Research
Security News
Quasar RAT Disguised as an npm Package for Detecting Vulnerabilities in Ethereum Smart Contracts
Socket researchers uncover a malicious npm package posing as a tool for detecting vulnerabilities in Etherium smart contracts.
@vercel/ai-utils
Advanced tools
Edge-ready utilities to accelerate working with AI in JavaScript and React.
pnpm install @vercel/ai-utils
Table of Contents
// app/api/generate/route.ts
import { Configuration, OpenAIApi } from 'openai-edge';
import { OpenAITextStream, StreamingTextResponse } from '@vercel/ai-utils';
const config = new Configuration({
apiKey: process.env.OPENAI_API_KEY,
});
const openai = new OpenAIApi(config);
export const runtime = 'edge';
export async function POST() {
const response = await openai.createChatCompletion({
model: 'gpt-4',
stream: true,
messages: [{ role: 'user', content: 'What is love?' }],
});
const stream = OpenAITextStream(response);
return new StreamingTextResponse(stream);
}
For this example, we'll stream a chat completion text from OpenAI's gpt-3.5-turbo
and render it in Next.js. This tutorial assumes you have
Create a Next.js application and install @vercel/ai-utils
and openai-edge
. We currently prefer the latter openai-edge
library over the official OpenAI SDK because the official SDK uses axios
which is not compatible with Vercel Edge Functions.
pnpx create-next-app my-ai-app
cd my-ai-app
pnpm install @vercel/ai-utils openai-edge
.env
Create a .env
file and add an OpenAI API Key called
touch .env
OPENAI_API_KEY=xxxxxxxxx
Create a Next.js Route Handler that uses the Edge Runtime that we'll use to generate a chat completion via OpenAI that we'll then stream back to our Next.js.
// ./app/api/generate/route.ts
import { Configuration, OpenAIApi } from 'openai-edge';
import { OpenAITextStream, StreamingTextResponse } from '@vercel/ai-utils';
// Create an OpenAI API client (that's edge friendly!)
const config = new Configuration({
apiKey: process.env.OPENAI_API_KEY,
});
const openai = new OpenAIApi(config);
// IMPORTANT! Set the runtime to edge
export const runtime = 'edge';
export async function POST(req: Request) {
// Extract the `prompt` from the body of the request
const { prompt } = await req.json();
// Ask OpenAI for a streaming chat completion given the prompt
const response = await openai.createCompletion({
model: 'gpt-3.5-turbo',
stream: true,
prompt,
});
// Convert the response into a React-friendly text-stream
const stream = OpenAITextStream(response);
// Respond with the stream
return new StreamingTextResponse(stream);
}
Create a Client component with a form that we'll use to gather the prompt from the user and then stream back the completion from.
// ./app/form.ts
'use client';
import { useState } from 'react';
import { useCompletion } from '@vercel/ai-utils/react'; //@todo
export function Form() {
const [value, setValue] = useState('');
const { setPrompt, completion } = useCompletion('/api/generate');
return (
<div>
<form
onSubmit={(e) => {
e.preventDefault();
setPrompt(value);
setValue('');
}}
>
<textarea value={value} onChange={(e) => setValue(e.target.value)} />
<button type="submit">Submit</button>
</form>
<div>{completion}</div>
</div>
);
}
OpenAIStream(res: Response, cb: AIStreamCallbacks): ReadableStream
A transform that will extract the text from all chat and completion OpenAI models as returned as a ReadableStream
.
// app/api/generate/route.ts
import { Configuration, OpenAIApi } from 'openai-edge';
import { OpenAITextStream, StreamingTextResponse } from '@vercel/ai-utils';
const config = new Configuration({
apiKey: process.env.OPENAI_API_KEY,
});
const openai = new OpenAIApi(config);
export const runtime = 'edge';
export async function POST() {
const response = await openai.createChatCompletion({
model: 'gpt-4',
stream: true,
messages: [{ role: 'user', content: 'What is love?' }],
});
const stream = OpenAITextStream(response, {
async onStart() {
console.log('streamin yo')
},
async onToken(token) {
console.log('token: ' + token)
},
async onCompletion(content) {
console.log('full text: ' + )
// await prisma.messages.create({ content }) or something
}
});
return new StreamingTextResponse(stream);
}
HuggingFaceStream(iter: AsyncGenerator<any>, cb: AIStreamCallbacks): ReadableStream
A transform that will extract the text from most chat and completion HuggingFace models and return them as a ReadableStream
.
// app/api/generate/route.ts
import { HfInference } from '@huggingface/inference';
import { HuggingFaceStream, StreamingTextResponse } from '@vercel/ai-utils';
export const runtime = 'edge';
const Hf = new HfInference(process.env.HUGGINGFACE_API_KEY);
export async function POST() {
const response = await Hf.textGenerationStream({
model: 'OpenAssistant/oasst-sft-4-pythia-12b-epoch-3.5',
inputs: `<|prompter|>What's the Earth total population?<|endoftext|><|assistant|>`,
parameters: {
max_new_tokens: 200,
// @ts-ignore
typical_p: 0.2, // you'll need this for OpenAssistant
repetition_penalty: 1,
truncate: 1000,
return_full_text: false,
},
});
const stream = HuggingFaceStream(response);
return new StreamingTextResponse(stream);
}
StreamingTextResponse(res: ReadableStream, init?: ResponseInit)
This is a tiny wrapper around Response
class that makes returning ReadableStreams
of text a one liner. Status is automatically set to 200
, with 'Content-Type': 'text/plain; charset=utf-8'
set as headers
.
// app/api/generate/route.ts
import { OpenAITextStream, StreamingTextResponse } from '@vercel/ai-utils';
export const runtime = 'edge';
export async function POST() {
const response = await openai.createChatCompletion({
model: 'gpt-4',
stream: true,
messages: { role: 'user', content: 'What is love?' },
});
const stream = OpenAITextStream(response);
return new StreamingTextResponse(stream, {
'X-RATE-LIMIT': 'lol',
}); // => new Response(stream, { status: 200, headers: { 'Content-Type': 'text/plain; charset=utf-8', 'X-RATE-LIMIT': 'lol' }})
}
FAQs
AI Helpers
The npm package @vercel/ai-utils receives a total of 7 weekly downloads. As such, @vercel/ai-utils popularity was classified as not popular.
We found that @vercel/ai-utils demonstrated a not healthy version release cadence and project activity because the last version was released a year ago. It has 213 open source maintainers collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Research
Security News
Socket researchers uncover a malicious npm package posing as a tool for detecting vulnerabilities in Etherium smart contracts.
Security News
Research
A supply chain attack on Rspack's npm packages injected cryptomining malware, potentially impacting thousands of developers.
Research
Security News
Socket researchers discovered a malware campaign on npm delivering the Skuld infostealer via typosquatted packages, exposing sensitive data.