Huge News!Announcing our $40M Series B led by Abstract Ventures.Learn More
Socket
Sign inDemoInstall
Socket

@noble/ed25519

Package Overview
Dependencies
Maintainers
1
Versions
17
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

@noble/ed25519 - npm Package Compare versions

Comparing version 1.7.3 to 2.0.0

index.d.ts

82

package.json
{
"name": "@noble/ed25519",
"version": "1.7.3",
"description": "Fastest JS implementation of ed25519. Independently audited, high-security, 0-dependency EDDSA, X25519 ECDH & ristretto255",
"version": "2.0.0",
"description": "Fastest 4KB JS implementation of ed25519 elliptic curve. Auditable, high-security, 0-dependency EDDSA signatures compliant with RFC8032 & ZIP215",
"files": [
"lib"
"index.js",
"index.d.ts",
"index.ts"
],
"main": "lib/index.js",
"module": "lib/esm/index.js",
"types": "lib/index.d.ts",
"type": "module",
"main": "index.js",
"module": "index.js",
"types": "index.d.ts",
"scripts": {
"build": "tsc -d && tsc -p tsconfig.esm.json",
"build": "tsc",
"build:release": "rollup -c rollup.config.js",
"lint": "prettier --print-width 100 --single-quote --check index.ts",
"test": "jest",
"bench": "node test/benchmark/benchmark.js"
"test": "node test/ed25519.test.mjs",
"bench": "node test/benchmark/benchmark.js",
"min": "cd test/build; npm install; npm run terser",
"loc": "echo \"`npm run --silent min | wc -c` symbols `wc -l < index.ts` LOC, `npm run --silent min | gzip -c8 | wc -c`B gzipped\""
},

@@ -25,57 +29,31 @@ "author": "Paul Miller (https://paulmillr.com)",

"license": "MIT",
"browser": {
"crypto": false
},
"devDependencies": {
"@noble/hashes": "1.1.2",
"@rollup/plugin-node-resolve": "13.3.0",
"@types/jest": "28.1.1",
"@types/node": "17.0.18",
"@noble/hashes": "1.3.0",
"fast-check": "3.0.0",
"jest": "28.1.0",
"micro-bmark": "0.2.0",
"prettier": "2.6.2",
"rollup": "2.75.5",
"ts-jest": "28.0.4",
"typescript": "4.7.3"
"micro-bmark": "0.3.0",
"micro-should": "0.4.0",
"typescript": "5.0.2"
},
"keywords": [
"ed25519",
"edwards",
"ristretto255",
"decaf",
"curve25519",
"x25519",
"elliptic",
"elliptic curve",
"curve",
"elligator",
"rfc8032",
"signature",
"ecc",
"eddsa",
"RFC7748",
"RFC8032",
"ZIP215",
"noble",
"cryptography",
"security"
"elliptic curve",
"ecc",
"curve",
"rfc7748",
"zip215",
"ristretto255",
"x25519",
"curve25519"
],
"exports": {
".": {
"types": "./lib/index.d.ts",
"import": "./lib/esm/index.js",
"default": "./lib/index.js"
"types": "./index.d.ts",
"default": "./index.js"
}
},
"prettier": {
"printWidth": 100,
"singleQuote": true
},
"jest": {
"testRegex": "/test/.*.ts",
"transform": {
"^.+\\.ts$": "ts-jest"
},
"useStderr": true,
"bail": 2
},
"funding": [

@@ -82,0 +60,0 @@ {

@@ -1,9 +0,17 @@

# noble-ed25519 ![Node CI](https://github.com/paulmillr/noble-ed25519/workflows/Node%20CI/badge.svg) [![code style: prettier](https://img.shields.io/badge/code_style-prettier-ff69b4.svg?style=flat-square)](https://github.com/prettier/prettier)
# noble-ed25519
[Fastest](#speed) JS implementation of [ed25519](https://en.wikipedia.org/wiki/EdDSA),
an elliptic curve that could be used for EDDSA signature scheme and X25519 ECDH key agreement.
[Fastest](#speed) 4KB JS implementation of [ed25519](https://en.wikipedia.org/wiki/EdDSA)
elliptic curve. Auditable, high-security, 0-dependency EdDSA signatures compliant with
[RFC8032](https://tools.ietf.org/html/rfc8032) and [ZIP215](https://zips.z.cash/zip-0215).
Conforms to [RFC7748](https://datatracker.ietf.org/doc/html/rfc7748), [RFC8032](https://tools.ietf.org/html/rfc8032) and [ZIP215](https://zips.z.cash/zip-0215). Includes support for [ristretto255](https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-ristretto255-decaf448): a technique for constructing prime order elliptic curve groups with non-malleable encodings.
The library is a tiny single-feature version of
[noble-curves](https://github.com/paulmillr/noble-curves), with some features
removed. Check out curves as a drop-in replacement with
[ristretto255](https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-ristretto255-decaf448),
X25519 / curve25519, ed25519ph and ed25519ctx.
[**Audited**](#security) by an independent security firm. Check out [the online demo](https://paulmillr.com/noble/). See [ed25519-keygen](https://github.com/paulmillr/ed25519-keygen) if you need SSH/PGP/TOR/HD keys for the curve.
Take a look at: [Upgrading](#upgrading) section for v1 to v2 transition instructions,
[the online demo](https://paulmillr.com/noble/) and
[ed25519-keygen](https://github.com/paulmillr/ed25519-keygen) if you need
SSH/PGP/HDKey implementation using the library.

@@ -14,4 +22,4 @@ ### This library belongs to _noble_ crypto

- No dependencies, one small file
- Easily auditable TypeScript/JS code
- No dependencies, protection against supply chain attacks
- Auditable TypeScript / JS code
- Supported in all major browsers and stable node.js versions

@@ -21,3 +29,3 @@ - All releases are signed with PGP keys

[curves](https://github.com/paulmillr/noble-curves)
([secp256k1](https://github.com/paulmillr/noble-secp256k1),
(4kb versions [secp256k1](https://github.com/paulmillr/noble-secp256k1),
[ed25519](https://github.com/paulmillr/noble-ed25519)),

@@ -28,4 +36,3 @@ [hashes](https://github.com/paulmillr/noble-hashes)

Use NPM in node.js / browser, or include single file from
[GitHub's releases page](https://github.com/paulmillr/noble-ed25519/releases):
Browser, deno, node.js and unpkg are supported:

@@ -35,219 +42,102 @@ > npm install @noble/ed25519

```js
// Common.js and ECMAScript Modules (ESM)
import * as ed from '@noble/ed25519';
// If you're using single file, use global variable instead: `window.nobleEd25519`
// Supports both async and sync methods, see docs
import * as ed from '@noble/ed25519'; // ESM-only. Use bundler for common.js
// import * as ed from "https://deno.land/x/ed25519/mod.ts"; // Deno
// import * as ed from "https://unpkg.com/@noble/ed25519"; // Unpkg
(async () => {
// keys, messages & other inputs can be Uint8Arrays or hex strings
// Uint8Array.from([0xde, 0xad, 0xbe, 0xef]) === 'deadbeef'
const privateKey = ed.utils.randomPrivateKey();
const privKey = ed.utils.randomPrivateKey(); // Secure random private key
const message = Uint8Array.from([0xab, 0xbc, 0xcd, 0xde]);
const publicKey = await ed.getPublicKey(privateKey);
const signature = await ed.sign(message, privateKey);
const isValid = await ed.verify(signature, message, publicKey);
const pubKey = await ed.getPublicKeyAsync(privKey);
const signature = await ed.signAsync(message, privKey);
const isValid = await ed.verifyAsync(signature, message, pubKey);
})();
```
To use the module with [Deno](https://deno.land),
you will need [import map](https://deno.land/manual/linking_to_external_code/import_maps):
Advanced examples:
- `deno run --import-map=imports.json app.ts`
- app.ts: `import * as ed from "https://deno.land/x/ed25519/mod.ts";`
- imports.json: `{"imports": {"crypto": "https://deno.land/std@0.153.0/node/crypto.ts"}}`
```ts
// 1. Use the shim to enable synchronous methods.
// Only async methods are available by default to keep library dependency-free.
import { sha512 } from '@noble/hashes/sha512';
ed.etc.sha512Sync = (...m) => sha512(ed.etc.concatBytes(...m));
ed.getPublicKey(privateKey); // sync methods can be used now
ed.sign(message, privateKey);
ed.verify(signature, message, publicKey);
## API
- [`getPublicKey(privateKey)`](#getpublickeyprivatekey)
- [`sign(message, privateKey)`](#signmessage-privatekey)
- [`verify(signature, message, publicKey)`](#verifysignature-message-publickey)
- [`getSharedSecret(privateKey, publicKey)`](#getsharedsecretprivatekey-publickey)
- [X25519 and curve25519](#x25519-and-curve25519)
- [ristretto255](#ristretto255)
- [Synchronous methods](#synchronous-methods)
- [Utilities](#utilities)
##### `getPublicKey(privateKey)`
```typescript
function getPublicKey(privateKey: Uint8Array | string | bigint): Promise<Uint8Array>;
// 2. Use the shim only for node.js <= 18 BEFORE importing noble-secp256k1.
// The library depends on global variable crypto to work. It is available in
// all browsers and many environments, but node.js <= 18 don't have it.
import { webcrypto } from 'node:crypto';
// @ts-ignore
if (!globalThis.crypto) globalThis.crypto = webcrypto;
```
- `privateKey: Uint8Array | string | bigint` will be used to generate public key. If you want to pass bigints,
ensure they are Big-Endian.
- Returns `Promise<Uint8Array>`. Uses **promises**, because ed25519 uses SHA internally; and we're using built-in browser `window.crypto`, which returns `Promise`. Synchronous non-promise method is available for this and others: [see below](#synchronous-methods).
## API
To generate ed25519 public key:
There are 3 main methods: `getPublicKey(privateKey)`, `sign(message, privateKey)`
and `verify(signature, message, publicKey)`.
1. private key is hashed with sha512, then first 32 bytes are taken from the hash
2. 3 least significant bits of the first byte are cleared
- Use `Point.fromPrivateKey(privateKey)` if you want `Point` instance instead
- Use `Point.fromHex(publicKey)` if you want to convert hex / bytes into Point.
It will use decompression algorithm 5.1.3 of RFC 8032.
- Use `utils.getExtendedPublicKey` if you need full SHA512 hash of seed
##### `sign(message, privateKey)`
```typescript
function sign(message: Uint8Array | string, privateKey: Uint8Array | string): Promise<Uint8Array>;
```
type Hex = Uint8Array | string;
// Generates 32-byte public key from 32-byte private key.
// - Some libraries have 64-byte private keys. Don't worry, those are just
// priv+pub concatenated. Slice it: `priv64b.slice(0, 32)`
// - Use `Point.fromPrivateKey(privateKey)` if you want `Point` instance instead
// - Use `Point.fromHex(publicKey)` if you want to convert hex / bytes into Point.
// It will use decompression algorithm 5.1.3 of RFC 8032.
// - Use `utils.getExtendedPublicKey` if you need full SHA512 hash of seed
function getPublicKey(privateKey: Hex): Uint8Array;
function getPublicKeyAsync(privateKey: Hex): Promise<Uint8Array>;
- `message: Uint8Array | string` - message (not message hash) which would be signed
- `privateKey: Uint8Array | string` - private key which will sign the hash
- Returns EdDSA signature. You can consume it with `Signature.fromHex()` method:
- `Signature.fromHex(ed25519.sign(hash, privateKey))`
// Generates EdDSA signature.
function sign(
message: Hex, // message which would be signed
privateKey: Hex // 32-byte private key
): Uint8Array;
function signAsync(message: Hex, privateKey: Hex): Promise<Uint8Array>;
##### `verify(signature, message, publicKey)`
```typescript
// Verifies EdDSA signature. Compatible with [ZIP215](https://zips.z.cash/zip-0215):
// - `0 <= sig.R/publicKey < 2**256` (can be `>= curve.P` aka non-canonical encoding)
// - `0 <= sig.s < l`
// - There is no security risk in ZIP behavior, and there is no effect on
// honestly generated sigs, but it is verify important for consensus-critical
// apps. See [It’s 255:19AM](https://hdevalence.ca/blog/2020-10-04-its-25519am).
// - _Not compatible with RFC8032_ because RFC enforces canonical encoding of
// R/publicKey.
function verify(
signature: Uint8Array | string | Signature,
message: Uint8Array | string,
publicKey: Uint8Array | string | Point
): Promise<boolean>;
signature: Hex, // returned by the `sign` function
message: Hex, // message that needs to be verified
publicKey: Hex // public (not private) key
): boolean;
function verifyAsync(signature: Hex, message: Hex, publicKey: Hex): Promise<boolean>;
```
- `signature: Uint8Array | string | Signature` - returned by the `sign` function
- `message: Uint8Array | string` - message that needs to be verified
- `publicKey: Uint8Array | string | Point` - e.g. that was generated from `privateKey` by `getPublicKey`
- Returns `Promise<boolean>`
A bunch of useful **utilities** are also exposed:
Verifies signature. Compatible with [ZIP215](https://zips.z.cash/zip-0215), accepts:
- `0 <= sig.R/publicKey < 2**256` (can be `>= curve.P` aka non-canonical encoding)
- `0 <= sig.s < l`
_Not compatible with RFC8032_ because rfc encorces canonical encoding of R/publicKey. There is no security risk in ZIP behavior, and there is no effect on honestly generated signatures. For additional info about verification strictness, check out [It’s 255:19AM](https://hdevalence.ca/blog/2020-10-04-its-25519am).
##### `getSharedSecret(privateKey, publicKey)`
```typescript
function getSharedSecret(
privateKey: Uint8Array | string | bigint,
publicKey: Uint8Array | string
): Promise<Uint8Array>;
```
export const etc: {
bytesToHex: (b: Bytes) => string;
hexToBytes: (hex: string) => Bytes;
concatBytes: (...arrs: Bytes[]) => Uint8Array;
mod: (a: bigint, b?: bigint) => bigint;
invert: (num: bigint, md?: bigint) => bigint;
randomBytes: (len: number) => Bytes;
sha512Async: (...messages: Bytes[]) => Promise<Bytes>;
sha512Sync: Sha512FnSync;
};
export const utils: {
getExtendedPublicKeyAsync: (priv: Hex) => Promise<ExtK>;
getExtendedPublicKey: (priv: Hex) => ExtK;
precompute(p: Point, w?: number): Point;
randomPrivateKey: () => Bytes;
};
Converts ed25519 private / public keys to Curve25519 and calculates
Elliptic Curve Diffie Hellman (ECDH) with X25519.
Conforms to [RFC7748](https://datatracker.ietf.org/doc/html/rfc7748).
### X25519 and curve25519
```js
const pub = ed25519.curve25519.scalarMultBase(privateKey);
const shared = ed25519.curve25519.scalarMult(privateKeyA, publicKeyB);
```
The library includes namespace `curve25519` that you could use to calculate
Curve25519 keys. It uses Montgomery Ladder specified in [RFC7748](https://datatracker.ietf.org/doc/html/rfc7748).
You cannot use ed25519 keys, because they are hashed with sha512. However, you can use
`Point#toX25519()` method on ed25519 public keys. See implementation of `ed25519.getSharedSecret` for details.
### Ristretto255
Each Point in ed25519 has 8 different equivalent points. This can be a great pain for some algorithms
e.g. ring signatures. In Tor, Ed25519 public key malleability would mean that every v3 onion service
has eight different addresses, causing mismatches with user expectations and potential gotchas for service operators.
Fixing this required expensive runtime checks in the v3 onion services protocol, requiring a full scalar multiplication,
point compression, and equality check. This check must be called in several places to validate that the onion service's
key does not contain a small torsion component.
No matter which one of these 8 equivalent points you give the Ristretto algorithm,
it will give you exactly the same one. The other 7 points are no longer representable. Two caveats:
1. Always use `RistrettoPoint.fromHex()` and `RistrettoPoint#toHex()`
2. Never mix `ExtendedPoint` & `RistrettoPoint`: ristretto is not a subgroup of ed25519.
`ExtendedPoint` you are mixing with, may not be the representative for the set of possible points.
```typescript
import { RistrettoPoint } from '@noble/ed25519';
// Decode a byte-string representing a compressed Ristretto point.
// Not compatible with Point.toHex()
RistrettoPoint.fromHex(hex: Uint8Array | string): RistrettoPoint;
// Encode a Ristretto point represented by the point (X:Y:Z:T) to Uint8Array
RistrettoPoint#toHex(): Uint8Array;
// Takes uniform output of 64-bit hash function like sha512 and converts it to RistrettoPoint
// **Note:** this is one-way map, there is no conversion from point to hash.
RistrettoPoint.hashToCurve(hash: Uint8Array | string): RistrettoPoint;
```
It extends Mike Hamburg's Decaf approach to cofactor elimination to support cofactor-8 curves such as Curve25519.
In particular, this allows an existing Curve25519 library to implement a prime-order group with only a thin abstraction layer, and makes it possible for systems using Ed25519 signatures to be safely extended with zero-knowledge protocols, with no additional cryptographic assumptions and minimal code changes.
For more information on the topic, check out:
- [Ristretto website](https://ristretto.group)
- [irtf-cfrg-ristretto255-decaf448](https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-ristretto255-decaf448) standard draft
- [Exploiting Low Order Generators in One-Time Ring Signatures](https://jonasnick.github.io/blog/2017/05/23/exploiting-low-order-generators-in-one-time-ring-signatures/)
- [Details of ristretto internals](https://monero.stackexchange.com/a/12171)
- [Rust implementation with lots of comments](https://github.com/dalek-cryptography/curve25519-dalek/blob/967d8b6c0e67100401ad66125b7399ccf509ae22/src/ristretto.rs)
### Synchronous methods
The library is using built-in async hash functions by default in order to follow its 0-dependency approach.
This means, built-in `getPublicKey`, `sync` and others are asynchronous. Some use-cases require
sync versions of those. You can use them: all you need to do is make sure ed25519 knows
how to hash synchronously. Redefining `ed.utils.sha512Sync` is enough:
```ts
import { sha512 } from '@noble/hashes/sha512';
ed.utils.sha512Sync = (...m) => sha512(ed.utils.concatBytes(...m));
const { getPublicKey, sign, verify, getExtendedPublicKey } = ed.sync;
// Use it freely
getPublicKey(privKey);
```
### Utilities
We provide a bunch of useful utils and expose some internal classes.
```typescript
// Returns cryptographically secure random `Uint8Array` that could be used as private key
utils.randomPrivateKey();
// Native sha512 calculation
utils.sha512(message: Uint8Array): Promise<Uint8Array>;
// Modular division
utils.mod(number: bigint, modulo = CURVE.P): bigint;
// Inverses number over modulo
utils.invert(number: bigint, modulo = CURVE.P): bigint;
// Convert Uint8Array to hex string
utils.bytesToHex(bytes: Uint8Array): string;
// returns { head, prefix, scalar, point, pointBytes }
utils.getExtendedPublicKey(privateKey);
// Call it without arguments if you want your first calculation of public key to take normal time instead of ~20ms
utils.precompute(W = 8, point = Point.BASE)
// Elliptic curve point in Affine (x, y) coordinates.
class Point {
constructor(x: bigint, y: bigint);
export class ExtendedPoint { // Elliptic curve point in Extended (x, y, z, t) coordinates.
constructor(x: bigint, y: bigint, z: bigint, t: bigint);
static fromAffine(point: AffinePoint): ExtendedPoint;
static fromHex(hash: string);
static fromPrivateKey(privateKey: string | Uint8Array);
toX25519(): Uint8Array; // Converts to Curve25519 u coordinate in LE form
toRawBytes(): Uint8Array;
toHex(): string; // Compact representation of a Point
isTorsionFree(): boolean; // Multiplies the point by curve order
equals(other: Point): boolean;
negate(): Point;
add(other: Point): Point;
subtract(other: Point): Point;
multiply(scalar: bigint): Point;
}
// Elliptic curve point in Extended (x, y, z, t) coordinates.
class ExtendedPoint {
constructor(x: bigint, y: bigint, z: bigint, t: bigint);
static fromAffine(point: Point): ExtendedPoint;
toAffine(): Point;

@@ -259,30 +149,9 @@ equals(other: ExtendedPoint): boolean;

multiply(scalar: bigint): ExtendedPoint;
multiplyUnsafe(scalar: bigint): ExtendedPoint;
}
// Also (x, y, z, t)
class RistrettoPoint {
static hashToCurve(hex: Hex): RistrettoPoint;
static fromHex(hex: Hex): RistrettoPoint;
toRawBytes(): Uint8Array;
toHex(): string;
equals(other: RistrettoPoint): boolean;
add(other: RistrettoPoint): RistrettoPoint;
subtract(other: RistrettoPoint): RistrettoPoint;
multiply(scalar: number | bigint): RistrettoPoint;
}
class Signature {
constructor(r: bigint, s: bigint);
static fromHex(hex: Hex): Signature;
toRawBytes(): Uint8Array;
toHex(): string;
}
// Curve params
ed25519.CURVE.P // 2 ** 255 - 19
ed25519.CURVE.l // 2 ** 252 + 27742317777372353535851937790883648493
ed25519.Point.BASE // new ed25519.Point(Gx, Gy) where
// Gx = 15112221349535400772501151409588531511454012693041857206046113283949847762202n
// Gy = 46316835694926478169428394003475163141307993866256225615783033603165251855960n;
ed25519.utils.TORSION_SUBGROUP; // The 8-torsion subgroup ℰ8.
ed25519.CURVE.p // 2 ** 255 - 19
ed25519.CURVE.n // 2 ** 252 + 27742317777372353535851937790883648493
ed25519.ExtendedPoint.BASE // new ed25519.Point(Gx, Gy) where
// Gx=15112221349535400772501151409588531511454012693041857206046113283949847762202n
// Gy=46316835694926478169428394003475163141307993866256225615783033603165251855960n;
```

@@ -292,41 +161,45 @@

Noble is production-ready.
The module is production-ready.
It is cross-tested against [noble-curves](https://github.com/paulmillr/noble-curves),
and has similar security.
1. The library has been audited by an independent security firm cure53: [PDF](https://cure53.de/pentest-report_ed25519.pdf). No vulnerabilities have been found. See [changes since audit](https://github.com/paulmillr/noble-ed25519/compare/1.6.0..main).
2. The library has also been fuzzed by [Guido Vranken's cryptofuzz](https://github.com/guidovranken/cryptofuzz). You can run the fuzzer by yourself to check it.
1. The current version is rewrite of v1, which has been audited by cure53:
[PDF](https://cure53.de/pentest-report_ed25519.pdf).
2. It's being fuzzed by [Guido Vranken's cryptofuzz](https://github.com/guidovranken/cryptofuzz):
run the fuzzer by yourself to check.
We're using built-in JS `BigInt`, which is potentially vulnerable to [timing attacks](https://en.wikipedia.org/wiki/Timing_attack) as [per official spec](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/BigInt#cryptography). But, _JIT-compiler_ and _Garbage Collector_ make "constant time" extremely hard to achieve in a scripting language. Which means _any other JS library doesn't use constant-time bigints_. Including bn.js or anything else. Even statically typed Rust, a language without GC, [makes it harder to achieve constant-time](https://www.chosenplaintext.ca/open-source/rust-timing-shield/security) for some cases. If your goal is absolute security, don't use any JS lib — including bindings to native ones. Use low-level libraries & languages. Nonetheless we've hardened implementation of ec curve multiplication to be algorithmically constant time.
Our EC multiplication is hardened to be algorithmically constant time.
We're using built-in JS `BigInt`, which is potentially vulnerable to
[timing attacks](https://en.wikipedia.org/wiki/Timing_attack) as
[per MDN](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/BigInt#cryptography).
But, _JIT-compiler_ and _Garbage Collector_ make "constant time" extremely hard
to achieve in a scripting language. Which means _any other JS library doesn't
use constant-time bigints_. Including bn.js or anything else.
Even statically typed Rust, a language without GC,
[makes it harder to achieve constant-time](https://www.chosenplaintext.ca/open-source/rust-timing-shield/security)
for some cases. If your goal is absolute security, don't use any JS lib —
including bindings to native ones. Use low-level libraries & languages.
We however consider infrastructure attacks like rogue NPM modules very important; that's why it's crucial to minimize the amount of 3rd-party dependencies & native bindings. If your app uses 500 dependencies, any dep could get hacked and you'll be downloading malware with every `npm install`. Our goal is to minimize this attack vector.
We consider infrastructure attacks like rogue NPM modules very important;
that's why it's crucial to minimize the amount of 3rd-party dependencies & native
bindings. If your app uses 500 dependencies, any dep could get hacked and you'll
be downloading malware with every `npm install`. Our goal is to minimize this attack vector.
## Speed
Benchmarks done with Apple M2 on macOS 12 with Node.js 18.
Benchmarks done with Apple M2 on macOS 13 with Node.js 19.
getPublicKey(utils.randomPrivateKey()) x 8,627 ops/sec @ 115μs/op
sign x 4,355 ops/sec @ 229μs/op
verify x 852 ops/sec @ 1ms/op
verify (no decompression) x 975 ops/sec @ 1ms/op
Point.fromHex decompression x 13,512 ops/sec @ 74μs/op
ristretto255#hashToCurve x 6,419 ops/sec @ 155μs/op
ristretto255 round x 6,451 ops/sec @ 155μs/op
curve25519.scalarMultBase x 1,273 ops/sec @ 785μs/op
ed25519.getSharedSecret x 968 ops/sec @ 1ms/op
getPublicKey 1 bit x 8,260 ops/sec @ 121μs/op
getPublicKey(utils.randomPrivateKey()) x 8,096 ops/sec @ 123μs/op
sign x 4,084 ops/sec @ 244μs/op
verify x 872 ops/sec @ 1ms/op
Point.fromHex decompression x 14,523 ops/sec @ 68μs/op
Compare to alternative implementations:
ristretto255 x 669 ops/sec @ 1ms/op ± 1.41% (min: 1ms, max: 8ms)
sodium-native x 82,925 ops/sec @ 12μs/op
tweetnacl@1.0.3 getPublicKey x 1,808 ops/sec @ 552μs/op ± 1.64%
tweetnacl@1.0.3 sign x 651 ops/sec @ 1ms/op
ristretto255@0.1.2 getPublicKey x 640 ops/sec @ 1ms/op ± 1.59%
sodium-native#sign x 83,654 ops/sec @ 11μs/op
# tweetnacl@1.0.3 (fast)
getPublicKey x 2,087 ops/sec @ 479μs/op # aka scalarMultBase
sign x 667 ops/sec @ 1ms/op
# ristretto255@0.1.2
getPublicKey x 669 ops/sec @ 1ms/op ± 1.41% (min: 1ms, max: 8ms)
# sodium-native@3.4.1
# native bindings to libsodium, **node.js-only**
sign x 82,925 ops/sec @ 12μs/op
## Contributing

@@ -339,4 +212,31 @@

## Upgrading
noble-ed25519 v2 features improved security and smaller attack surface.
The goal of v2 is to provide minimum possible JS library which is safe and fast.
That means the library was reduced 4x, to just over 300 lines. In order to
achieve the goal, **some features were moved** to
[noble-curves](https://github.com/paulmillr/noble-curves), which is
even safer and faster drop-in replacement library with same API.
Switch to curves if you intend to keep using these features:
- x25519 / curve25519 / getSharedSecret
- ristretto255 / RistrettoPoint
- Using `utils.precompute()` for non-base point
- Support for environments which don't support bigint literals
- Common.js support
- Support for node.js 18 and older without [shim](#usage)
Other changes for upgrading from @noble/ed25519 1.7 to 2.0:
- Methods are now sync by default; use `getPublicKeyAsync`, `signAsync`, `verifyAsync` for async versions
- `bigint` is no longer allowed in `getPublicKey`, `sign`, `verify`. Reason: ed25519 is LE, can lead to bugs
- `Point` (2d xy) has been changed to `ExtendedPoint` (xyzt)
- `Signature` was removed: just use raw bytes or hex now
- `utils` were split into `utils` (same api as in noble-curves) and
`etc` (`sha512Sync` and others)
## License
MIT (c) 2019 Paul Miller [(https://paulmillr.com)](https://paulmillr.com), see LICENSE file.
SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc