3] = w * len;
return out;
}
/**
* Calculates the dot product of two vec4's
*
* @param {ReadonlyVec4} a the first operand
* @param {ReadonlyVec4} b the second operand
* @returns {Number} dot product of a and b
*/
export function dot(a, b) {
return a[0] * b[0] + a[1] * b[1] + a[2] * b[2] + a[3] * b[3];
return a[0] * b[0] + a[1] * b[1] + a[2] * b[2] + a[3] * b[3];
}
/**
* Returns the cross-product of three vectors in a 4-dimensional space
*
* @param {ReadonlyVec4} result the receiving vector
* @param {ReadonlyVec4} U the first vector
* @param {ReadonlyVec4} V the second vector
* @param {ReadonlyVec4} W the third vector
* @returns {vec4} result
*/
export function cross(out, u, v, w) {
const A = v[0] * w[1] - v[1] * w[0];
const B = v[0] * w[2] - v[2] * w[0];
const C = v[0] * w[3] - v[3] * w[0];
const D = v[1] * w[2] - v[2] * w[1];
const E = v[1] * w[3] - v[3] * w[1];
const F = v[2] * w[3] - v[3] * w[2];
const G = u[0];
const H = u[1];
const I = u[2];
const J = u[3];
out[0] = H * F - I * E + J * D;
out[1] = -(G * F) + I * C - J * B;
out[2] = G * E - H * C + J * A;
out[3] = -(G * D) + H * B - I * A;
return out;
const A = v[0] * w[1] - v[1] * w[0];
const B = v[0] * w[2] - v[2] * w[0];
const C = v[0] * w[3] - v[3] * w[0];
const D = v[1] * w[2] - v[2] * w[1];
const E = v[1] * w[3] - v[3] * w[1];
const F = v[2] * w[3] - v[3] * w[2];
const G = u[0];
const H = u[1];
const I = u[2];
const J = u[3];
out[0] = H * F - I * E + J * D;
out[1] = -(G * F) + I * C - J * B;
out[2] = G * E - H * C + J * A;
out[3] = -(G * D) + H * B - I * A;
return out;
}
/**
* Performs a linear interpolation between two vec4's
*
* @param {vec4} out the receiving vector
* @param {ReadonlyVec4} a the first operand
* @param {ReadonlyVec4} b the second operand
* @param {Number} t interpolation amount, in the range [0-1], between the two inputs
* @returns {vec4} out
*/
export function lerp(out, a, b, t) {
const ax = a[0];
const ay = a[1];
const az = a[2];
const aw = a[3];
out[0] = ax + t * (b[0] - ax);
out[1] = ay + t * (b[1] - ay);
out[2] = az + t * (b[2] - az);
out[3] = aw + t * (b[3] - aw);
return out;
const ax = a[0];
const ay = a[1];
const az = a[2];
const aw = a[3];
out[0] = ax + t * (b[0] - ax);
out[1] = ay + t * (b[1] - ay);
out[2] = az + t * (b[2] - az);
out[3] = aw + t * (b[3] - aw);
return out;
}
/**
* Generates a random vector with the given scale
*
* @param {vec4} out the receiving vector
* @param {Number} [scale] Length of the resulting vector. If omitted, a unit vector will be returned
* @returns {vec4} out
*/
export function random(out, scale) {
scale = scale === undefined ? 1.0 : scale;
let v1;
let v2;
let v3;
let v4;
let s1;
let s2;
do {
v1 = glMatrix.RANDOM() * 2 - 1;
v2 = glMatrix.RANDOM() * 2 - 1;
s1 = v1 * v1 + v2 * v2;
} while (s1 >= 1);
do {
v3 = glMatrix.RANDOM() * 2 - 1;
v4 = glMatrix.RANDOM() * 2 - 1;
s2 = v3 * v3 + v4 * v4;
} while (s2 >= 1);
const d = Math.sqrt((1 - s1) / s2);
out[0] = scale * v1;
out[1] = scale * v2;
out[2] = scale * v3 * d;
out[3] = scale * v4 * d;
return out;
scale = scale === undefined ? 1.0 : scale;
// Marsaglia, George. Choosing a Point from the Surface of a
// Sphere. Ann. Math. Statist. 43 (1972), no. 2, 645--646.
// http://projecteuclid.org/euclid.aoms/1177692644;
let v1;
let v2;
let v3;
let v4;
let s1;
let s2;
do {
v1 = glMatrix.RANDOM() * 2 - 1;
v2 = glMatrix.RANDOM() * 2 - 1;
s1 = v1 * v1 + v2 * v2;
} while (s1 >= 1);
do {
v3 = glMatrix.RANDOM() * 2 - 1;
v4 = glMatrix.RANDOM() * 2 - 1;
s2 = v3 * v3 + v4 * v4;
} while (s2 >= 1);
const d = Math.sqrt((1 - s1) / s2);
out[0] = scale * v1;
out[1] = scale * v2;
out[2] = scale * v3 * d;
out[3] = scale * v4 * d;
return out;
}
/**
* Transforms the vec4 with a mat4.
*
* @param {vec4} out the receiving vector
* @param {ReadonlyVec4} a the vector to transform
* @param {ReadonlyMat4} m matrix to transform with
* @returns {vec4} out
*/
export function transformMat4(out, a, m) {
const x = a[0];
const y = a[1];
const z = a[2];
const w = a[3];
out[0] = m[0] * x + m[4] * y + m[8] * z + m[12] * w;
out[1] = m[1] * x + m[5] * y + m[9] * z + m[13] * w;
out[2] = m[2] * x + m[6] * y + m[10] * z + m[14] * w;
out[3] = m[3] * x + m[7] * y + m[11] * z + m[15] * w;
return out;
const x = a[0];
const y = a[1];
const z = a[2];
const w = a[3];
out[0] = m[0] * x + m[4] * y + m[8] * z + m[12] * w;
out[1] = m[1] * x + m[5] * y + m[9] * z + m[13] * w;
out[2] = m[2] * x + m[6] * y + m[10] * z + m[14] * w;
out[3] = m[3] * x + m[7] * y + m[11] * z + m[15] * w;
return out;
}
/**
* Transforms the vec4 with a quat
*
* @param {vec4} out the receiving vector
* @param {ReadonlyVec4} a the vector to transform
* @param {ReadonlyQuat} q quaternion to transform with
* @returns {vec4} out
*/
export function transformQuat(out, a, q) {
const x = a[0];
const y = a[1];
const z = a[2];
const qx = q[0];
const qy = q[1];
const qz = q[2];
const qw = q[3];
const ix = qw * x + qy * z - qz * y;
const iy = qw * y + qz * x - qx * z;
const iz = qw * z + qx * y - qy * x;
const iw = -qx * x - qy * y - qz * z;
out[0] = ix * qw + iw * -qx + iy * -qz - iz * -qy;
out[1] = iy * qw + iw * -qy + iz * -qx - ix * -qz;
out[2] = iz * qw + iw * -qz + ix * -qy - iy * -qx;
out[3] = a[3];
return out;
const x = a[0];
const y = a[1];
const z = a[2];
const qx = q[0];
const qy = q[1];
const qz = q[2];
const qw = q[3];
// calculate quat * vec
const ix = qw * x + qy * z - qz * y;
const iy = qw * y + qz * x - qx * z;
const iz = qw * z + qx * y - qy * x;
const iw = -qx * x - qy * y - qz * z;
// calculate result * inverse quat
out[0] = ix * qw + iw * -qx + iy * -qz - iz * -qy;
out[1] = iy * qw + iw * -qy + iz * -qx - ix * -qz;
out[2] = iz * qw + iw * -qz + ix * -qy - iy * -qx;
out[3] = a[3];
return out;
}
/**
* Set the components of a vec4 to zero
*
* @param {vec4} out the receiving vector
* @returns {vec4} out
*/
export function zero(out) {
out[0] = 0.0;
out[1] = 0.0;
out[2] = 0.0;
out[3] = 0.0;
return out;
out[0] = 0.0;
out[1] = 0.0;
out[2] = 0.0;
out[3] = 0.0;
return out;
}
/**
* Returns a string representation of a vector
*
* @param {ReadonlyVec4} a vector to represent as a string
* @returns {String} string representation of the vector
*/
export function str(a) {
return "vec4(".concat(a[0], ", ").concat(a[1], ", ").concat(a[2], ", ").concat(a[3], ")");
return `vec4(${a[0]}, ${a[1]}, ${a[2]}, ${a[3]})`;
}
/**
* Returns whether or not the vectors have exactly the same elements in the same position (when compared with ===)
*
* @param {ReadonlyVec4} a The first vector.
* @param {ReadonlyVec4} b The second vector.
* @returns {Boolean} True if the vectors are equal, false otherwise.
*/
export function exactEquals(a, b) {
return a[0] === b[0] && a[1] === b[1] && a[2] === b[2] && a[3] === b[3];
return a[0] === b[0] && a[1] === b[1] && a[2] === b[2] && a[3] === b[3];
}
/**
* Returns whether or not the vectors have approximately the same elements in the same position.
*
* @param {ReadonlyVec4} a The first vector.
* @param {ReadonlyVec4} b The second vector.
* @returns {Boolean} True if the vectors are equal, false otherwise.
*/
export function equals(a, b) {
const a0 = a[0];
const a1 = a[1];
const a2 = a[2];
const a3 = a[3];
const b0 = b[0];
const b1 = b[1];
const b2 = b[2];
const b3 = b[3];
return Math.abs(a0 - b0) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a0), Math.abs(b0)) && Math.abs(a1 - b1) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a1), Math.abs(b1)) && Math.abs(a2 - b2) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a2), Math.abs(b2)) && Math.abs(a3 - b3) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a3), Math.abs(b3));
const a0 = a[0];
const a1 = a[1];
const a2 = a[2];
const a3 = a[3];
const b0 = b[0];
const b1 = b[1];
const b2 = b[2];
const b3 = b[3];
return (Math.abs(a0 - b0) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a0), Math.abs(b0)) &&
Math.abs(a1 - b1) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a1), Math.abs(b1)) &&
Math.abs(a2 - b2) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a2), Math.abs(b2)) &&
Math.abs(a3 - b3) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a3), Math.abs(b3)));
}
/**
* Alias for {@link vec4.subtract}
* @function
*/
export const sub = subtract;
/**
* Alias for {@link vec4.multiply}
* @function
*/
export const mul = multiply;
/**
* Alias for {@link vec4.divide}
* @function
*/
export const div = divide;
/**
* Alias for {@link vec4.distance}
* @function
*/
export const dist = distance;
/**
* Alias for {@link vec4.squaredDistance}
* @function
*/
export const sqrDist = squaredDistance;
/**
* Alias for {@link vec4.length}
* @function
*/
export const len = length;
/**
* Alias for {@link vec4.squaredLength}
* @function
*/
export const sqrLen = squaredLength;
export const forEach = function () {
const vec = create();
return function (a, stride, offset, count, fn, arg) {
let i;
let l;
if (!stride) {
stride = 4;
}
if (!offset) {
offset = 0;
}
if (count) {
l = Math.min(count * stride + offset, a.length);
} else {
l = a.length;
}
for (i = offset; i < l; i += stride) {
vec[0] = a[i];
vec[1] = a[i + 1];
vec[2] = a[i + 2];
vec[3] = a[i + 3];
fn(vec, vec, arg);
a[i] = vec[0];
a[i + 1] = vec[1];
a[i + 2] = vec[2];
a[i + 3] = vec[3];
}
return a;
};
}();
//# sourceMappingURL=vec4.js.map
/**
* Perform some operation over an array of vec4s.
*
* @param {Array} a the array of vectors to iterate over
* @param {Number} stride Number of elements between the start of each vec4. If 0 assumes tightly packed
* @param {Number} offset Number of elements to skip at the beginning of the array
* @param {Number} count Number of vec4s to iterate over. If 0 iterates over entire array
* @param {Function} fn Function to call for each vector in the array
* @param {Object} [arg] additional argument to pass to fn
* @returns {Array} a
* @function
*/
export const forEach = (function () {
const vec = create();
return function (a, stride, offset, count, fn, arg) {
let i;
let l;
if (!stride) {
stride = 4;
}
if (!offset) {
offset = 0;
}
if (count) {
l = Math.min(count * stride + offset, a.length);
}
else {
l = a.length;
}
for (i = offset; i < l; i += stride) {
vec[0] = a[i];
vec[1] = a[i + 1];
vec[2] = a[i + 2];
vec[3] = a[i + 3];
fn(vec, vec, arg);
a[i] = vec[0];
a[i + 1] = vec[1];
a[i + 2] = vec[2];
a[i + 3] = vec[3];
}
return a;
};
})();

@@ -1,5 +0,4 @@

import * as mat2 from "./mat2.js";
import * as mat2d from "./mat2d.js";
import * as quat2 from "./quat2.js";
import * as mat2 from './mat2.js';
import * as mat2d from './mat2d.js';
import * as quat2 from './quat2.js';
export { glMatrix, mat2, mat2d, mat3, mat4, quat, quat2, vec2, vec3, vec4 };
//# sourceMappingURL=index.d.ts.map

@@ -0,1 +1,3 @@

// @eslint-disable
// @ts-nocheck
import * as glMatrix from './common.js';

@@ -12,2 +14,1 @@ import * as mat2 from './mat2.js';

export { glMatrix, mat2, mat2d, mat3, mat4, quat, quat2, vec2, vec3, vec4 };
//# sourceMappingURL=index.js.map

@@ -229,2 +229,1 @@ /**

export function sub(out: mat2, a: ReadonlyMat2, b: ReadonlyMat2): mat2;
//# sourceMappingURL=mat2.d.ts.map

@@ -0,208 +1,384 @@

// @ts-nocheck
/* eslint-disable */
import * as glMatrix from './common.js';
/**
* 2x2 Matrix
* @module mat2
*/
/**
* Creates a new identity mat2
*
* @returns {mat2} a new 2x2 matrix
*/
export function create() {
let out = new glMatrix.ARRAY_TYPE(4);
if (glMatrix.ARRAY_TYPE != Float32Array) {
out[1] = 0;
out[2] = 0;
}
out[0] = 1;
out[3] = 1;
return out;
let out = new glMatrix.ARRAY_TYPE(4);
if (glMatrix.ARRAY_TYPE != Float32Array) {
out[1] = 0;
out[2] = 0;
}
out[0] = 1;
out[3] = 1;
return out;
}
/**
* Creates a new mat2 initialized with values from an existing matrix
*
* @param {ReadonlyMat2} a matrix to clone
* @returns {mat2} a new 2x2 matrix
*/
export function clone(a) {
let out = new glMatrix.ARRAY_TYPE(4);
out[0] = a[0];
out[1] = a[1];
out[2] = a[2];
out[3] = a[3];
return out;
let out = new glMatrix.ARRAY_TYPE(4);
out[0] = a[0];
out[1] = a[1];
out[2] = a[2];
out[3] = a[3];
return out;
}
/**
* Copy the values from one mat2 to another
*
* @param {mat2} out the receiving matrix
* @param {ReadonlyMat2} a the source matrix
* @returns {mat2} out
*/
export function copy(out, a) {
out[0] = a[0];
out[1] = a[1];
out[2] = a[2];
out[3] = a[3];
return out;
out[0] = a[0];
out[1] = a[1];
out[2] = a[2];
out[3] = a[3];
return out;
}
/**
* Set a mat2 to the identity matrix
*
* @param {mat2} out the receiving matrix
* @returns {mat2} out
*/
export function identity(out) {
out[0] = 1;
out[1] = 0;
out[2] = 0;
out[3] = 1;
return out;
out[0] = 1;
out[1] = 0;
out[2] = 0;
out[3] = 1;
return out;
}
/**
* Create a new mat2 with the given values
*
* @param {Number} m00 Component in column 0, row 0 position (index 0)
* @param {Number} m01 Component in column 0, row 1 position (index 1)
* @param {Number} m10 Component in column 1, row 0 position (index 2)
* @param {Number} m11 Component in column 1, row 1 position (index 3)
* @returns {mat2} out A new 2x2 matrix
*/
export function fromValues(m00, m01, m10, m11) {
let out = new glMatrix.ARRAY_TYPE(4);
out[0] = m00;
out[1] = m01;
out[2] = m10;
out[3] = m11;
return out;
let out = new glMatrix.ARRAY_TYPE(4);
out[0] = m00;
out[1] = m01;
out[2] = m10;
out[3] = m11;
return out;
}
/**
* Set the components of a mat2 to the given values
*
* @param {mat2} out the receiving matrix
* @param {Number} m00 Component in column 0, row 0 position (index 0)
* @param {Number} m01 Component in column 0, row 1 position (index 1)
* @param {Number} m10 Component in column 1, row 0 position (index 2)
* @param {Number} m11 Component in column 1, row 1 position (index 3)
* @returns {mat2} out
*/
export function set(out, m00, m01, m10, m11) {
out[0] = m00;
out[1] = m01;
out[2] = m10;
out[3] = m11;
return out;
out[0] = m00;
out[1] = m01;
out[2] = m10;
out[3] = m11;
return out;
}
/**
* Transpose the values of a mat2
*
* @param {mat2} out the receiving matrix
* @param {ReadonlyMat2} a the source matrix
* @returns {mat2} out
*/
export function transpose(out, a) {
if (out === a) {
let a1 = a[1];
out[1] = a[2];
out[2] = a1;
} else {
out[0] = a[0];
out[1] = a[2];
out[2] = a[1];
out[3] = a[3];
}
return out;
// If we are transposing ourselves we can skip a few steps but have to cache
// some values
if (out === a) {
let a1 = a[1];
out[1] = a[2];
out[2] = a1;
}
else {
out[0] = a[0];
out[1] = a[2];
out[2] = a[1];
out[3] = a[3];
}
return out;
}
/**
* Inverts a mat2
*
* @param {mat2} out the receiving matrix
* @param {ReadonlyMat2} a the source matrix
* @returns {mat2} out
*/
export function invert(out, a) {
let a0 = a[0],
a1 = a[1],
a2 = a[2],
a3 = a[3];
let det = a0 * a3 - a2 * a1;
if (!det) {
return null;
}
det = 1.0 / det;
out[0] = a3 * det;
out[1] = -a1 * det;
out[2] = -a2 * det;
out[3] = a0 * det;
return out;
let a0 = a[0], a1 = a[1], a2 = a[2], a3 = a[3];
// Calculate the determinant
let det = a0 * a3 - a2 * a1;
if (!det) {
return null;
}
det = 1.0 / det;
out[0] = a3 * det;
out[1] = -a1 * det;
out[2] = -a2 * det;
out[3] = a0 * det;
return out;
}
/**
* Calculates the adjugate of a mat2
*
* @param {mat2} out the receiving matrix
* @param {ReadonlyMat2} a the source matrix
* @returns {mat2} out
*/
export function adjoint(out, a) {
let a0 = a[0];
out[0] = a[3];
out[1] = -a[1];
out[2] = -a[2];
out[3] = a0;
return out;
// Caching this value is necessary if out == a
let a0 = a[0];
out[0] = a[3];
out[1] = -a[1];
out[2] = -a[2];
out[3] = a0;
return out;
}
/**
* Calculates the determinant of a mat2
*
* @param {ReadonlyMat2} a the source matrix
* @returns {Number} determinant of a
*/
export function determinant(a) {
return a[0] * a[3] - a[2] * a[1];
return a[0] * a[3] - a[2] * a[1];
}
/**
* Multiplies two mat2's
*
* @param {mat2} out the receiving matrix
* @param {ReadonlyMat2} a the first operand
* @param {ReadonlyMat2} b the second operand
* @returns {mat2} out
*/
export function multiply(out, a, b) {
let a0 = a[0],
a1 = a[1],
a2 = a[2],
a3 = a[3];
let b0 = b[0],
b1 = b[1],
b2 = b[2],
b3 = b[3];
out[0] = a0 * b0 + a2 * b1;
out[1] = a1 * b0 + a3 * b1;
out[2] = a0 * b2 + a2 * b3;
out[3] = a1 * b2 + a3 * b3;
return out;
let a0 = a[0], a1 = a[1], a2 = a[2], a3 = a[3];
let b0 = b[0], b1 = b[1], b2 = b[2], b3 = b[3];
out[0] = a0 * b0 + a2 * b1;
out[1] = a1 * b0 + a3 * b1;
out[2] = a0 * b2 + a2 * b3;
out[3] = a1 * b2 + a3 * b3;
return out;
}
/**
* Rotates a mat2 by the given angle
*
* @param {mat2} out the receiving matrix
* @param {ReadonlyMat2} a the matrix to rotate
* @param {Number} rad the angle to rotate the matrix by
* @returns {mat2} out
*/
export function rotate(out, a, rad) {
let a0 = a[0],
a1 = a[1],
a2 = a[2],
a3 = a[3];
let s = Math.sin(rad);
let c = Math.cos(rad);
out[0] = a0 * c + a2 * s;
out[1] = a1 * c + a3 * s;
out[2] = a0 * -s + a2 * c;
out[3] = a1 * -s + a3 * c;
return out;
let a0 = a[0], a1 = a[1], a2 = a[2], a3 = a[3];
let s = Math.sin(rad);
let c = Math.cos(rad);
out[0] = a0 * c + a2 * s;
out[1] = a1 * c + a3 * s;
out[2] = a0 * -s + a2 * c;
out[3] = a1 * -s + a3 * c;
return out;
}
/**
* Scales the mat2 by the dimensions in the given vec2
*
* @param {mat2} out the receiving matrix
* @param {ReadonlyMat2} a the matrix to rotate
* @param {ReadonlyVec2} v the vec2 to scale the matrix by
* @returns {mat2} out
**/
export function scale(out, a, v) {
let a0 = a[0],
a1 = a[1],
a2 = a[2],
a3 = a[3];
let v0 = v[0],
v1 = v[1];
out[0] = a0 * v0;
out[1] = a1 * v0;
out[2] = a2 * v1;
out[3] = a3 * v1;
return out;
let a0 = a[0], a1 = a[1], a2 = a[2], a3 = a[3];
let v0 = v[0], v1 = v[1];
out[0] = a0 * v0;
out[1] = a1 * v0;
out[2] = a2 * v1;
out[3] = a3 * v1;
return out;
}
/**
* Creates a matrix from a given angle
* This is equivalent to (but much faster than):
*
* mat2.identity(dest);
* mat2.rotate(dest, dest, rad);
*
* @param {mat2} out mat2 receiving operation result
* @param {Number} rad the angle to rotate the matrix by
* @returns {mat2} out
*/
export function fromRotation(out, rad) {
let s = Math.sin(rad);
let c = Math.cos(rad);
out[0] = c;
out[1] = s;
out[2] = -s;
out[3] = c;
return out;
let s = Math.sin(rad);
let c = Math.cos(rad);
out[0] = c;
out[1] = s;
out[2] = -s;
out[3] = c;
return out;
}
/**
* Creates a matrix from a vector scaling
* This is equivalent to (but much faster than):
*
* mat2.identity(dest);
* mat2.scale(dest, dest, vec);
*
* @param {mat2} out mat2 receiving operation result
* @param {ReadonlyVec2} v Scaling vector
* @returns {mat2} out
*/
export function fromScaling(out, v) {
out[0] = v[0];
out[1] = 0;
out[2] = 0;
out[3] = v[1];
return out;
out[0] = v[0];
out[1] = 0;
out[2] = 0;
out[3] = v[1];
return out;
}
/**
* Returns a string representation of a mat2
*
* @param {ReadonlyMat2} a matrix to represent as a string
* @returns {String} string representation of the matrix
*/
export function str(a) {
return 'mat2(' + a[0] + ', ' + a[1] + ', ' + a[2] + ', ' + a[3] + ')';
return 'mat2(' + a[0] + ', ' + a[1] + ', ' + a[2] + ', ' + a[3] + ')';
}
/**
* Returns Frobenius norm of a mat2
*
* @param {ReadonlyMat2} a the matrix to calculate Frobenius norm of
* @returns {Number} Frobenius norm
*/
export function frob(a) {
return Math.sqrt(a[0] * a[0] + a[1] * a[1] + a[2] * a[2] + a[3] * a[3]);
return Math.sqrt(a[0] * a[0] + a[1] * a[1] + a[2] * a[2] + a[3] * a[3]);
}
/**
* Returns L, D and U matrices (Lower triangular, Diagonal and Upper triangular) by factorizing the input matrix
* @param {ReadonlyMat2} L the lower triangular matrix
* @param {ReadonlyMat2} D the diagonal matrix
* @param {ReadonlyMat2} U the upper triangular matrix
* @param {ReadonlyMat2} a the input matrix to factorize
*/
export function LDU(L, D, U, a) {
L[2] = a[2] / a[0];
U[0] = a[0];
U[1] = a[1];
U[3] = a[3] - L[2] * U[1];
return [L, D, U];
L[2] = a[2] / a[0];
U[0] = a[0];
U[1] = a[1];
U[3] = a[3] - L[2] * U[1];
return [L, D, U];
}
/**
* Adds two mat2's
*
* @param {mat2} out the receiving matrix
* @param {ReadonlyMat2} a the first operand
* @param {ReadonlyMat2} b the second operand
* @returns {mat2} out
*/
export function add(out, a, b) {
out[0] = a[0] + b[0];
out[1] = a[1] + b[1];
out[2] = a[2] + b[2];
out[3] = a[3] + b[3];
return out;
out[0] = a[0] + b[0];
out[1] = a[1] + b[1];
out[2] = a[2] + b[2];
out[3] = a[3] + b[3];
return out;
}
/**
* Subtracts matrix b from matrix a
*
* @param {mat2} out the receiving matrix
* @param {ReadonlyMat2} a the first operand
* @param {ReadonlyMat2} b the second operand
* @returns {mat2} out
*/
export function subtract(out, a, b) {
out[0] = a[0] - b[0];
out[1] = a[1] - b[1];
out[2] = a[2] - b[2];
out[3] = a[3] - b[3];
return out;
out[0] = a[0] - b[0];
out[1] = a[1] - b[1];
out[2] = a[2] - b[2];
out[3] = a[3] - b[3];
return out;
}
/**
* Returns whether or not the matrices have exactly the same elements in the same position (when compared with ===)
*
* @param {ReadonlyMat2} a The first matrix.
* @param {ReadonlyMat2} b The second matrix.
* @returns {Boolean} True if the matrices are equal, false otherwise.
*/
export function exactEquals(a, b) {
return a[0] === b[0] && a[1] === b[1] && a[2] === b[2] && a[3] === b[3];
return a[0] === b[0] && a[1] === b[1] && a[2] === b[2] && a[3] === b[3];
}
/**
* Returns whether or not the matrices have approximately the same elements in the same position.
*
* @param {ReadonlyMat2} a The first matrix.
* @param {ReadonlyMat2} b The second matrix.
* @returns {Boolean} True if the matrices are equal, false otherwise.
*/
export function equals(a, b) {
let a0 = a[0],
a1 = a[1],
a2 = a[2],
a3 = a[3];
let b0 = b[0],
b1 = b[1],
b2 = b[2],
b3 = b[3];
return Math.abs(a0 - b0) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a0), Math.abs(b0)) && Math.abs(a1 - b1) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a1), Math.abs(b1)) && Math.abs(a2 - b2) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a2), Math.abs(b2)) && Math.abs(a3 - b3) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a3), Math.abs(b3));
let a0 = a[0], a1 = a[1], a2 = a[2], a3 = a[3];
let b0 = b[0], b1 = b[1], b2 = b[2], b3 = b[3];
return (Math.abs(a0 - b0) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a0), Math.abs(b0)) &&
Math.abs(a1 - b1) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a1), Math.abs(b1)) &&
Math.abs(a2 - b2) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a2), Math.abs(b2)) &&
Math.abs(a3 - b3) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a3), Math.abs(b3)));
}
/**
* Multiply each element of the matrix by a scalar.
*
* @param {mat2} out the receiving matrix
* @param {ReadonlyMat2} a the matrix to scale
* @param {Number} b amount to scale the matrix's elements by
* @returns {mat2} out
*/
export function multiplyScalar(out, a, b) {
out[0] = a[0] * b;
out[1] = a[1] * b;
out[2] = a[2] * b;
out[3] = a[3] * b;
return out;
out[0] = a[0] * b;
out[1] = a[1] * b;
out[2] = a[2] * b;
out[3] = a[3] * b;
return out;
}
/**
* Adds two mat2's after multiplying each element of the second operand by a scalar value.
*
* @param {mat2} out the receiving vector
* @param {ReadonlyMat2} a the first operand
* @param {ReadonlyMat2} b the second operand
* @param {Number} scale the amount to scale b's elements by before adding
* @returns {mat2} out
*/
export function multiplyScalarAndAdd(out, a, b, scale) {
out[0] = a[0] + b[0] * scale;
out[1] = a[1] + b[1] * scale;
out[2] = a[2] + b[2] * scale;
out[3] = a[3] + b[3] * scale;
return out;
out[0] = a[0] + b[0] * scale;
out[1] = a[1] + b[1] * scale;
out[2] = a[2] + b[2] * scale;
out[3] = a[3] + b[3] * scale;
return out;
}
/**
* Alias for {@link mat2.multiply}
* @function
*/
export const mul = multiply;
/**
* Alias for {@link mat2.subtract}
* @function
*/
export const sub = subtract;
//# sourceMappingURL=mat2.js.map

@@ -244,2 +244,1 @@ /**

export function sub(out: mat2d, a: ReadonlyMat2d, b: ReadonlyMat2d): mat2d;
//# sourceMappingURL=mat2d.d.ts.map

@@ -0,251 +1,426 @@

// @ts-nocheck
/* eslint-disable */
import * as glMatrix from './common.js';
/**
* 2x3 Matrix
* @module mat2d
* @description
* A mat2d contains six elements defined as:
* <pre>
* [a, b,
* c, d,
* tx, ty]
* </pre>
* This is a short form for the 3x3 matrix:
* <pre>
* [a, b, 0,
* c, d, 0,
* tx, ty, 1]
* </pre>
* The last column is ignored so the array is shorter and operations are faster.
*/
/**
* Creates a new identity mat2d
*
* @returns {mat2d} a new 2x3 matrix
*/
export function create() {
let out = new glMatrix.ARRAY_TYPE(6);
if (glMatrix.ARRAY_TYPE != Float32Array) {
out[1] = 0;
out[2] = 0;
out[4] = 0;
out[5] = 0;
}
out[0] = 1;
out[3] = 1;
return out;
let out = new glMatrix.ARRAY_TYPE(6);
if (glMatrix.ARRAY_TYPE != Float32Array) {
out[1] = 0;
out[2] = 0;
out[4] = 0;
out[5] = 0;
}
out[0] = 1;
out[3] = 1;
return out;
}
/**
* Creates a new mat2d initialized with values from an existing matrix
*
* @param {ReadonlyMat2d} a matrix to clone
* @returns {mat2d} a new 2x3 matrix
*/
export function clone(a) {
let out = new glMatrix.ARRAY_TYPE(6);
out[0] = a[0];
out[1] = a[1];
out[2] = a[2];
out[3] = a[3];
out[4] = a[4];
out[5] = a[5];
return out;
let out = new glMatrix.ARRAY_TYPE(6);
out[0] = a[0];
out[1] = a[1];
out[2] = a[2];
out[3] = a[3];
out[4] = a[4];
out[5] = a[5];
return out;
}
/**
* Copy the values from one mat2d to another
*
* @param {mat2d} out the receiving matrix
* @param {ReadonlyMat2d} a the source matrix
* @returns {mat2d} out
*/
export function copy(out, a) {
out[0] = a[0];
out[1] = a[1];
out[2] = a[2];
out[3] = a[3];
out[4] = a[4];
out[5] = a[5];
return out;
out[0] = a[0];
out[1] = a[1];
out[2] = a[2];
out[3] = a[3];
out[4] = a[4];
out[5] = a[5];
return out;
}
/**
* Set a mat2d to the identity matrix
*
* @param {mat2d} out the receiving matrix
* @returns {mat2d} out
*/
export function identity(out) {
out[0] = 1;
out[1] = 0;
out[2] = 0;
out[3] = 1;
out[4] = 0;
out[5] = 0;
return out;
out[0] = 1;
out[1] = 0;
out[2] = 0;
out[3] = 1;
out[4] = 0;
out[5] = 0;
return out;
}
/**
* Create a new mat2d with the given values
*
* @param {Number} a Component A (index 0)
* @param {Number} b Component B (index 1)
* @param {Number} c Component C (index 2)
* @param {Number} d Component D (index 3)
* @param {Number} tx Component TX (index 4)
* @param {Number} ty Component TY (index 5)
* @returns {mat2d} A new mat2d
*/
export function fromValues(a, b, c, d, tx, ty) {
let out = new glMatrix.ARRAY_TYPE(6);
out[0] = a;
out[1] = b;
out[2] = c;
out[3] = d;
out[4] = tx;
out[5] = ty;
return out;
let out = new glMatrix.ARRAY_TYPE(6);
out[0] = a;
out[1] = b;
out[2] = c;
out[3] = d;
out[4] = tx;
out[5] = ty;
return out;
}
/**
* Set the components of a mat2d to the given values
*
* @param {mat2d} out the receiving matrix
* @param {Number} a Component A (index 0)
* @param {Number} b Component B (index 1)
* @param {Number} c Component C (index 2)
* @param {Number} d Component D (index 3)
* @param {Number} tx Component TX (index 4)
* @param {Number} ty Component TY (index 5)
* @returns {mat2d} out
*/
export function set(out, a, b, c, d, tx, ty) {
out[0] = a;
out[1] = b;
out[2] = c;
out[3] = d;
out[4] = tx;
out[5] = ty;
return out;
out[0] = a;
out[1] = b;
out[2] = c;
out[3] = d;
out[4] = tx;
out[5] = ty;
return out;
}
/**
* Inverts a mat2d
*
* @param {mat2d} out the receiving matrix
* @param {ReadonlyMat2d} a the source matrix
* @returns {mat2d} out
*/
export function invert(out, a) {
let aa = a[0],
ab = a[1],
ac = a[2],
ad = a[3];
let atx = a[4],
aty = a[5];
let det = aa * ad - ab * ac;
if (!det) {
return null;
}
det = 1.0 / det;
out[0] = ad * det;
out[1] = -ab * det;
out[2] = -ac * det;
out[3] = aa * det;
out[4] = (ac * aty - ad * atx) * det;
out[5] = (ab * atx - aa * aty) * det;
return out;
let aa = a[0], ab = a[1], ac = a[2], ad = a[3];
let atx = a[4], aty = a[5];
let det = aa * ad - ab * ac;
if (!det) {
return null;
}
det = 1.0 / det;
out[0] = ad * det;
out[1] = -ab * det;
out[2] = -ac * det;
out[3] = aa * det;
out[4] = (ac * aty - ad * atx) * det;
out[5] = (ab * atx - aa * aty) * det;
return out;
}
/**
* Calculates the determinant of a mat2d
*
* @param {ReadonlyMat2d} a the source matrix
* @returns {Number} determinant of a
*/
export function determinant(a) {
return a[0] * a[3] - a[1] * a[2];
return a[0] * a[3] - a[1] * a[2];
}
/**
* Multiplies two mat2d's
*
* @param {mat2d} out the receiving matrix
* @param {ReadonlyMat2d} a the first operand
* @param {ReadonlyMat2d} b the second operand
* @returns {mat2d} out
*/
export function multiply(out, a, b) {
let a0 = a[0],
a1 = a[1],
a2 = a[2],
a3 = a[3],
a4 = a[4],
a5 = a[5];
let b0 = b[0],
b1 = b[1],
b2 = b[2],
b3 = b[3],
b4 = b[4],
b5 = b[5];
out[0] = a0 * b0 + a2 * b1;
out[1] = a1 * b0 + a3 * b1;
out[2] = a0 * b2 + a2 * b3;
out[3] = a1 * b2 + a3 * b3;
out[4] = a0 * b4 + a2 * b5 + a4;
out[5] = a1 * b4 + a3 * b5 + a5;
return out;
let a0 = a[0], a1 = a[1], a2 = a[2], a3 = a[3], a4 = a[4], a5 = a[5];
let b0 = b[0], b1 = b[1], b2 = b[2], b3 = b[3], b4 = b[4], b5 = b[5];
out[0] = a0 * b0 + a2 * b1;
out[1] = a1 * b0 + a3 * b1;
out[2] = a0 * b2 + a2 * b3;
out[3] = a1 * b2 + a3 * b3;
out[4] = a0 * b4 + a2 * b5 + a4;
out[5] = a1 * b4 + a3 * b5 + a5;
return out;
}
/**
* Rotates a mat2d by the given angle
*
* @param {mat2d} out the receiving matrix
* @param {ReadonlyMat2d} a the matrix to rotate
* @param {Number} rad the angle to rotate the matrix by
* @returns {mat2d} out
*/
export function rotate(out, a, rad) {
let a0 = a[0],
a1 = a[1],
a2 = a[2],
a3 = a[3],
a4 = a[4],
a5 = a[5];
let s = Math.sin(rad);
let c = Math.cos(rad);
out[0] = a0 * c + a2 * s;
out[1] = a1 * c + a3 * s;
out[2] = a0 * -s + a2 * c;
out[3] = a1 * -s + a3 * c;
out[4] = a4;
out[5] = a5;
return out;
let a0 = a[0], a1 = a[1], a2 = a[2], a3 = a[3], a4 = a[4], a5 = a[5];
let s = Math.sin(rad);
let c = Math.cos(rad);
out[0] = a0 * c + a2 * s;
out[1] = a1 * c + a3 * s;
out[2] = a0 * -s + a2 * c;
out[3] = a1 * -s + a3 * c;
out[4] = a4;
out[5] = a5;
return out;
}
/**
* Scales the mat2d by the dimensions in the given vec2
*
* @param {mat2d} out the receiving matrix
* @param {ReadonlyMat2d} a the matrix to translate
* @param {ReadonlyVec2} v the vec2 to scale the matrix by
* @returns {mat2d} out
**/
export function scale(out, a, v) {
let a0 = a[0],
a1 = a[1],
a2 = a[2],
a3 = a[3],
a4 = a[4],
a5 = a[5];
let v0 = v[0],
v1 = v[1];
out[0] = a0 * v0;
out[1] = a1 * v0;
out[2] = a2 * v1;
out[3] = a3 * v1;
out[4] = a4;
out[5] = a5;
return out;
let a0 = a[0], a1 = a[1], a2 = a[2], a3 = a[3], a4 = a[4], a5 = a[5];
let v0 = v[0], v1 = v[1];
out[0] = a0 * v0;
out[1] = a1 * v0;
out[2] = a2 * v1;
out[3] = a3 * v1;
out[4] = a4;
out[5] = a5;
return out;
}
/**
* Translates the mat2d by the dimensions in the given vec2
*
* @param {mat2d} out the receiving matrix
* @param {ReadonlyMat2d} a the matrix to translate
* @param {ReadonlyVec2} v the vec2 to translate the matrix by
* @returns {mat2d} out
**/
export function translate(out, a, v) {
let a0 = a[0],
a1 = a[1],
a2 = a[2],
a3 = a[3],
a4 = a[4],
a5 = a[5];
let v0 = v[0],
v1 = v[1];
out[0] = a0;
out[1] = a1;
out[2] = a2;
out[3] = a3;
out[4] = a0 * v0 + a2 * v1 + a4;
out[5] = a1 * v0 + a3 * v1 + a5;
return out;
let a0 = a[0], a1 = a[1], a2 = a[2], a3 = a[3], a4 = a[4], a5 = a[5];
let v0 = v[0], v1 = v[1];
out[0] = a0;
out[1] = a1;
out[2] = a2;
out[3] = a3;
out[4] = a0 * v0 + a2 * v1 + a4;
out[5] = a1 * v0 + a3 * v1 + a5;
return out;
}
/**
* Creates a matrix from a given angle
* This is equivalent to (but much faster than):
*
* mat2d.identity(dest);
* mat2d.rotate(dest, dest, rad);
*
* @param {mat2d} out mat2d receiving operation result
* @param {Number} rad the angle to rotate the matrix by
* @returns {mat2d} out
*/
export function fromRotation(out, rad) {
let s = Math.sin(rad),
c = Math.cos(rad);
out[0] = c;
out[1] = s;
out[2] = -s;
out[3] = c;
out[4] = 0;
out[5] = 0;
return out;
let s = Math.sin(rad), c = Math.cos(rad);
out[0] = c;
out[1] = s;
out[2] = -s;
out[3] = c;
out[4] = 0;
out[5] = 0;
return out;
}
/**
* Creates a matrix from a vector scaling
* This is equivalent to (but much faster than):
*
* mat2d.identity(dest);
* mat2d.scale(dest, dest, vec);
*
* @param {mat2d} out mat2d receiving operation result
* @param {ReadonlyVec2} v Scaling vector
* @returns {mat2d} out
*/
export function fromScaling(out, v) {
out[0] = v[0];
out[1] = 0;
out[2] = 0;
out[3] = v[1];
out[4] = 0;
out[5] = 0;
return out;
out[0] = v[0];
out[1] = 0;
out[2] = 0;
out[3] = v[1];
out[4] = 0;
out[5] = 0;
return out;
}
/**
* Creates a matrix from a vector translation
* This is equivalent to (but much faster than):
*
* mat2d.identity(dest);
* mat2d.translate(dest, dest, vec);
*
* @param {mat2d} out mat2d receiving operation result
* @param {ReadonlyVec2} v Translation vector
* @returns {mat2d} out
*/
export function fromTranslation(out, v) {
out[0] = 1;
out[1] = 0;
out[2] = 0;
out[3] = 1;
out[4] = v[0];
out[5] = v[1];
return out;
out[0] = 1;
out[1] = 0;
out[2] = 0;
out[3] = 1;
out[4] = v[0];
out[5] = v[1];
return out;
}
/**
* Returns a string representation of a mat2d
*
* @param {ReadonlyMat2d} a matrix to represent as a string
* @returns {String} string representation of the matrix
*/
export function str(a) {
return 'mat2d(' + a[0] + ', ' + a[1] + ', ' + a[2] + ', ' + a[3] + ', ' + a[4] + ', ' + a[5] + ')';
return ('mat2d(' + a[0] + ', ' + a[1] + ', ' + a[2] + ', ' + a[3] + ', ' + a[4] + ', ' + a[5] + ')');
}
/**
* Returns Frobenius norm of a mat2d
*
* @param {ReadonlyMat2d} a the matrix to calculate Frobenius norm of
* @returns {Number} Frobenius norm
*/
export function frob(a) {
return Math.sqrt(a[0] * a[0] + a[1] * a[1] + a[2] * a[2] + a[3] * a[3] + a[4] * a[4] + a[5] * a[5] + 1);
return Math.sqrt(a[0] * a[0] + a[1] * a[1] + a[2] * a[2] + a[3] * a[3] + a[4] * a[4] + a[5] * a[5] + 1);
}
/**
* Adds two mat2d's
*
* @param {mat2d} out the receiving matrix
* @param {ReadonlyMat2d} a the first operand
* @param {ReadonlyMat2d} b the second operand
* @returns {mat2d} out
*/
export function add(out, a, b) {
out[0] = a[0] + b[0];
out[1] = a[1] + b[1];
out[2] = a[2] + b[2];
out[3] = a[3] + b[3];
out[4] = a[4] + b[4];
out[5] = a[5] + b[5];
return out;
out[0] = a[0] + b[0];
out[1] = a[1] + b[1];
out[2] = a[2] + b[2];
out[3] = a[3] + b[3];
out[4] = a[4] + b[4];
out[5] = a[5] + b[5];
return out;
}
/**
* Subtracts matrix b from matrix a
*
* @param {mat2d} out the receiving matrix
* @param {ReadonlyMat2d} a the first operand
* @param {ReadonlyMat2d} b the second operand
* @returns {mat2d} out
*/
export function subtract(out, a, b) {
out[0] = a[0] - b[0];
out[1] = a[1] - b[1];
out[2] = a[2] - b[2];
out[3] = a[3] - b[3];
out[4] = a[4] - b[4];
out[5] = a[5] - b[5];
return out;
out[0] = a[0] - b[0];
out[1] = a[1] - b[1];
out[2] = a[2] - b[2];
out[3] = a[3] - b[3];
out[4] = a[4] - b[4];
out[5] = a[5] - b[5];
return out;
}
/**
* Multiply each element of the matrix by a scalar.
*
* @param {mat2d} out the receiving matrix
* @param {ReadonlyMat2d} a the matrix to scale
* @param {Number} b amount to scale the matrix's elements by
* @returns {mat2d} out
*/
export function multiplyScalar(out, a, b) {
out[0] = a[0] * b;
out[1] = a[1] * b;
out[2] = a[2] * b;
out[3] = a[3] * b;
out[4] = a[4] * b;
out[5] = a[5] * b;
return out;
out[0] = a[0] * b;
out[1] = a[1] * b;
out[2] = a[2] * b;
out[3] = a[3] * b;
out[4] = a[4] * b;
out[5] = a[5] * b;
return out;
}
/**
* Adds two mat2d's after multiplying each element of the second operand by a scalar value.
*
* @param {mat2d} out the receiving vector
* @param {ReadonlyMat2d} a the first operand
* @param {ReadonlyMat2d} b the second operand
* @param {Number} scale the amount to scale b's elements by before adding
* @returns {mat2d} out
*/
export function multiplyScalarAndAdd(out, a, b, scale) {
out[0] = a[0] + b[0] * scale;
out[1] = a[1] + b[1] * scale;
out[2] = a[2] + b[2] * scale;
out[3] = a[3] + b[3] * scale;
out[4] = a[4] + b[4] * scale;
out[5] = a[5] + b[5] * scale;
return out;
out[0] = a[0] + b[0] * scale;
out[1] = a[1] + b[1] * scale;
out[2] = a[2] + b[2] * scale;
out[3] = a[3] + b[3] * scale;
out[4] = a[4] + b[4] * scale;
out[5] = a[5] + b[5] * scale;
return out;
}
/**
* Returns whether or not the matrices have exactly the same elements in the same position (when compared with ===)
*
* @param {ReadonlyMat2d} a The first matrix.
* @param {ReadonlyMat2d} b The second matrix.
* @returns {Boolean} True if the matrices are equal, false otherwise.
*/
export function exactEquals(a, b) {
return a[0] === b[0] && a[1] === b[1] && a[2] === b[2] && a[3] === b[3] && a[4] === b[4] && a[5] === b[5];
return (a[0] === b[0] &&
a[1] === b[1] &&
a[2] === b[2] &&
a[3] === b[3] &&
a[4] === b[4] &&
a[5] === b[5]);
}
/**
* Returns whether or not the matrices have approximately the same elements in the same position.
*
* @param {ReadonlyMat2d} a The first matrix.
* @param {ReadonlyMat2d} b The second matrix.
* @returns {Boolean} True if the matrices are equal, false otherwise.
*/
export function equals(a, b) {
let a0 = a[0],
a1 = a[1],
a2 = a[2],
a3 = a[3],
a4 = a[4],
a5 = a[5];
let b0 = b[0],
b1 = b[1],
b2 = b[2],
b3 = b[3],
b4 = b[4],
b5 = b[5];
return Math.abs(a0 - b0) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a0), Math.abs(b0)) && Math.abs(a1 - b1) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a1), Math.abs(b1)) && Math.abs(a2 - b2) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a2), Math.abs(b2)) && Math.abs(a3 - b3) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a3), Math.abs(b3)) && Math.abs(a4 - b4) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a4), Math.abs(b4)) && Math.abs(a5 - b5) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a5), Math.abs(b5));
let a0 = a[0], a1 = a[1], a2 = a[2], a3 = a[3], a4 = a[4], a5 = a[5];
let b0 = b[0], b1 = b[1], b2 = b[2], b3 = b[3], b4 = b[4], b5 = b[5];
return (Math.abs(a0 - b0) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a0), Math.abs(b0)) &&
Math.abs(a1 - b1) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a1), Math.abs(b1)) &&
Math.abs(a2 - b2) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a2), Math.abs(b2)) &&
Math.abs(a3 - b3) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a3), Math.abs(b3)) &&
Math.abs(a4 - b4) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a4), Math.abs(b4)) &&
Math.abs(a5 - b5) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a5), Math.abs(b5)));
}
/**
* Alias for {@link mat2d.multiply}
* @function
*/
export const mul = multiply;
/**
* Alias for {@link mat2d.subtract}
* @function
*/
export const sub = subtract;
//# sourceMappingURL=mat2d.js.map

@@ -352,2 +352,1 @@ /**

export declare function equals(a: any, b: any): boolean;
//# sourceMappingURL=quat2.d.ts.map

@@ -0,482 +1,720 @@

// @ts-nocheck
/* eslint-disable */
import * as glMatrix from './common.js';
import * as quat from './quat.js';
import * as mat4 from './mat4.js';
/**
* Dual Quaternion<br>
* Format: [real, dual]<br>
* Quaternion format: XYZW<br>
* Make sure to have normalized dual quaternions, otherwise the functions may not work as intended.<br>
* @module quat2
*/
/**
* Creates a new identity dual quat
*
* @returns {quat2} a new dual quaternion [real -> rotation, dual -> translation]
*/
export function create() {
let dq = new glMatrix.ARRAY_TYPE(8);
if (glMatrix.ARRAY_TYPE != Float32Array) {
dq[0] = 0;
dq[1] = 0;
dq[2] = 0;
dq[4] = 0;
dq[5] = 0;
dq[6] = 0;
dq[7] = 0;
}
dq[3] = 1;
return dq;
let dq = new glMatrix.ARRAY_TYPE(8);
if (glMatrix.ARRAY_TYPE != Float32Array) {
dq[0] = 0;
dq[1] = 0;
dq[2] = 0;
dq[4] = 0;
dq[5] = 0;
dq[6] = 0;
dq[7] = 0;
}
dq[3] = 1;
return dq;
}
/**
* Creates a new quat initialized with values from an existing quaternion
*
* @param {ReadonlyQuat2} a dual quaternion to clone
* @returns {quat2} new dual quaternion
* @function
*/
export function clone(a) {
let dq = new glMatrix.ARRAY_TYPE(8);
dq[0] = a[0];
dq[1] = a[1];
dq[2] = a[2];
dq[3] = a[3];
dq[4] = a[4];
dq[5] = a[5];
dq[6] = a[6];
dq[7] = a[7];
return dq;
let dq = new glMatrix.ARRAY_TYPE(8);
dq[0] = a[0];
dq[1] = a[1];
dq[2] = a[2];
dq[3] = a[3];
dq[4] = a[4];
dq[5] = a[5];
dq[6] = a[6];
dq[7] = a[7];
return dq;
}
/**
* Creates a new dual quat initialized with the given values
*
* @param {Number} x1 X component
* @param {Number} y1 Y component
* @param {Number} z1 Z component
* @param {Number} w1 W component
* @param {Number} x2 X component
* @param {Number} y2 Y component
* @param {Number} z2 Z component
* @param {Number} w2 W component
* @returns {quat2} new dual quaternion
* @function
*/
export function fromValues(x1, y1, z1, w1, x2, y2, z2, w2) {
let dq = new glMatrix.ARRAY_TYPE(8);
dq[0] = x1;
dq[1] = y1;
dq[2] = z1;
dq[3] = w1;
dq[4] = x2;
dq[5] = y2;
dq[6] = z2;
dq[7] = w2;
return dq;
let dq = new glMatrix.ARRAY_TYPE(8);
dq[0] = x1;
dq[1] = y1;
dq[2] = z1;
dq[3] = w1;
dq[4] = x2;
dq[5] = y2;
dq[6] = z2;
dq[7] = w2;
return dq;
}
/**
* Creates a new dual quat from the given values (quat and translation)
*
* @param {Number} x1 X component
* @param {Number} y1 Y component
* @param {Number} z1 Z component
* @param {Number} w1 W component
* @param {Number} x2 X component (translation)
* @param {Number} y2 Y component (translation)
* @param {Number} z2 Z component (translation)
* @returns {quat2} new dual quaternion
* @function
*/
export function fromRotationTranslationValues(x1, y1, z1, w1, x2, y2, z2) {
let dq = new glMatrix.ARRAY_TYPE(8);
dq[0] = x1;
dq[1] = y1;
dq[2] = z1;
dq[3] = w1;
let ax = x2 * 0.5,
ay = y2 * 0.5,
az = z2 * 0.5;
dq[4] = ax * w1 + ay * z1 - az * y1;
dq[5] = ay * w1 + az * x1 - ax * z1;
dq[6] = az * w1 + ax * y1 - ay * x1;
dq[7] = -ax * x1 - ay * y1 - az * z1;
return dq;
let dq = new glMatrix.ARRAY_TYPE(8);
dq[0] = x1;
dq[1] = y1;
dq[2] = z1;
dq[3] = w1;
let ax = x2 * 0.5, ay = y2 * 0.5, az = z2 * 0.5;
dq[4] = ax * w1 + ay * z1 - az * y1;
dq[5] = ay * w1 + az * x1 - ax * z1;
dq[6] = az * w1 + ax * y1 - ay * x1;
dq[7] = -ax * x1 - ay * y1 - az * z1;
return dq;
}
/**
* Creates a dual quat from a quaternion and a translation
*
* @param {ReadonlyQuat2} dual quaternion receiving operation result
* @param {ReadonlyQuat} q a normalized quaternion
* @param {ReadonlyVec3} t translation vector
* @returns {quat2} dual quaternion receiving operation result
* @function
*/
export function fromRotationTranslation(out, q, t) {
let ax = t[0] * 0.5,
ay = t[1] * 0.5,
az = t[2] * 0.5,
bx = q[0],
by = q[1],
bz = q[2],
bw = q[3];
out[0] = bx;
out[1] = by;
out[2] = bz;
out[3] = bw;
out[4] = ax * bw + ay * bz - az * by;
out[5] = ay * bw + az * bx - ax * bz;
out[6] = az * bw + ax * by - ay * bx;
out[7] = -ax * bx - ay * by - az * bz;
return out;
let ax = t[0] * 0.5, ay = t[1] * 0.5, az = t[2] * 0.5, bx = q[0], by = q[1], bz = q[2], bw = q[3];
out[0] = bx;
out[1] = by;
out[2] = bz;
out[3] = bw;
out[4] = ax * bw + ay * bz - az * by;
out[5] = ay * bw + az * bx - ax * bz;
out[6] = az * bw + ax * by - ay * bx;
out[7] = -ax * bx - ay * by - az * bz;
return out;
}
/**
* Creates a dual quat from a translation
*
* @param {ReadonlyQuat2} dual quaternion receiving operation result
* @param {ReadonlyVec3} t translation vector
* @returns {quat2} dual quaternion receiving operation result
* @function
*/
export function fromTranslation(out, t) {
out[0] = 0;
out[1] = 0;
out[2] = 0;
out[3] = 1;
out[4] = t[0] * 0.5;
out[5] = t[1] * 0.5;
out[6] = t[2] * 0.5;
out[7] = 0;
return out;
out[0] = 0;
out[1] = 0;
out[2] = 0;
out[3] = 1;
out[4] = t[0] * 0.5;
out[5] = t[1] * 0.5;
out[6] = t[2] * 0.5;
out[7] = 0;
return out;
}
/**
* Creates a dual quat from a quaternion
*
* @param {ReadonlyQuat2} dual quaternion receiving operation result
* @param {ReadonlyQuat} q the quaternion
* @returns {quat2} dual quaternion receiving operation result
* @function
*/
export function fromRotation(out, q) {
out[0] = q[0];
out[1] = q[1];
out[2] = q[2];
out[3] = q[3];
out[4] = 0;
out[5] = 0;
out[6] = 0;
out[7] = 0;
return out;
out[0] = q[0];
out[1] = q[1];
out[2] = q[2];
out[3] = q[3];
out[4] = 0;
out[5] = 0;
out[6] = 0;
out[7] = 0;
return out;
}
/**
* Creates a new dual quat from a matrix (4x4)
*
* @param {quat2} out the dual quaternion
* @param {ReadonlyMat4} a the matrix
* @returns {quat2} dual quat receiving operation result
* @function
*/
export function fromMat4(out, a) {
let outer = quat.create();
mat4.getRotation(outer, a);
let t = new glMatrix.ARRAY_TYPE(3);
mat4.getTranslation(t, a);
fromRotationTranslation(out, outer, t);
return out;
//TODO Optimize this
let outer = quat.create();
mat4.getRotation(outer, a);
let t = new glMatrix.ARRAY_TYPE(3);
mat4.getTranslation(t, a);
fromRotationTranslation(out, outer, t);
return out;
}
/**
* Copy the values from one dual quat to another
*
* @param {quat2} out the receiving dual quaternion
* @param {ReadonlyQuat2} a the source dual quaternion
* @returns {quat2} out
* @function
*/
export function copy(out, a) {
out[0] = a[0];
out[1] = a[1];
out[2] = a[2];
out[3] = a[3];
out[4] = a[4];
out[5] = a[5];
out[6] = a[6];
out[7] = a[7];
return out;
out[0] = a[0];
out[1] = a[1];
out[2] = a[2];
out[3] = a[3];
out[4] = a[4];
out[5] = a[5];
out[6] = a[6];
out[7] = a[7];
return out;
}
/**
* Set a dual quat to the identity dual quaternion
*
* @param {quat2} out the receiving quaternion
* @returns {quat2} out
*/
export function identity(out) {
out[0] = 0;
out[1] = 0;
out[2] = 0;
out[3] = 1;
out[4] = 0;
out[5] = 0;
out[6] = 0;
out[7] = 0;
return out;
out[0] = 0;
out[1] = 0;
out[2] = 0;
out[3] = 1;
out[4] = 0;
out[5] = 0;
out[6] = 0;
out[7] = 0;
return out;
}
/**
* Set the components of a dual quat to the given values
*
* @param {quat2} out the receiving quaternion
* @param {Number} x1 X component
* @param {Number} y1 Y component
* @param {Number} z1 Z component
* @param {Number} w1 W component
* @param {Number} x2 X component
* @param {Number} y2 Y component
* @param {Number} z2 Z component
* @param {Number} w2 W component
* @returns {quat2} out
* @function
*/
export function set(out, x1, y1, z1, w1, x2, y2, z2, w2) {
out[0] = x1;
out[1] = y1;
out[2] = z1;
out[3] = w1;
out[4] = x2;
out[5] = y2;
out[6] = z2;
out[7] = w2;
return out;
out[0] = x1;
out[1] = y1;
out[2] = z1;
out[3] = w1;
out[4] = x2;
out[5] = y2;
out[6] = z2;
out[7] = w2;
return out;
}
/**
* Gets the real part of a dual quat
* @param {quat} out real part
* @param {ReadonlyQuat2} a Dual Quaternion
* @return {quat} real part
*/
export const getReal = quat.copy;
/**
* Gets the dual part of a dual quat
* @param {quat} out dual part
* @param {ReadonlyQuat2} a Dual Quaternion
* @return {quat} dual part
*/
export function getDual(out, a) {
out[0] = a[4];
out[1] = a[5];
out[2] = a[6];
out[3] = a[7];
return out;
out[0] = a[4];
out[1] = a[5];
out[2] = a[6];
out[3] = a[7];
return out;
}
/**
* Set the real component of a dual quat to the given quaternion
*
* @param {quat2} out the receiving quaternion
* @param {ReadonlyQuat} q a quaternion representing the real part
* @returns {quat2} out
* @function
*/
export const setReal = quat.copy;
/**
* Set the dual component of a dual quat to the given quaternion
*
* @param {quat2} out the receiving quaternion
* @param {ReadonlyQuat} q a quaternion representing the dual part
* @returns {quat2} out
* @function
*/
export function setDual(out, q) {
out[4] = q[0];
out[5] = q[1];
out[6] = q[2];
out[7] = q[3];
return out;
out[4] = q[0];
out[5] = q[1];
out[6] = q[2];
out[7] = q[3];
return out;
}
/**
* Gets the translation of a normalized dual quat
* @param {vec3} out translation
* @param {ReadonlyQuat2} a Dual Quaternion to be decomposed
* @return {vec3} translation
*/
export function getTranslation(out, a) {
let ax = a[4],
ay = a[5],
az = a[6],
aw = a[7],
bx = -a[0],
by = -a[1],
bz = -a[2],
bw = a[3];
out[0] = (ax * bw + aw * bx + ay * bz - az * by) * 2;
out[1] = (ay * bw + aw * by + az * bx - ax * bz) * 2;
out[2] = (az * bw + aw * bz + ax * by - ay * bx) * 2;
return out;
let ax = a[4], ay = a[5], az = a[6], aw = a[7], bx = -a[0], by = -a[1], bz = -a[2], bw = a[3];
out[0] = (ax * bw + aw * bx + ay * bz - az * by) * 2;
out[1] = (ay * bw + aw * by + az * bx - ax * bz) * 2;
out[2] = (az * bw + aw * bz + ax * by - ay * bx) * 2;
return out;
}
/**
* Translates a dual quat by the given vector
*
* @param {quat2} out the receiving dual quaternion
* @param {ReadonlyQuat2} a the dual quaternion to translate
* @param {ReadonlyVec3} v vector to translate by
* @returns {quat2} out
*/
export function translate(out, a, v) {
let ax1 = a[0],
ay1 = a[1],
az1 = a[2],
aw1 = a[3],
bx1 = v[0] * 0.5,
by1 = v[1] * 0.5,
bz1 = v[2] * 0.5,
ax2 = a[4],
ay2 = a[5],
az2 = a[6],
aw2 = a[7];
out[0] = ax1;
out[1] = ay1;
out[2] = az1;
out[3] = aw1;
out[4] = aw1 * bx1 + ay1 * bz1 - az1 * by1 + ax2;
out[5] = aw1 * by1 + az1 * bx1 - ax1 * bz1 + ay2;
out[6] = aw1 * bz1 + ax1 * by1 - ay1 * bx1 + az2;
out[7] = -ax1 * bx1 - ay1 * by1 - az1 * bz1 + aw2;
return out;
let ax1 = a[0], ay1 = a[1], az1 = a[2], aw1 = a[3], bx1 = v[0] * 0.5, by1 = v[1] * 0.5, bz1 = v[2] * 0.5, ax2 = a[4], ay2 = a[5], az2 = a[6], aw2 = a[7];
out[0] = ax1;
out[1] = ay1;
out[2] = az1;
out[3] = aw1;
out[4] = aw1 * bx1 + ay1 * bz1 - az1 * by1 + ax2;
out[5] = aw1 * by1 + az1 * bx1 - ax1 * bz1 + ay2;
out[6] = aw1 * bz1 + ax1 * by1 - ay1 * bx1 + az2;
out[7] = -ax1 * bx1 - ay1 * by1 - az1 * bz1 + aw2;
return out;
}
/**
* Rotates a dual quat around the X axis
*
* @param {quat2} out the receiving dual quaternion
* @param {ReadonlyQuat2} a the dual quaternion to rotate
* @param {number} rad how far should the rotation be
* @returns {quat2} out
*/
export function rotateX(out, a, rad) {
let bx = -a[0],
by = -a[1],
bz = -a[2],
bw = a[3],
ax = a[4],
ay = a[5],
az = a[6],
aw = a[7],
ax1 = ax * bw + aw * bx + ay * bz - az * by,
ay1 = ay * bw + aw * by + az * bx - ax * bz,
az1 = az * bw + aw * bz + ax * by - ay * bx,
aw1 = aw * bw - ax * bx - ay * by - az * bz;
quat.rotateX(out, a, rad);
bx = out[0];
by = out[1];
bz = out[2];
bw = out[3];
out[4] = ax1 * bw + aw1 * bx + ay1 * bz - az1 * by;
out[5] = ay1 * bw + aw1 * by + az1 * bx - ax1 * bz;
out[6] = az1 * bw + aw1 * bz + ax1 * by - ay1 * bx;
out[7] = aw1 * bw - ax1 * bx - ay1 * by - az1 * bz;
return out;
let bx = -a[0], by = -a[1], bz = -a[2], bw = a[3], ax = a[4], ay = a[5], az = a[6], aw = a[7], ax1 = ax * bw + aw * bx + ay * bz - az * by, ay1 = ay * bw + aw * by + az * bx - ax * bz, az1 = az * bw + aw * bz + ax * by - ay * bx, aw1 = aw * bw - ax * bx - ay * by - az * bz;
quat.rotateX(out, a, rad);
bx = out[0];
by = out[1];
bz = out[2];
bw = out[3];
out[4] = ax1 * bw + aw1 * bx + ay1 * bz - az1 * by;
out[5] = ay1 * bw + aw1 * by + az1 * bx - ax1 * bz;
out[6] = az1 * bw + aw1 * bz + ax1 * by - ay1 * bx;
out[7] = aw1 * bw - ax1 * bx - ay1 * by - az1 * bz;
return out;
}
/**
* Rotates a dual quat around the Y axis
*
* @param {quat2} out the receiving dual quaternion
* @param {ReadonlyQuat2} a the dual quaternion to rotate
* @param {number} rad how far should the rotation be
* @returns {quat2} out
*/
export function rotateY(out, a, rad) {
let bx = -a[0],
by = -a[1],
bz = -a[2],
bw = a[3],
ax = a[4],
ay = a[5],
az = a[6],
aw = a[7],
ax1 = ax * bw + aw * bx + ay * bz - az * by,
ay1 = ay * bw + aw * by + az * bx - ax * bz,
az1 = az * bw + aw * bz + ax * by - ay * bx,
aw1 = aw * bw - ax * bx - ay * by - az * bz;
quat.rotateY(out, a, rad);
bx = out[0];
by = out[1];
bz = out[2];
bw = out[3];
out[4] = ax1 * bw + aw1 * bx + ay1 * bz - az1 * by;
out[5] = ay1 * bw + aw1 * by + az1 * bx - ax1 * bz;
out[6] = az1 * bw + aw1 * bz + ax1 * by - ay1 * bx;
out[7] = aw1 * bw - ax1 * bx - ay1 * by - az1 * bz;
return out;
let bx = -a[0], by = -a[1], bz = -a[2], bw = a[3], ax = a[4], ay = a[5], az = a[6], aw = a[7], ax1 = ax * bw + aw * bx + ay * bz - az * by, ay1 = ay * bw + aw * by + az * bx - ax * bz, az1 = az * bw + aw * bz + ax * by - ay * bx, aw1 = aw * bw - ax * bx - ay * by - az * bz;
quat.rotateY(out, a, rad);
bx = out[0];
by = out[1];
bz = out[2];
bw = out[3];
out[4] = ax1 * bw + aw1 * bx + ay1 * bz - az1 * by;
out[5] = ay1 * bw + aw1 * by + az1 * bx - ax1 * bz;
out[6] = az1 * bw + aw1 * bz + ax1 * by - ay1 * bx;
out[7] = aw1 * bw - ax1 * bx - ay1 * by - az1 * bz;
return out;
}
/**
* Rotates a dual quat around the Z axis
*
* @param {quat2} out the receiving dual quaternion
* @param {ReadonlyQuat2} a the dual quaternion to rotate
* @param {number} rad how far should the rotation be
* @returns {quat2} out
*/
export function rotateZ(out, a, rad) {
let bx = -a[0],
by = -a[1],
bz = -a[2],
bw = a[3],
ax = a[4],
ay = a[5],
az = a[6],
aw = a[7],
ax1 = ax * bw + aw * bx + ay * bz - az * by,
ay1 = ay * bw + aw * by + az * bx - ax * bz,
az1 = az * bw + aw * bz + ax * by - ay * bx,
aw1 = aw * bw - ax * bx - ay * by - az * bz;
quat.rotateZ(out, a, rad);
bx = out[0];
by = out[1];
bz = out[2];
bw = out[3];
out[4] = ax1 * bw + aw1 * bx + ay1 * bz - az1 * by;
out[5] = ay1 * bw + aw1 * by + az1 * bx - ax1 * bz;
out[6] = az1 * bw + aw1 * bz + ax1 * by - ay1 * bx;
out[7] = aw1 * bw - ax1 * bx - ay1 * by - az1 * bz;
return out;
let bx = -a[0], by = -a[1], bz = -a[2], bw = a[3], ax = a[4], ay = a[5], az = a[6], aw = a[7], ax1 = ax * bw + aw * bx + ay * bz - az * by, ay1 = ay * bw + aw * by + az * bx - ax * bz, az1 = az * bw + aw * bz + ax * by - ay * bx, aw1 = aw * bw - ax * bx - ay * by - az * bz;
quat.rotateZ(out, a, rad);
bx = out[0];
by = out[1];
bz = out[2];
bw = out[3];
out[4] = ax1 * bw + aw1 * bx + ay1 * bz - az1 * by;
out[5] = ay1 * bw + aw1 * by + az1 * bx - ax1 * bz;
out[6] = az1 * bw + aw1 * bz + ax1 * by - ay1 * bx;
out[7] = aw1 * bw - ax1 * bx - ay1 * by - az1 * bz;
return out;
}
/**
* Rotates a dual quat by a given quaternion (a * q)
*
* @param {quat2} out the receiving dual quaternion
* @param {ReadonlyQuat2} a the dual quaternion to rotate
* @param {ReadonlyQuat} q quaternion to rotate by
* @returns {quat2} out
*/
export function rotateByQuatAppend(out, a, q) {
let qx = q[0],
qy = q[1],
qz = q[2],
qw = q[3],
ax = a[0],
ay = a[1],
az = a[2],
aw = a[3];
out[0] = ax * qw + aw * qx + ay * qz - az * qy;
out[1] = ay * qw + aw * qy + az * qx - ax * qz;
out[2] = az * qw + aw * qz + ax * qy - ay * qx;
out[3] = aw * qw - ax * qx - ay * qy - az * qz;
ax = a[4];
ay = a[5];
az = a[6];
aw = a[7];
out[4] = ax * qw + aw * qx + ay * qz - az * qy;
out[5] = ay * qw + aw * qy + az * qx - ax * qz;
out[6] = az * qw + aw * qz + ax * qy - ay * qx;
out[7] = aw * qw - ax * qx - ay * qy - az * qz;
return out;
let qx = q[0], qy = q[1], qz = q[2], qw = q[3], ax = a[0], ay = a[1], az = a[2], aw = a[3];
out[0] = ax * qw + aw * qx + ay * qz - az * qy;
out[1] = ay * qw + aw * qy + az * qx - ax * qz;
out[2] = az * qw + aw * qz + ax * qy - ay * qx;
out[3] = aw * qw - ax * qx - ay * qy - az * qz;
ax = a[4];
ay = a[5];
az = a[6];
aw = a[7];
out[4] = ax * qw + aw * qx + ay * qz - az * qy;
out[5] = ay * qw + aw * qy + az * qx - ax * qz;
out[6] = az * qw + aw * qz + ax * qy - ay * qx;
out[7] = aw * qw - ax * qx - ay * qy - az * qz;
return out;
}
/**
* Rotates a dual quat by a given quaternion (q * a)
*
* @param {quat2} out the receiving dual quaternion
* @param {ReadonlyQuat} q quaternion to rotate by
* @param {ReadonlyQuat2} a the dual quaternion to rotate
* @returns {quat2} out
*/
export function rotateByQuatPrepend(out, q, a) {
let qx = q[0],
qy = q[1],
qz = q[2],
qw = q[3],
bx = a[0],
by = a[1],
bz = a[2],
bw = a[3];
out[0] = qx * bw + qw * bx + qy * bz - qz * by;
out[1] = qy * bw + qw * by + qz * bx - qx * bz;
out[2] = qz * bw + qw * bz + qx * by - qy * bx;
out[3] = qw * bw - qx * bx - qy * by - qz * bz;
bx = a[4];
by = a[5];
bz = a[6];
bw = a[7];
out[4] = qx * bw + qw * bx + qy * bz - qz * by;
out[5] = qy * bw + qw * by + qz * bx - qx * bz;
out[6] = qz * bw + qw * bz + qx * by - qy * bx;
out[7] = qw * bw - qx * bx - qy * by - qz * bz;
return out;
let qx = q[0], qy = q[1], qz = q[2], qw = q[3], bx = a[0], by = a[1], bz = a[2], bw = a[3];
out[0] = qx * bw + qw * bx + qy * bz - qz * by;
out[1] = qy * bw + qw * by + qz * bx - qx * bz;
out[2] = qz * bw + qw * bz + qx * by - qy * bx;
out[3] = qw * bw - qx * bx - qy * by - qz * bz;
bx = a[4];
by = a[5];
bz = a[6];
bw = a[7];
out[4] = qx * bw + qw * bx + qy * bz - qz * by;
out[5] = qy * bw + qw * by + qz * bx - qx * bz;
out[6] = qz * bw + qw * bz + qx * by - qy * bx;
out[7] = qw * bw - qx * bx - qy * by - qz * bz;
return out;
}
/**
* Rotates a dual quat around a given axis. Does the normalisation automatically
*
* @param {quat2} out the receiving dual quaternion
* @param {ReadonlyQuat2} a the dual quaternion to rotate
* @param {ReadonlyVec3} axis the axis to rotate around
* @param {Number} rad how far the rotation should be
* @returns {quat2} out
*/
export function rotateAroundAxis(out, a, axis, rad) {
if (Math.abs(rad) < glMatrix.EPSILON) {
return copy(out, a);
}
let axisLength = Math.sqrt(axis[0] * axis[0] + axis[1] * axis[1] + axis[2] * axis[2]);
rad = rad * 0.5;
let s = Math.sin(rad);
let bx = s * axis[0] / axisLength;
let by = s * axis[1] / axisLength;
let bz = s * axis[2] / axisLength;
let bw = Math.cos(rad);
let ax1 = a[0],
ay1 = a[1],
az1 = a[2],
aw1 = a[3];
out[0] = ax1 * bw + aw1 * bx + ay1 * bz - az1 * by;
out[1] = ay1 * bw + aw1 * by + az1 * bx - ax1 * bz;
out[2] = az1 * bw + aw1 * bz + ax1 * by - ay1 * bx;
out[3] = aw1 * bw - ax1 * bx - ay1 * by - az1 * bz;
let ax = a[4],
ay = a[5],
az = a[6],
aw = a[7];
out[4] = ax * bw + aw * bx + ay * bz - az * by;
out[5] = ay * bw + aw * by + az * bx - ax * bz;
out[6] = az * bw + aw * bz + ax * by - ay * bx;
out[7] = aw * bw - ax * bx - ay * by - az * bz;
return out;
//Special case for rad = 0
if (Math.abs(rad) < glMatrix.EPSILON) {
return copy(out, a);
}
let axisLength = Math.sqrt(axis[0] * axis[0] + axis[1] * axis[1] + axis[2] * axis[2]);
rad = rad * 0.5;
let s = Math.sin(rad);
let bx = (s * axis[0]) / axisLength;
let by = (s * axis[1]) / axisLength;
let bz = (s * axis[2]) / axisLength;
let bw = Math.cos(rad);
let ax1 = a[0], ay1 = a[1], az1 = a[2], aw1 = a[3];
out[0] = ax1 * bw + aw1 * bx + ay1 * bz - az1 * by;
out[1] = ay1 * bw + aw1 * by + az1 * bx - ax1 * bz;
out[2] = az1 * bw + aw1 * bz + ax1 * by - ay1 * bx;
out[3] = aw1 * bw - ax1 * bx - ay1 * by - az1 * bz;
let ax = a[4], ay = a[5], az = a[6], aw = a[7];
out[4] = ax * bw + aw * bx + ay * bz - az * by;
out[5] = ay * bw + aw * by + az * bx - ax * bz;
out[6] = az * bw + aw * bz + ax * by - ay * bx;
out[7] = aw * bw - ax * bx - ay * by - az * bz;
return out;
}
/**
* Adds two dual quat's
*
* @param {quat2} out the receiving dual quaternion
* @param {ReadonlyQuat2} a the first operand
* @param {ReadonlyQuat2} b the second operand
* @returns {quat2} out
* @function
*/
export function add(out, a, b) {
out[0] = a[0] + b[0];
out[1] = a[1] + b[1];
out[2] = a[2] + b[2];
out[3] = a[3] + b[3];
out[4] = a[4] + b[4];
out[5] = a[5] + b[5];
out[6] = a[6] + b[6];
out[7] = a[7] + b[7];
return out;
out[0] = a[0] + b[0];
out[1] = a[1] + b[1];
out[2] = a[2] + b[2];
out[3] = a[3] + b[3];
out[4] = a[4] + b[4];
out[5] = a[5] + b[5];
out[6] = a[6] + b[6];
out[7] = a[7] + b[7];
return out;
}
/**
* Multiplies two dual quat's
*
* @param {quat2} out the receiving dual quaternion
* @param {ReadonlyQuat2} a the first operand
* @param {ReadonlyQuat2} b the second operand
* @returns {quat2} out
*/
export function multiply(out, a, b) {
let ax0 = a[0],
ay0 = a[1],
az0 = a[2],
aw0 = a[3],
bx1 = b[4],
by1 = b[5],
bz1 = b[6],
bw1 = b[7],
ax1 = a[4],
ay1 = a[5],
az1 = a[6],
aw1 = a[7],
bx0 = b[0],
by0 = b[1],
bz0 = b[2],
bw0 = b[3];
out[0] = ax0 * bw0 + aw0 * bx0 + ay0 * bz0 - az0 * by0;
out[1] = ay0 * bw0 + aw0 * by0 + az0 * bx0 - ax0 * bz0;
out[2] = az0 * bw0 + aw0 * bz0 + ax0 * by0 - ay0 * bx0;
out[3] = aw0 * bw0 - ax0 * bx0 - ay0 * by0 - az0 * bz0;
out[4] = ax0 * bw1 + aw0 * bx1 + ay0 * bz1 - az0 * by1 + ax1 * bw0 + aw1 * bx0 + ay1 * bz0 - az1 * by0;
out[5] = ay0 * bw1 + aw0 * by1 + az0 * bx1 - ax0 * bz1 + ay1 * bw0 + aw1 * by0 + az1 * bx0 - ax1 * bz0;
out[6] = az0 * bw1 + aw0 * bz1 + ax0 * by1 - ay0 * bx1 + az1 * bw0 + aw1 * bz0 + ax1 * by0 - ay1 * bx0;
out[7] = aw0 * bw1 - ax0 * bx1 - ay0 * by1 - az0 * bz1 + aw1 * bw0 - ax1 * bx0 - ay1 * by0 - az1 * bz0;
return out;
let ax0 = a[0], ay0 = a[1], az0 = a[2], aw0 = a[3], bx1 = b[4], by1 = b[5], bz1 = b[6], bw1 = b[7], ax1 = a[4], ay1 = a[5], az1 = a[6], aw1 = a[7], bx0 = b[0], by0 = b[1], bz0 = b[2], bw0 = b[3];
out[0] = ax0 * bw0 + aw0 * bx0 + ay0 * bz0 - az0 * by0;
out[1] = ay0 * bw0 + aw0 * by0 + az0 * bx0 - ax0 * bz0;
out[2] = az0 * bw0 + aw0 * bz0 + ax0 * by0 - ay0 * bx0;
out[3] = aw0 * bw0 - ax0 * bx0 - ay0 * by0 - az0 * bz0;
out[4] =
ax0 * bw1 + aw0 * bx1 + ay0 * bz1 - az0 * by1 + ax1 * bw0 + aw1 * bx0 + ay1 * bz0 - az1 * by0;
out[5] =
ay0 * bw1 + aw0 * by1 + az0 * bx1 - ax0 * bz1 + ay1 * bw0 + aw1 * by0 + az1 * bx0 - ax1 * bz0;
out[6] =
az0 * bw1 + aw0 * bz1 + ax0 * by1 - ay0 * bx1 + az1 * bw0 + aw1 * bz0 + ax1 * by0 - ay1 * bx0;
out[7] =
aw0 * bw1 - ax0 * bx1 - ay0 * by1 - az0 * bz1 + aw1 * bw0 - ax1 * bx0 - ay1 * by0 - az1 * bz0;
return out;
}
/**
* Alias for {@link quat2.multiply}
* @function
*/
export const mul = multiply;
/**
* Scales a dual quat by a scalar number
*
* @param {quat2} out the receiving dual quat
* @param {ReadonlyQuat2} a the dual quat to scale
* @param {Number} b amount to scale the dual quat by
* @returns {quat2} out
* @function
*/
export function scale(out, a, b) {
out[0] = a[0] * b;
out[1] = a[1] * b;
out[2] = a[2] * b;
out[3] = a[3] * b;
out[4] = a[4] * b;
out[5] = a[5] * b;
out[6] = a[6] * b;
out[7] = a[7] * b;
return out;
out[0] = a[0] * b;
out[1] = a[1] * b;
out[2] = a[2] * b;
out[3] = a[3] * b;
out[4] = a[4] * b;
out[5] = a[5] * b;
out[6] = a[6] * b;
out[7] = a[7] * b;
return out;
}
/**
* Calculates the dot product of two dual quat's (The dot product of the real parts)
*
* @param {ReadonlyQuat2} a the first operand
* @param {ReadonlyQuat2} b the second operand
* @returns {Number} dot product of a and b
* @function
*/
export const dot = quat.dot;
/**
* Performs a linear interpolation between two dual quats's
* NOTE: The resulting dual quaternions won't always be normalized (The error is most noticeable when t = 0.5)
*
* @param {quat2} out the receiving dual quat
* @param {ReadonlyQuat2} a the first operand
* @param {ReadonlyQuat2} b the second operand
* @param {Number} t interpolation amount, in the range [0-1], between the two inputs
* @returns {quat2} out
*/
export function lerp(out, a, b, t) {
let mt = 1 - t;
if (dot(a, b) < 0) t = -t;
out[0] = a[0] * mt + b[0] * t;
out[1] = a[1] * mt + b[1] * t;
out[2] = a[2] * mt + b[2] * t;
out[3] = a[3] * mt + b[3] * t;
out[4] = a[4] * mt + b[4] * t;
out[5] = a[5] * mt + b[5] * t;
out[6] = a[6] * mt + b[6] * t;
out[7] = a[7] * mt + b[7] * t;
return out;
let mt = 1 - t;
if (dot(a, b) < 0)
t = -t;
out[0] = a[0] * mt + b[0] * t;
out[1] = a[1] * mt + b[1] * t;
out[2] = a[2] * mt + b[2] * t;
out[3] = a[3] * mt + b[3] * t;
out[4] = a[4] * mt + b[4] * t;
out[5] = a[5] * mt + b[5] * t;
out[6] = a[6] * mt + b[6] * t;
out[7] = a[7] * mt + b[7] * t;
return out;
}
/**
* Calculates the inverse of a dual quat. If they are normalized, conjugate is cheaper
*
* @param {quat2} out the receiving dual quaternion
* @param {ReadonlyQuat2} a dual quat to calculate inverse of
* @returns {quat2} out
*/
export function invert(out, a) {
let sqlen = squaredLength(a);
out[0] = -a[0] / sqlen;
out[1] = -a[1] / sqlen;
out[2] = -a[2] / sqlen;
out[3] = a[3] / sqlen;
out[4] = -a[4] / sqlen;
out[5] = -a[5] / sqlen;
out[6] = -a[6] / sqlen;
out[7] = a[7] / sqlen;
return out;
let sqlen = squaredLength(a);
out[0] = -a[0] / sqlen;
out[1] = -a[1] / sqlen;
out[2] = -a[2] / sqlen;
out[3] = a[3] / sqlen;
out[4] = -a[4] / sqlen;
out[5] = -a[5] / sqlen;
out[6] = -a[6] / sqlen;
out[7] = a[7] / sqlen;
return out;
}
/**
* Calculates the conjugate of a dual quat
* If the dual quaternion is normalized, this function is faster than quat2.inverse and produces the same result.
*
* @param {quat2} out the receiving quaternion
* @param {ReadonlyQuat2} a quat to calculate conjugate of
* @returns {quat2} out
*/
export function conjugate(out, a) {
out[0] = -a[0];
out[1] = -a[1];
out[2] = -a[2];
out[3] = a[3];
out[4] = -a[4];
out[5] = -a[5];
out[6] = -a[6];
out[7] = a[7];
return out;
out[0] = -a[0];
out[1] = -a[1];
out[2] = -a[2];
out[3] = a[3];
out[4] = -a[4];
out[5] = -a[5];
out[6] = -a[6];
out[7] = a[7];
return out;
}
/**
* Calculates the length of a dual quat
*
* @param {ReadonlyQuat2} a dual quat to calculate length of
* @returns {Number} length of a
* @function
*/
export const length = quat.length;
/**
* Alias for {@link quat2.length}
* @function
*/
export const len = length;
/**
* Calculates the squared length of a dual quat
*
* @param {ReadonlyQuat2} a dual quat to calculate squared length of
* @returns {Number} squared length of a
* @function
*/
export const squaredLength = quat.squaredLength;
/**
* Alias for {@link quat2.squaredLength}
* @function
*/
export const sqrLen = squaredLength;
/**
* Normalize a dual quat
*
* @param {quat2} out the receiving dual quaternion
* @param {ReadonlyQuat2} a dual quaternion to normalize
* @returns {quat2} out
* @function
*/
export function normalize(out, a) {
let magnitude = squaredLength(a);
if (magnitude > 0) {
magnitude = Math.sqrt(magnitude);
let a0 = a[0] / magnitude;
let a1 = a[1] / magnitude;
let a2 = a[2] / magnitude;
let a3 = a[3] / magnitude;
let b0 = a[4];
let b1 = a[5];
let b2 = a[6];
let b3 = a[7];
let a_dot_b = a0 * b0 + a1 * b1 + a2 * b2 + a3 * b3;
out[0] = a0;
out[1] = a1;
out[2] = a2;
out[3] = a3;
out[4] = (b0 - a0 * a_dot_b) / magnitude;
out[5] = (b1 - a1 * a_dot_b) / magnitude;
out[6] = (b2 - a2 * a_dot_b) / magnitude;
out[7] = (b3 - a3 * a_dot_b) / magnitude;
}
return out;
let magnitude = squaredLength(a);
if (magnitude > 0) {
magnitude = Math.sqrt(magnitude);
let a0 = a[0] / magnitude;
let a1 = a[1] / magnitude;
let a2 = a[2] / magnitude;
let a3 = a[3] / magnitude;
let b0 = a[4];
let b1 = a[5];
let b2 = a[6];
let b3 = a[7];
let a_dot_b = a0 * b0 + a1 * b1 + a2 * b2 + a3 * b3;
out[0] = a0;
out[1] = a1;
out[2] = a2;
out[3] = a3;
out[4] = (b0 - a0 * a_dot_b) / magnitude;
out[5] = (b1 - a1 * a_dot_b) / magnitude;
out[6] = (b2 - a2 * a_dot_b) / magnitude;
out[7] = (b3 - a3 * a_dot_b) / magnitude;
}
return out;
}
/**
* Returns a string representation of a dual quaternion
*
* @param {ReadonlyQuat2} a dual quaternion to represent as a string
* @returns {String} string representation of the dual quat
*/
export function str(a) {
return 'quat2(' + a[0] + ', ' + a[1] + ', ' + a[2] + ', ' + a[3] + ', ' + a[4] + ', ' + a[5] + ', ' + a[6] + ', ' + a[7] + ')';
return ('quat2(' +
a[0] +
', ' +
a[1] +
', ' +
a[2] +
', ' +
a[3] +
', ' +
a[4] +
', ' +
a[5] +
', ' +
a[6] +
', ' +
a[7] +
')');
}
/**
* Returns whether or not the dual quaternions have exactly the same elements in the same position (when compared with ===)
*
* @param {ReadonlyQuat2} a the first dual quaternion.
* @param {ReadonlyQuat2} b the second dual quaternion.
* @returns {Boolean} true if the dual quaternions are equal, false otherwise.
*/
export function exactEquals(a, b) {
return a[0] === b[0] && a[1] === b[1] && a[2] === b[2] && a[3] === b[3] && a[4] === b[4] && a[5] === b[5] && a[6] === b[6] && a[7] === b[7];
return (a[0] === b[0] &&
a[1] === b[1] &&
a[2] === b[2] &&
a[3] === b[3] &&
a[4] === b[4] &&
a[5] === b[5] &&
a[6] === b[6] &&
a[7] === b[7]);
}
/**
* Returns whether or not the dual quaternions have approximately the same elements in the same position.
*
* @param {ReadonlyQuat2} a the first dual quat.
* @param {ReadonlyQuat2} b the second dual quat.
* @returns {Boolean} true if the dual quats are equal, false otherwise.
*/
export function equals(a, b) {
let a0 = a[0],
a1 = a[1],
a2 = a[2],
a3 = a[3],
a4 = a[4],
a5 = a[5],
a6 = a[6],
a7 = a[7];
let b0 = b[0],
b1 = b[1],
b2 = b[2],
b3 = b[3],
b4 = b[4],
b5 = b[5],
b6 = b[6],
b7 = b[7];
return Math.abs(a0 - b0) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a0), Math.abs(b0)) && Math.abs(a1 - b1) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a1), Math.abs(b1)) && Math.abs(a2 - b2) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a2), Math.abs(b2)) && Math.abs(a3 - b3) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a3), Math.abs(b3)) && Math.abs(a4 - b4) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a4), Math.abs(b4)) && Math.abs(a5 - b5) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a5), Math.abs(b5)) && Math.abs(a6 - b6) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a6), Math.abs(b6)) && Math.abs(a7 - b7) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a7), Math.abs(b7));
let a0 = a[0], a1 = a[1], a2 = a[2], a3 = a[3], a4 = a[4], a5 = a[5], a6 = a[6], a7 = a[7];
let b0 = b[0], b1 = b[1], b2 = b[2], b3 = b[3], b4 = b[4], b5 = b[5], b6 = b[6], b7 = b[7];
return (Math.abs(a0 - b0) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a0), Math.abs(b0)) &&
Math.abs(a1 - b1) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a1), Math.abs(b1)) &&
Math.abs(a2 - b2) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a2), Math.abs(b2)) &&
Math.abs(a3 - b3) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a3), Math.abs(b3)) &&
Math.abs(a4 - b4) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a4), Math.abs(b4)) &&
Math.abs(a5 - b5) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a5), Math.abs(b5)) &&
Math.abs(a6 - b6) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a6), Math.abs(b6)) &&
Math.abs(a7 - b7) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a7), Math.abs(b7)));
}
//# sourceMappingURL=quat2.js.map
export type { TypedArray, NumericArray } from '@math.gl/types';
export type { isTypedArray, isNumericArray } from '@math.gl/types';
export { Vector2 } from './classes/vector2';
export { Vector3 } from './classes/vector3';
export { Vector4 } from './classes/vector4';
export { Matrix3 } from './classes/matrix3';
export { Matrix4 } from './classes/matrix4';
export { Quaternion } from './classes/quaternion';
export { SphericalCoordinates } from './classes/spherical-coordinates';
export { Pose } from './classes/pose';
export { Euler } from './classes/euler';
export * as _MathUtils from './lib/math-utils';
export { assert } from './lib/assert';
export { config, configure, formatValue, isArray, clone, equals, exactEquals, toRadians, toDegrees, radians, degrees, sin, cos, tan, asin, acos, atan, clamp, lerp, withEpsilon } from './lib/common';
export { SphericalCoordinates as _SphericalCoordinates } from './classes/spherical-coordinates';
export { Pose as _Pose } from './classes/pose';
export { Euler as _Euler } from './classes/euler';
export { Vector2 } from "./classes/vector2.js";
export { Vector3 } from "./classes/vector3.js";
export { Vector4 } from "./classes/vector4.js";
export { Matrix3 } from "./classes/matrix3.js";
export { Matrix4 } from "./classes/matrix4.js";
export { Quaternion } from "./classes/quaternion.js";
export { SphericalCoordinates } from "./classes/spherical-coordinates.js";
export { Pose } from "./classes/pose.js";
export { Euler } from "./classes/euler.js";
export * as _MathUtils from "./lib/math-utils.js";
export { assert } from "./lib/assert.js";
export { config, configure, formatValue, isArray, clone, equals, exactEquals, toRadians, toDegrees, radians, degrees, sin, cos, tan, asin, acos, atan, clamp, lerp, withEpsilon } from "./lib/common.js";
export { SphericalCoordinates as _SphericalCoordinates } from "./classes/spherical-coordinates.js";
export { Pose as _Pose } from "./classes/pose.js";
export { Euler as _Euler } from "./classes/euler.js";
/** @deprecated Use Matrix3 */
export * as mat3 from './gl-matrix/mat3';
export * as mat3 from "./gl-matrix/mat3.js";
/** @deprecated Use Matrix4 */
export * as mat4 from './gl-matrix/mat4';
export * as mat4 from "./gl-matrix/mat4.js";
/** @deprecated Use Quaterinion */
export * as quat from './gl-matrix/quat';
export * as quat from "./gl-matrix/quat.js";
/** @deprecated UseVector */
export * as vec2 from './gl-matrix/vec2';
export * as vec2 from "./gl-matrix/vec2.js";
/** @deprecated Use Vector3 */
export * as vec3 from './gl-matrix/vec3';
export * as vec3 from "./gl-matrix/vec3.js";
/** @deprecated Use Vector4 */
export * as vec4 from './gl-matrix/vec4';
//# sourceMappingURL=index.d.ts.map
export * as vec4 from "./gl-matrix/vec4.js";

@@ -0,1 +1,3 @@

// luma.gl, MIT license
// classes
export { Vector2 } from "./classes/vector2.js";

@@ -7,24 +9,29 @@ export { Vector3 } from "./classes/vector3.js";

export { Quaternion } from "./classes/quaternion.js";
// experimental
export { SphericalCoordinates } from "./classes/spherical-coordinates.js";
export { Pose } from "./classes/pose.js";
export { Euler } from "./classes/euler.js";
import * as _MathUtils from "./lib/math-utils.js";
export { _MathUtils };
export * as _MathUtils from "./lib/math-utils.js";
// lib
export { assert } from "./lib/assert.js";
export { config, configure, formatValue, isArray, clone, equals, exactEquals, toRadians, toDegrees, radians, degrees, sin, cos, tan, asin, acos, atan, clamp, lerp, withEpsilon } from "./lib/common.js";
export {
// math.gl global utility methods
config, configure, formatValue, isArray, clone, equals, exactEquals, toRadians, toDegrees,
// math.gl "GLSL"-style functions
radians, degrees, sin, cos, tan, asin, acos, atan, clamp, lerp, withEpsilon } from "./lib/common.js";
// DEPRECATED
export { SphericalCoordinates as _SphericalCoordinates } from "./classes/spherical-coordinates.js";
export { Pose as _Pose } from "./classes/pose.js";
export { Euler as _Euler } from "./classes/euler.js";
import * as _mat from "./gl-matrix/mat3.js";
export { _mat as mat3 };
import * as _mat2 from "./gl-matrix/mat4.js";
export { _mat2 as mat4 };
import * as _quat from "./gl-matrix/quat.js";
export { _quat as quat };
import * as _vec from "./gl-matrix/vec2.js";
export { _vec as vec2 };
import * as _vec2 from "./gl-matrix/vec3.js";
export { _vec2 as vec3 };
import * as _vec3 from "./gl-matrix/vec4.js";
export { _vec3 as vec4 };
//# sourceMappingURL=index.js.map
/** @deprecated Use Matrix3 */
export * as mat3 from "./gl-matrix/mat3.js";
/** @deprecated Use Matrix4 */
export * as mat4 from "./gl-matrix/mat4.js";
/** @deprecated Use Quaterinion */
export * as quat from "./gl-matrix/quat.js";
/** @deprecated UseVector */
export * as vec2 from "./gl-matrix/vec2.js";
/** @deprecated Use Vector3 */
export * as vec3 from "./gl-matrix/vec3.js";
/** @deprecated Use Vector4 */
export * as vec4 from "./gl-matrix/vec4.js";
export declare function assert(condition: unknown, message?: string): void;
//# sourceMappingURL=assert.d.ts.map
export function assert(condition, message) {
if (!condition) {
throw new Error("math.gl assertion ".concat(message));
}
if (!condition) {
throw new Error(`math.gl assertion ${message}`);
}
}
//# sourceMappingURL=assert.js.map
import type { NumericArray } from '@math.gl/types';
import type { MathArray } from '../classes/base/math-array';
export declare type ConfigurationOptions = {
import type { MathArray } from "../classes/base/math-array.js";
export type ConfigurationOptions = {
EPSILON: number;

@@ -100,2 +100,1 @@ debug?: boolean;

export declare function withEpsilon<T>(epsilon: number, func: () => T): T;
//# sourceMappingURL=common.d.ts.map

@@ -1,184 +0,213 @@

const RADIANS_TO_DEGREES = 1 / Math.PI * 180;
const DEGREES_TO_RADIANS = 1 / 180 * Math.PI;
// math.gl, MIT license
const RADIANS_TO_DEGREES = (1 / Math.PI) * 180;
const DEGREES_TO_RADIANS = (1 / 180) * Math.PI;
const DEFAULT_CONFIG = {
EPSILON: 1e-12,
debug: false,
precision: 4,
printTypes: false,
printDegrees: false,
printRowMajor: true,
_cartographicRadians: false
EPSILON: 1e-12,
debug: false,
precision: 4,
printTypes: false,
printDegrees: false,
printRowMajor: true,
_cartographicRadians: false
};
globalThis.mathgl = globalThis.mathgl || {
config: { ...DEFAULT_CONFIG
}
};
// Configuration is truly global as of v3.6 to ensure single config even if multiple copies of math.gl
// Multiple copies of config can be quite tricky to debug...
globalThis.mathgl = globalThis.mathgl || { config: { ...DEFAULT_CONFIG } };
export const config = globalThis.mathgl.config;
export function configure(options) {
Object.assign(config, options);
return config;
// Only copy existing keys
Object.assign(config, options);
return config;
}
export function formatValue(value, {
precision = config.precision
} = {}) {
value = round(value);
return "".concat(parseFloat(value.toPrecision(precision)));
/**
* Formats a value into a string
* @param value
* @param param1
* @returns
*/
export function formatValue(value, { precision = config.precision } = {}) {
value = round(value);
// get rid of trailing zeros
return `${parseFloat(value.toPrecision(precision))}`;
}
/**
* Check if value is an "array"
* Returns `true` if value is either an array or a typed array
* Note: returns `false` for `ArrayBuffer` and `DataView` instances
* @note isTypedArray and isNumericArray are often more useful in TypeScript
*/
export function isArray(value) {
return Array.isArray(value) || ArrayBuffer.isView(value) && !(value instanceof DataView);
return Array.isArray(value) || (ArrayBuffer.isView(value) && !(value instanceof DataView));
}
export function clone(array) {
return 'clone' in array ? array.clone() : array.slice();
return 'clone' in array ? array.clone() : array.slice();
}
export function toRadians(degrees) {
return radians(degrees);
return radians(degrees);
}
export function toDegrees(radians) {
return degrees(radians);
return degrees(radians);
}
export function radians(degrees, result) {
return map(degrees, degrees => degrees * DEGREES_TO_RADIANS, result);
return map(degrees, (degrees) => degrees * DEGREES_TO_RADIANS, result);
}
export function degrees(radians, result) {
return map(radians, radians => radians * RADIANS_TO_DEGREES, result);
return map(radians, (radians) => radians * RADIANS_TO_DEGREES, result);
}
/**
* "GLSL equivalent" of `Math.sin`: Works on single values and vectors
* @deprecated
*/
export function sin(radians, result) {
return map(radians, angle => Math.sin(angle), result);
return map(radians, (angle) => Math.sin(angle), result);
}
/**
* "GLSL equivalent" of `Math.cos`: Works on single values and vectors
* @deprecated
*/
export function cos(radians, result) {
return map(radians, angle => Math.cos(angle), result);
return map(radians, (angle) => Math.cos(angle), result);
}
/**
* "GLSL equivalent" of `Math.tan`: Works on single values and vectors
* @deprecated
*/
export function tan(radians, result) {
return map(radians, angle => Math.tan(angle), result);
return map(radians, (angle) => Math.tan(angle), result);
}
/**
* "GLSL equivalent" of `Math.asin`: Works on single values and vectors
* @deprecated
*/
export function asin(radians, result) {
return map(radians, angle => Math.asin(angle), result);
return map(radians, (angle) => Math.asin(angle), result);
}
/**
* "GLSL equivalent" of `Math.acos`: Works on single values and vectors
* @deprecated
*/
export function acos(radians, result) {
return map(radians, angle => Math.acos(angle), result);
return map(radians, (angle) => Math.acos(angle), result);
}
/**
* "GLSL equivalent" of `Math.atan`: Works on single values and vectors
* @deprecated
*/
export function atan(radians, result) {
return map(radians, angle => Math.atan(angle), result);
return map(radians, (angle) => Math.atan(angle), result);
}
export function clamp(value, min, max) {
return map(value, value => Math.max(min, Math.min(max, value)));
return map(value, (value) => Math.max(min, Math.min(max, value)));
}
export function lerp(a, b, t) {
if (isArray(a)) {
return a.map((ai, i) => lerp(ai, b[i], t));
}
return t * b + (1 - t) * a;
if (isArray(a)) {
return a.map((ai, i) => lerp(ai, b[i], t));
}
return t * b + (1 - t) * a;
}
/* eslint-disable */
/**
* Compares any two math objects, using `equals` method if available.
* @param a
* @param b
* @param epsilon
* @returns
*/
export function equals(a, b, epsilon) {
const oldEpsilon = config.EPSILON;
if (epsilon) {
config.EPSILON = epsilon;
}
try {
if (a === b) {
return true;
const oldEpsilon = config.EPSILON;
if (epsilon) {
config.EPSILON = epsilon;
}
if (isArray(a) && isArray(b)) {
if (a.length !== b.length) {
try {
if (a === b) {
return true;
}
if (isArray(a) && isArray(b)) {
if (a.length !== b.length) {
return false;
}
for (let i = 0; i < a.length; ++i) {
// eslint-disable-next-line max-depth
if (!equals(a[i], b[i])) {
return false;
}
}
return true;
}
if (a && a.equals) {
return a.equals(b);
}
if (b && b.equals) {
return b.equals(a);
}
if (typeof a === 'number' && typeof b === 'number') {
return Math.abs(a - b) <= config.EPSILON * Math.max(1, Math.abs(a), Math.abs(b));
}
return false;
}
for (let i = 0; i < a.length; ++i) {
if (!equals(a[i], b[i])) {
return false;
}
}
return true;
}
if (a && a.equals) {
return a.equals(b);
finally {
config.EPSILON = oldEpsilon;
}
if (b && b.equals) {
return b.equals(a);
}
if (typeof a === 'number' && typeof b === 'number') {
return Math.abs(a - b) <= config.EPSILON * Math.max(1, Math.abs(a), Math.abs(b));
}
return false;
} finally {
config.EPSILON = oldEpsilon;
}
}
export function exactEquals(a, b) {
if (a === b) {
return true;
}
if (a && typeof a === 'object' && b && typeof b === 'object') {
if (a.constructor !== b.constructor) {
return false;
if (a === b) {
return true;
}
if (a.exactEquals) {
return a.exactEquals(b);
if (a && typeof a === 'object' && b && typeof b === 'object') {
if (a.constructor !== b.constructor) {
return false;
}
if (a.exactEquals) {
return a.exactEquals(b);
}
}
}
if (isArray(a) && isArray(b)) {
if (a.length !== b.length) {
return false;
if (isArray(a) && isArray(b)) {
if (a.length !== b.length) {
return false;
}
for (let i = 0; i < a.length; ++i) {
if (!exactEquals(a[i], b[i])) {
return false;
}
}
return true;
}
for (let i = 0; i < a.length; ++i) {
if (!exactEquals(a[i], b[i])) {
return false;
}
}
return true;
}
return false;
return false;
}
/* eslint-enable */
export function withEpsilon(epsilon, func) {
const oldPrecision = config.EPSILON;
config.EPSILON = epsilon;
let value;
try {
value = func();
} finally {
config.EPSILON = oldPrecision;
}
return value;
const oldPrecision = config.EPSILON;
config.EPSILON = epsilon;
let value;
try {
value = func();
}
finally {
config.EPSILON = oldPrecision;
}
return value;
}
// HELPERS
function round(value) {
return Math.round(value / config.EPSILON) * config.EPSILON;
return Math.round(value / config.EPSILON) * config.EPSILON;
}
// If the array has a clone function, calls it, otherwise returns a copy
function duplicateArray(array) {
return array.clone ? array.clone() : new Array(array.length);
// @ts-expect-error We check for math.gl class methods
// eslint-disable-next-line @typescript-eslint/no-unsafe-call
return array.clone ? array.clone() : new Array(array.length);
}
// If the argument value is an array, applies the func element wise,
// otherwise applies func to the argument value
function map(value, func, result) {
if (isArray(value)) {
const array = value;
result = result || duplicateArray(array);
for (let i = 0; i < result.length && i < array.length; ++i) {
const val = typeof value === 'number' ? value : value[i];
result[i] = func(val, i, result);
if (isArray(value)) {
const array = value;
result = result || duplicateArray(array);
for (let i = 0; i < result.length && i < array.length; ++i) {
const val = typeof value === 'number' ? value : value[i];
result[i] = func(val, i, result);
}
return result;
}
return result;
}
return func(value);
return func(value);
}
//# sourceMappingURL=common.js.map

@@ -7,2 +7,1 @@ import { NumericArray } from '@math.gl/types';

export declare function vec4_transformMat3<T extends NumericArray>(out: T, a: Readonly<NumericArray>, m: Readonly<NumericArray>): T;
//# sourceMappingURL=gl-matrix-extras.d.ts.map

@@ -0,46 +1,49 @@

// vec2 additions
export function vec2_transformMat4AsVector(out, a, m) {
const x = a[0];
const y = a[1];
const w = m[3] * x + m[7] * y || 1.0;
out[0] = (m[0] * x + m[4] * y) / w;
out[1] = (m[1] * x + m[5] * y) / w;
return out;
const x = a[0];
const y = a[1];
const w = m[3] * x + m[7] * y || 1.0;
out[0] = (m[0] * x + m[4] * y) / w;
out[1] = (m[1] * x + m[5] * y) / w;
return out;
}
// vec3 additions
// Transform as vector, only uses 3x3 minor matrix
export function vec3_transformMat4AsVector(out, a, m) {
const x = a[0];
const y = a[1];
const z = a[2];
const w = m[3] * x + m[7] * y + m[11] * z || 1.0;
out[0] = (m[0] * x + m[4] * y + m[8] * z) / w;
out[1] = (m[1] * x + m[5] * y + m[9] * z) / w;
out[2] = (m[2] * x + m[6] * y + m[10] * z) / w;
return out;
const x = a[0];
const y = a[1];
const z = a[2];
const w = m[3] * x + m[7] * y + m[11] * z || 1.0;
out[0] = (m[0] * x + m[4] * y + m[8] * z) / w;
out[1] = (m[1] * x + m[5] * y + m[9] * z) / w;
out[2] = (m[2] * x + m[6] * y + m[10] * z) / w;
return out;
}
export function vec3_transformMat2(out, a, m) {
const x = a[0];
const y = a[1];
out[0] = m[0] * x + m[2] * y;
out[1] = m[1] * x + m[3] * y;
out[2] = a[2];
return out;
const x = a[0];
const y = a[1];
out[0] = m[0] * x + m[2] * y;
out[1] = m[1] * x + m[3] * y;
out[2] = a[2];
return out;
}
// vec4 additions
export function vec4_transformMat2(out, a, m) {
const x = a[0];
const y = a[1];
out[0] = m[0] * x + m[2] * y;
out[1] = m[1] * x + m[3] * y;
out[2] = a[2];
out[3] = a[3];
return out;
const x = a[0];
const y = a[1];
out[0] = m[0] * x + m[2] * y;
out[1] = m[1] * x + m[3] * y;
out[2] = a[2];
out[3] = a[3];
return out;
}
export function vec4_transformMat3(out, a, m) {
const x = a[0];
const y = a[1];
const z = a[2];
out[0] = m[0] * x + m[3] * y + m[6] * z;
out[1] = m[1] * x + m[4] * y + m[7] * z;
out[2] = m[2] * x + m[5] * y + m[8] * z;
out[3] = a[3];
return out;
const x = a[0];
const y = a[1];
const z = a[2];
out[0] = m[0] * x + m[3] * y + m[6] * z;
out[1] = m[1] * x + m[4] * y + m[7] * z;
out[2] = m[2] * x + m[5] * y + m[8] * z;
out[3] = a[3];
return out;
}
//# sourceMappingURL=gl-matrix-extras.js.map

@@ -25,2 +25,1 @@ export declare const EPSILON1 = 0.1;

export declare const TWO_PI: number;
//# sourceMappingURL=math-utils.d.ts.map

@@ -0,1 +1,3 @@

// NOTE: Added to make Cesium-derived test cases work
// TODO: Determine if/how to keep
export const EPSILON1 = 1e-1;

@@ -25,2 +27,1 @@ export const EPSILON2 = 1e-2;

export const TWO_PI = Math.PI * 2;
//# sourceMappingURL=math-utils.js.map

@@ -6,2 +6,1 @@ import { NumberArray } from '@math.gl/types';

export declare function deprecated(method: string, version: string): void;
//# sourceMappingURL=validators.d.ts.map
import { config } from "./common.js";
export function validateVector(v, length) {
if (v.length !== length) {
return false;
}
for (let i = 0; i < v.length; ++i) {
if (!Number.isFinite(v[i])) {
return false;
if (v.length !== length) {
return false;
}
}
return true;
// Could be arguments "array" (v.every not availasble)
for (let i = 0; i < v.length; ++i) {
if (!Number.isFinite(v[i])) {
return false;
}
}
return true;
}
export function checkNumber(value) {
if (!Number.isFinite(value)) {
throw new Error("Invalid number ".concat(JSON.stringify(value)));
}
return value;
if (!Number.isFinite(value)) {
throw new Error(`Invalid number ${JSON.stringify(value)}`);
}
return value;
}
export function checkVector(v, length, callerName = '') {
if (config.debug && !validateVector(v, length)) {
throw new Error("math.gl: ".concat(callerName, " some fields set to invalid numbers'"));
}
return v;
if (config.debug && !validateVector(v, length)) {
throw new Error(`math.gl: ${callerName} some fields set to invalid numbers'`);
}
return v;
}
const map = {};
export function deprecated(method, version) {
if (!map[method]) {
map[method] = true;
console.warn("".concat(method, " has been removed in version ").concat(version, ", see upgrade guide for more information"));
}
if (!map[method]) {
map[method] = true;
// eslint-disable-next-line
console.warn(`${method} has been removed in version ${version}, see upgrade guide for more information`);
}
}
//# sourceMappingURL=validators.js.map

@@ -9,3 +9,3 @@ {

},
"version": "4.0.0",
"version": "4.0.1",
"keywords": [

@@ -36,5 +36,5 @@ "webgl",

".": {
"types": "./dist/index.d.ts",
"import": "./dist/index.js",
"require": "./dist/index.cjs",
"types": "./dist/index.d.ts"
"require": "./dist/index.cjs"
}

@@ -50,6 +50,5 @@ },

"dependencies": {
"@babel/runtime": "^7.12.0",
"@math.gl/types": "4.0.0"
"@math.gl/types": "4.0.1"
},
"gitHead": "b7af99a25965af5112307552084fbaf5d4d53b7d"
"gitHead": "33f369ba3a259f79acc3fa8181190c9da8841648"
}

@@ -195,3 +195,3 @@ // Copyright (c) 2017 Uber Technologies, Inc.

rotate(radians: number): NumericArray {
rotate(radians: number): this {
mat3_rotate(this, this, radians);

@@ -198,0 +198,0 @@ return this.check();

Sorry, the diff of this file is not supported yet

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc