Security News
pnpm 10.0.0 Blocks Lifecycle Scripts by Default
pnpm 10 blocks lifecycle scripts by default to improve security, addressing supply chain attack risks but sparking debate over compatibility and workflow changes.
@solana/buffer-layout
Advanced tools
@solana/buffer-layout is a library for defining and working with binary data layouts in JavaScript. It is particularly useful for serializing and deserializing data structures to and from binary formats, which is a common requirement when working with blockchain data and other low-level protocols.
Defining a Layout
This feature allows you to define a binary layout for a data structure. In this example, a structure with an 8-bit unsigned integer and a 32-bit unsigned integer is defined and encoded into a buffer.
const { struct, u8, u32 } = require('@solana/buffer-layout');
const MyStruct = struct([
u8('field1'),
u32('field2')
]);
const buffer = Buffer.alloc(MyStruct.span);
MyStruct.encode({ field1: 1, field2: 42 }, buffer);
console.log(buffer);
Decoding a Layout
This feature allows you to decode a binary buffer into a JavaScript object based on the defined layout. In this example, a buffer is decoded into an object with the fields 'field1' and 'field2'.
const { struct, u8, u32 } = require('@solana/buffer-layout');
const MyStruct = struct([
u8('field1'),
u32('field2')
]);
const buffer = Buffer.from([1, 0, 0, 0, 42]);
const decoded = MyStruct.decode(buffer);
console.log(decoded);
Nested Layouts
This feature allows you to define nested layouts, where one layout contains another. In this example, an outer structure contains a sequence of inner structures.
const { struct, u8, u32, seq } = require('@solana/buffer-layout');
const InnerStruct = struct([
u8('innerField1'),
u32('innerField2')
]);
const OuterStruct = struct([
u8('outerField1'),
seq(InnerStruct, 2, 'innerStructs')
]);
const buffer = Buffer.alloc(OuterStruct.span);
OuterStruct.encode({ outerField1: 1, innerStructs: [{ innerField1: 2, innerField2: 3 }, { innerField1: 4, innerField2: 5 }] }, buffer);
console.log(buffer);
The 'buffer' package is a core Node.js module that provides a way of handling binary data. While it does not provide the same high-level layout definitions as @solana/buffer-layout, it is fundamental for working with binary data in Node.js.
The 'protobufjs' package is used for working with Protocol Buffers, a method developed by Google for serializing structured data. It offers more features and complexity compared to @solana/buffer-layout, including schema definitions and support for various data types.
The 'flatbuffers' package is another serialization library that allows you to define data structures and serialize them into a compact binary format. It is more complex and offers more features than @solana/buffer-layout, including support for schema evolution.
@solana/buffer-layout
is a TypeScript fork of buffer-layout
. Same API, just adds types and TypeScript docs.
Install with npm install @solana/buffer-layout
.
Development and testing is done using Node.js, supporting versions 5.10 and later.
buffer-layout is a utility module implemented in pure JavaScript that supports translations between JavaScript values and Buffers. It is made available through github and released under the MIT license.
Layout support is provided for these types of data:
All examples are from the test/examples.js
unit test and assume the
following context:
const assert = require('assert');
const util = require('util');
const lo = require('buffer-layout');
The examples give only a taste of what can be done. Structures, unions, and sequences can nest; union discriminators can be within the union or external to it; sequence and blob lengths may be fixed or read from the buffer.
For full details see the documentation.
The C definition:
int16_t arr[4] = { 1, -1, 3, -3 };
The buffer-layout way:
const ds = lo.seq(lo.s16(), 4);
const b = Buffer.alloc(8);
assert.equal(ds.encode([1, -1, 3, -3], b), 4 * 2);
assert.equal(Buffer.from('0100ffff0300fdff', 'hex').compare(b), 0);
assert.deepEqual(ds.decode(b), [1, -1, 3, -3]);
struct
on a 32-bit little-endian machineThe C definition:
struct ds {
uint8_t v;
uint32_t u32;
} st;
The buffer-layout way:
const ds = lo.struct([lo.u8('v'),
lo.seq(lo.u8(), 3), // alignment padding
lo.u32('u32')]);
assert.equal(ds.offsetOf('u32'), 4);
const b = Buffer.alloc(8);
b.fill(0xbd);
assert.equal(ds.encode({v: 1, u32: 0x12345678}, b), 1 + 3 + 4);
assert.equal(Buffer.from('01bdbdbd78563412', 'hex').compare(b), 0);
assert.deepEqual(ds.decode(b), {v: 1, u32: 0x12345678});
Note that the C language requires padding which must be explicitly added in the buffer-layout structure definition. Since the padding is not accessible, the corresponding layout has no property.
See Structure.
struct
on a 32-bit little-endian machineThe C definition:
struct ds {
uint8_t v;
uint32_t u32;
} __attribute__((__packed__)) st;
The buffer-layout way:
const ds = lo.struct([lo.u8('v'),
lo.u32('u32')]);
assert.equal(ds.offsetOf('u32'), 1);
const b = Buffer.alloc(5);
b.fill(0xbd);
assert.equal(ds.encode({v: 1, u32: 0x12345678}, b), 1 + 4);
assert.equal(Buffer.from('0178563412', 'hex').compare(b), 0);
assert.deepEqual(ds.decode(b), {v: 1, u32: 0x12345678});
Assume a 5-byte packed structure where the interpretation of the last four bytes depends on the first byte. The C definition:
struct {
uint8_t t;
union ds {
uint8_t u8[4]; // default interpretation
int16_t s16[2]; // when t is 'h'
uint32_t u32; // when t is 'w'
float f32; // when t is 'f'
} u;
} __attribute__((__packed__)) un;
The buffer-layout way:
const t = lo.u8('t');
const un = lo.union(t, lo.seq(lo.u8(), 4, 'u8'));
const nul = un.addVariant('n'.charCodeAt(0), 'nul');
const u32 = un.addVariant('w'.charCodeAt(0), lo.u32(), 'u32');
const s16 = un.addVariant('h'.charCodeAt(0), lo.seq(lo.s16(), 2), 's16');
const f32 = un.addVariant('f'.charCodeAt(0), lo.f32(), 'f32');
const b = Buffer.alloc(un.span);
assert.deepEqual(un.decode(b), {t: 0, u8: [0, 0, 0, 0]});
assert.deepEqual(un.decode(Buffer.from('6e01020304', 'hex')),
{nul: true});
assert.deepEqual(un.decode(Buffer.from('7778563412', 'hex')),
{u32: 0x12345678});
assert.deepEqual(un.decode(Buffer.from('660000bd41', 'hex')),
{f32: 23.625});
assert.deepEqual(un.decode(Buffer.from('a5a5a5a5a5', 'hex')),
{t: 0xa5, u8: [0xa5, 0xa5, 0xa5, 0xa5]});
assert.equal(s16.encode({s16: [123, -123]}, b), 1 + 2 * 2);
assert.equal(Buffer.from('687b0085ff', 'hex').compare(b), 0);
See Union.
Using the same 5-byte packet structure but with JavaScript classes representing the union and the variants:
function Union() { }
lo.bindConstructorLayout(Union,
lo.union(lo.u8('t'), lo.seq(lo.u8(), 4, 'u8')));
function Vn() {}
util.inherits(Vn, Union);
lo.bindConstructorLayout(Vn,
Union.layout_.addVariant('n'.charCodeAt(0), 'nul'));
function Vu32(v) { this.u32 = v; }
util.inherits(Vu32, Union);
lo.bindConstructorLayout(Vu32,
Union.layout_.addVariant('w'.charCodeAt(0), lo.u32(), 'u32'));
function Vs16(v) { this.s16 = v; }
util.inherits(Vs16, Union);
lo.bindConstructorLayout(Vs16,
Union.layout_.addVariant('h'.charCodeAt(0), lo.seq(lo.s16(), 2), 's16'));
function Vf32(v) { this.f32 = v; }
util.inherits(Vf32, Union);
lo.bindConstructorLayout(Vf32,
Union.layout_.addVariant('f'.charCodeAt(0), lo.f32(), 'f32'));
let v = Union.decode(Buffer.from('7778563412', 'hex'));
assert(v instanceof Vu32);
assert(v instanceof Union);
assert.equal(v.u32, 0x12345678);
v = Union.decode(Buffer.from('a5a5a5a5a5', 'hex'));
assert(v instanceof Union);
assert.equal(v.t, 0xa5);
assert.deepEqual(v.u8, [0xa5, 0xa5, 0xa5, 0xa5]);
const b = Buffer.alloc(Union.layout_.span);
v = new Vf32(23.625);
v.encode(b);
assert.equal(Buffer.from('660000bd41', 'hex').compare(b), 0);
b.fill(0xFF);
v = new Vn();
v.encode(b);
assert.equal(Buffer.from('6effffffff', 'hex').compare(b), 0);
Note that one variant ('n'
) carries no data, leaving the remainder of
the buffer unchanged when stored.
See Layout.makeDestinationObject() and bindConstructorLayout.
The C definition:
struct ds {
unsigned int b00l03: 3;
unsigned int flg03: 1;
unsigned int b04l18: 24;
unsigned int b1Cl04: 4;
} st;
The buffer-layout way:
const ds = lo.bits(lo.u32());
const b = Buffer.alloc(4);
ds.addField(3, 'b00l03');
ds.addBoolean('flg03');
ds.addField(24, 'b04l18');
ds.addField(4, 'b1Cl04');
b.fill(0xff);
assert.equal(ds.encode({b00l03: 3, b04l18: 24, b1Cl04: 4}, b), 4);
assert.equal(Buffer.from('8b010040', 'hex').compare(b), 0);
assert.deepEqual(ds.decode(b),
{b00l03: 3, flg03: true, b04l18: 24, b1Cl04: 4});
See BitStructure.
The C definition:
uint64_t v = 0x0102030405060708ULL;
The buffer-layout way:
const ds = lo.nu64be();
const b = Buffer.from('0102030405060708', 'hex');
const v = 72623859790382856;
const nv = v - 6;
assert.equal(v, nv);
assert.equal(ds.decode(b), nv);
Note that because the exact value is not less than 2^53 it cannot be represented as a JavaScript Number, and is instead approximated by a nearby representable integer that is equivalent within Numbers.
See NearUInt64.
The C definition:
const char str[] = "hi!";
The buffer-layout way:
const ds = lo.cstr();
const b = Buffer.alloc(8);
assert.equal(ds.encode('hi!', b), 3 + 1);
const slen = ds.getSpan(b);
assert.equal(slen, 4);
assert.equal(Buffer.from('68692100', 'hex').compare(b.slice(0, slen)), 0);
assert.equal(ds.decode(b), 'hi!');
See CString.
The buffer-layout way:
const ds = lo.blob(4);
const b = Buffer.from('0102030405060708', 'hex');
assert.equal(Buffer.from('03040506', 'hex').compare(ds.decode(b, 2)), 0);
See Blob.
The buffer-layout way:
const pr = lo.seq(lo.cstr(), 2);
const n = lo.u8('n');
const vla = lo.seq(pr, lo.offset(n, -1), 'a');
const st = lo.struct([n, vla], 'st');
const b = Buffer.alloc(32);
const arr = [['k1', 'v1'], ['k2', 'v2'], ['k3', 'etc']];
b.fill(0);
assert.equal(st.encode({a: arr}, b),
1 + (2 * ((2 + 1) + (2 + 1)) + (2 + 1) + (3 + 1)));
const span = st.getSpan(b);
assert.equal(span, 20);
assert.equal(Buffer.from('036b31007631006b32007632006b330065746300', 'hex')
.compare(b.slice(0, span)), 0);
assert.deepEqual(st.decode(b), {n: 3, a: arr});
See OffsetLayout.
When data is obtained over a packetized interface the length of the packet can provide implicit limits on the last field.
The C definition:
struct ds {
uint8_t prop;
uint16_t data[];
};
The buffer-layout way:
const st = lo.struct([lo.u8('prop'),
lo.seq(lo.u16(),
lo.greedy(lo.u16().span),
'data')],
'ds');
const b = Buffer.from('21010002030405', 'hex');
assert.deepEqual(st.decode(b), {prop: 33, data: [0x0001, 0x0302, 0x0504]});
b.fill(0xFF);
assert.equal(st.encode({prop: 9, data: [5, 6]}, b), 1 + 2 * 2);
assert.equal(Buffer.from('0905000600FFFF', 'hex').compare(b), 0);
Storing arbitrary data using a leading byte to identify the content then a value that takes up only as much room as is necessary.
The example also shows how to extend the variant recognition API to support abitrary constant without consuming space for them in the encoded union. This could be used to make something similar to BSON.
Here's the code that defines the union, the variants, and the
recognition of true
and false
values for b
as distinct variants:
const un = lo.union(lo.u8('t'));
const u8 = un.addVariant('B'.charCodeAt(0), lo.u8(), 'u8');
const s16 = un.addVariant('h'.charCodeAt(0), lo.s16(), 's16');
const s48 = un.addVariant('Q'.charCodeAt(0), lo.s48(), 's48');
const cstr = un.addVariant('s'.charCodeAt(0), lo.cstr(), 'str');
const tr = un.addVariant('T'.charCodeAt(0), lo.const(true), 'b');
const fa = un.addVariant('F'.charCodeAt(0), lo.const(false), 'b');
const b = Buffer.alloc(1 + 6);
un.configGetSourceVariant(function(src) {
if (src.hasOwnProperty('b')) {
return src.b ? tr : fa;
}
return this.defaultGetSourceVariant(src);
});
And here are examples of encoding, checking the encoded length, and decoding each of the alternatives:
b.fill(0xff);
assert.equal(un.encode({u8: 1}, b), 1 + 1);
assert.equal(un.getSpan(b), 2);
assert.equal(Buffer.from('4201ffffffffff', 'hex').compare(b), 0);
assert.equal(un.decode(b).u8, 1);
b.fill(0xff);
assert.equal(un.encode({s16: -32000}, b), 1 + 2);
assert.equal(un.getSpan(b), 3);
assert.equal(Buffer.from('680083ffffffff', 'hex').compare(b), 0);
assert.equal(un.decode(b).s16, -32000);
b.fill(0xff);
const v48 = Math.pow(2, 47) - 1;
assert.equal(un.encode({s48: v48}, b), 1 + 6);
assert.equal(un.getSpan(b), 7);
assert.equal(Buffer.from('51ffffffffff7f', 'hex').compare(b), 0);
assert.equal(un.decode(b).s48, v48);
b.fill(0xff);
assert.equal(un.encode({b: true}, b), 1);
assert.equal(un.getSpan(b), 1);
assert.equal(Buffer.from('54ffffffffffff', 'hex').compare(b), 0);
assert.strictEqual(un.decode(b).b, true);
b.fill(0xff);
assert.equal(un.encode({b: false}, b), 1);
assert.equal(un.getSpan(b), 1);
assert.equal(Buffer.from('46ffffffffffff', 'hex').compare(b), 0);
assert.strictEqual(un.decode(b).b, false);
NOTE This code tickles a long-standing bug in Buffer.writeInt{L,B}E; if you are using Node prior to 4.2.4 or 5.2.0 you should update.
FAQs
Translation between JavaScript values and Buffers
The npm package @solana/buffer-layout receives a total of 187,591 weekly downloads. As such, @solana/buffer-layout popularity was classified as popular.
We found that @solana/buffer-layout demonstrated a not healthy version release cadence and project activity because the last version was released a year ago. It has 13 open source maintainers collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Security News
pnpm 10 blocks lifecycle scripts by default to improve security, addressing supply chain attack risks but sparking debate over compatibility and workflow changes.
Product
Socket now supports uv.lock files to ensure consistent, secure dependency resolution for Python projects and enhance supply chain security.
Research
Security News
Socket researchers have discovered multiple malicious npm packages targeting Solana private keys, abusing Gmail to exfiltrate the data and drain Solana wallets.