New Case Study:See how Anthropic automated 95% of dependency reviews with Socket.Learn More
Socket
Sign inDemoInstall
Socket

@vercel/ai-utils

Package Overview
Dependencies
Maintainers
213
Versions
1
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

@vercel/ai-utils

AI Helpers

  • 0.0.2
  • latest
  • Source
  • npm
  • Socket score

Version published
Weekly downloads
56
decreased by-32.53%
Maintainers
213
Weekly downloads
 
Created
Source

Vercel AI Utils

Edge-ready utilities to accelerate working with AI in JavaScript and React.

Installation

pnpm install @vercel/ai-utils

Table of Contents

Usage

// app/api/generate/route.ts
import { Configuration, OpenAIApi } from 'openai-edge';
import { OpenAITextStream, StreamingTextResponse } from '@vercel/ai-utils';

const config = new Configuration({
  apiKey: process.env.OPENAI_API_KEY,
});
const openai = new OpenAIApi(config);

export const runtime = 'edge';

export async function POST() {
  const response = await openai.createChatCompletion({
    model: 'gpt-4',
    stream: true,
    messages: [{ role: 'user', content: 'What is love?' }],
  });
  const stream = OpenAITextStream(response);
  return new StreamingTextResponse(stream);
}

Tutorial

For this example, we'll stream a chat completion text from OpenAI's gpt-3.5-turbo and render it in Next.js. This tutorial assumes you have

Create a Next.js app

Create a Next.js application and install @vercel/ai-utils and openai-edge. We currently prefer the latter openai-edge library over the official OpenAI SDK because the official SDK uses axios which is not compatible with Vercel Edge Functions.

pnpx create-next-app my-ai-app
cd my-ai-app
pnpm install @vercel/ai-utils openai-edge

Add your OpenAI API Key to .env

Create a .env file and add an OpenAI API Key called

touch .env
OPENAI_API_KEY=xxxxxxxxx

Create a Route Handler

Create a Next.js Route Handler that uses the Edge Runtime that we'll use to generate a chat completion via OpenAI that we'll then stream back to our Next.js.

// ./app/api/generate/route.ts
import { Configuration, OpenAIApi } from 'openai-edge';
import { OpenAITextStream, StreamingTextResponse } from '@vercel/ai-utils';

// Create an OpenAI API client (that's edge friendly!)
const config = new Configuration({
  apiKey: process.env.OPENAI_API_KEY,
});
const openai = new OpenAIApi(config);

// IMPORTANT! Set the runtime to edge
export const runtime = 'edge';

export async function POST(req: Request) {
  // Extract the `prompt` from the body of the request
  const { prompt } = await req.json();

  // Ask OpenAI for a streaming chat completion given the prompt
  const response = await openai.createCompletion({
    model: 'gpt-3.5-turbo',
    stream: true,
    prompt,
  });
  // Convert the response into a React-friendly text-stream
  const stream = OpenAITextStream(response);
  // Respond with the stream
  return new StreamingTextResponse(stream);
}

Wire up the UI

Create a Client component with a form that we'll use to gather the prompt from the user and then stream back the completion from.

// ./app/form.ts
'use client';

import { useState } from 'react';
import { useCompletion } from '@vercel/ai-utils/react'; //@todo

export function Form() {
  const [value, setValue] = useState('');
  const { setPrompt, completion } = useCompletion('/api/generate');
  return (
    <div>
      <form
        onSubmit={(e) => {
          e.preventDefault();
          setPrompt(value);
          setValue('');
        }}
      >
        <textarea value={value} onChange={(e) => setValue(e.target.value)} />
        <button type="submit">Submit</button>
      </form>
      <div>{completion}</div>
    </div>
  );
}

API Reference

OpenAIStream(res: Response, cb: AIStreamCallbacks): ReadableStream

A transform that will extract the text from all chat and completion OpenAI models as returned as a ReadableStream.

// app/api/generate/route.ts
import { Configuration, OpenAIApi } from 'openai-edge';
import { OpenAITextStream, StreamingTextResponse } from '@vercel/ai-utils';

const config = new Configuration({
  apiKey: process.env.OPENAI_API_KEY,
});
const openai = new OpenAIApi(config);

export const runtime = 'edge';

export async function POST() {
  const response = await openai.createChatCompletion({
    model: 'gpt-4',
    stream: true,
    messages: [{ role: 'user', content: 'What is love?' }],
  });
  const stream = OpenAITextStream(response, {
    async onStart() {
      console.log('streamin yo')
    },
    async onToken(token) {
      console.log('token: ' + token)
    },
    async onCompletion(content) {
      console.log('full text: ' + )
      // await prisma.messages.create({ content }) or something
    }
  });
  return new StreamingTextResponse(stream);
}

HuggingFaceStream(iter: AsyncGenerator<any>, cb: AIStreamCallbacks): ReadableStream

A transform that will extract the text from most chat and completion HuggingFace models and return them as a ReadableStream.

// app/api/generate/route.ts
import { HfInference } from '@huggingface/inference';
import { HuggingFaceStream, StreamingTextResponse } from '@vercel/ai-utils';

export const runtime = 'edge';

const Hf = new HfInference(process.env.HUGGINGFACE_API_KEY);

export async function POST() {
  const response = await Hf.textGenerationStream({
    model: 'OpenAssistant/oasst-sft-4-pythia-12b-epoch-3.5',
    inputs: `<|prompter|>What's the Earth total population?<|endoftext|><|assistant|>`,
    parameters: {
      max_new_tokens: 200,
      // @ts-ignore
      typical_p: 0.2, // you'll need this for OpenAssistant
      repetition_penalty: 1,
      truncate: 1000,
      return_full_text: false,
    },
  });
  const stream = HuggingFaceStream(response);
  return new StreamingTextResponse(stream);
}

StreamingTextResponse(res: ReadableStream, init?: ResponseInit)

This is a tiny wrapper around Response class that makes returning ReadableStreams of text a one liner. Status is automatically set to 200, with 'Content-Type': 'text/plain; charset=utf-8' set as headers.

// app/api/generate/route.ts
import { OpenAITextStream, StreamingTextResponse } from '@vercel/ai-utils';

export const runtime = 'edge';

export async function POST() {
  const response = await openai.createChatCompletion({
    model: 'gpt-4',
    stream: true,
    messages: { role: 'user', content: 'What is love?' },
  });
  const stream = OpenAITextStream(response);
  return new StreamingTextResponse(stream, {
    'X-RATE-LIMIT': 'lol',
  }); // => new Response(stream, { status: 200, headers: { 'Content-Type': 'text/plain; charset=utf-8', 'X-RATE-LIMIT': 'lol' }})
}

FAQs

Package last updated on 23 May 2023

Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc