Signer
Overview
Waves Signer is a TypeScript/JavaScript library that features signing and broadcasting transactions on behalf of users without asking them for their seed phrases or private keys.
Provider
In order to work with Signer, you need to link an external Provider library. Provider securely stores user's private data. Your web app and Signer itself do not have access to user's private key and seed phrase.
The Provider authenticates user and generates a digital signature.
Signer implements developer-friendly protocol for interacting with Provider as well as broadcasts transactions to the blockchain.

For now, you can use one of the following Providers:
- ProviderSeed developed by Waves team creates user account from SEED. ProviderSeed can be used at the app debugging stage.
- ProviderWeb developed by Waves.Exchange team uses an account created or imported into the Waves.Exchange web app via user's private key or seed phrase.
- ProviderCloud developed by Waves.Exchange team uses an email-based Waves.Exchange.
You can also develop your own Provider, see the Provider Interface section below.
Signer + ProviderWeb: How It Works
When Signer requests to sign a transaction, ProviderWeb opens an iframe, where the user can review transaction details and confirm or reject it. Upon confirmation, ProviderWeb generates a digital signature.
Restrictions
Signer supports all types of transactions except Exchange transaction and Update Asset Info transaction.
Signer supports all browsers except Brave.
Getting Started
1. Signer and Provider library installation
- 
To install Signer library use npm i @waves/signer
 
- 
To install ProviderSeed developed by Waves team, use npm i @waves/provider-seed @waves/waves-transactions
 
- 
To install ProviderWeb developed by Waves.Exchange, use npm i @waves.exchange/provider-web
 For Windows, use the following format: npm i '@waves.exchange/provider-web'
 
- 
To install ProviderCloud developed by Waves.Exchange, use npm i @waves.exchange/provider-cloud
 For Windows, use the following format: npm i '@waves.exchange/provider-cloud'
 
2. Library initialization
Add library initialization to your app.
- 
For Testnet & ProviderSeed: import { Signer } from '@waves/signer';
import { ProviderSeed } from '@waves/provider-seed';
import { libs } from '@waves/waves-transactions';
const seed = libs.crypto.randomSeed(15);
const signer = new Signer({
  
  NODE_URL: 'https://nodes-testnet.wavesnodes.com'
});
signer.setProvider(new ProviderSeed(seed));
 
- 
For Testnet & Waves.Exchange ProviderWeb: import { Signer } from '@waves/signer';
import { ProviderWeb } from '@waves.exchange/provider-web';
const signer = new Signer({
  
  NODE_URL: 'https://nodes-testnet.wavesnodes.com'
});
signer.setProvider(new ProviderWeb('https://testnet.waves.exchange/signer/'))
 
- 
For Testnet & Waves.Exchange ProviderCloud: import { Signer } from '@waves/signer';
import { ProviderCloud } from '@waves.exchange/provider-cloud';
const signer = new Signer({
  
  NODE_URL: 'https://nodes-testnet.wavesnodes.com'
});
signer.setProvider(new ProviderCloud('https://testnet.waves.exchange/signer/'))
 
- 
For Mainnet & Waves.Exchange ProviderWeb: import { Signer } from '@waves/signer';
import { ProviderWeb } from '@waves.exchange/provider-web';
const signer = new Signer();
signer.setProvider(new ProviderWeb());
 
- 
For Mainnet & Waves.Exchange ProviderCloud: import { Signer } from '@waves/signer';
import { ProviderCloud } from '@waves.exchange/provider-cloud';
const signer = new Signer();
signer.setProvider(new ProviderCloud());
 
After that you will be able to use Signer features in the app.
3. Basic example
Now your application is ready to work with Waves blockchain. Let's test it by implementing basic functionality. For example, we could try to authenticate user, get his/her balances and transfer funds.
const user = await signer.login();
const balances = await signer.getBalance();
const [broadcastedTransfer] = await signer
  .transfer({amount: 100000000, recipient: 'alias:T:merry'}) 
  .broadcast(); 
const [signedTransfer] = await signer
  .transfer({amount: 100000000, recipient: 'alias:T:merry'}) 
  .sign(); 
More examples
See example of an app that implements the donate button: https://github.com/vlzhr/crypto-donate.
Constructor
new Signer({
  NODE_URL: 'string',
})
Creates an object that features the following methods.
Parameters:
Methods
In code you can use TypeScript types.
User Info
login
Authenticates user with his/her account; creates account if it don't exist.
login();
Returns:
Promise of user data: address and public key.
Usage:
const {address, publicKey} = await signer.login();
Output example:
{
  address: '3P8pGyzZL9AUuFs9YRYPDV3vm73T48ptZxs',
  publicKey: 'FuChbN7t3gvW5esgARFytKNVuHSCZpXSYf1y3eDSruEN',
}
logout
Logs user out.
logout();
Returns: Promise<void>.
Usage:
await signer.logout();
getBalance
If user logged in, provides balances of assets in user's portfolio.
getBalance();
Returns: Promise of list of balances.
Usage:
const balances = await signer.getBalance();
Output example:
[{
  assetId: 'WAVES',
  assetName: 'Waves',
  decimals: 8,
  amount: 100000000,
  isMyAsset: false,
  tokens: 1,
  sponsorship: null,
  isSmart: false
},
{
  assetId: 'AcrRM9STdBu5PNiFveTCbRFTS8tADhKcsbC2KBp8A4tx',
  assetName: 'CoffeeCoin',
  decimals: 3,
  amount: 1500,
  isMyAsset: false,
  tokens: 1.5,
  isSmart: false,
  sponsorship: 500
}]
Output fields:
| assetId | Base58 encoded ID of the asset | 
| assetName | Name of the asset | 
| decimals | Number of decimal places in the asset amount | 
| amount | Amount of asset multiplied by 10^ decimals. For example,decimalsof WAVES is 8, so the real amount is multipied by 10^8.{ "WAVES": 677728840 }means 6.77728840 | 
| isMyAsset | trueif current user is an asset issuer | 
| tokens | Amount of asset to display in app interface | 
| sponsorship | Amount of sponsored asset to be charged to users (per 0.001 WAVES) multiplied by 10^ decimals
 nullif the asset is not sponsored | 
| isSmart | truefor smart assets | 
If user logged in, provides balances of sponsored assets in user's portfolio. See Sponsored Fee.
getSponsoredBalances();
Returns: Promise of list of balances.
Usage:
const sponsoredBalances = await signer.getSponsoredBalances();
Output example:
[{
  assetId: 'AcrRM9STdBu5PNiFveTCbRFTS8tADhKcsbC2KBp8A4tx',
  assetName: 'CoffeeCoin',
  decimals: 3,
  amount: 1500,
  isMyAsset: false,
  tokens: 1.5,
  isSmart: false,
  sponsorship: 500
}]
Output fields are the same as in getBalance method.
Create transactions
The following methods create transactions (but do not sign or broadcast them):
Check which of these transactions are supported by your Provider.
Common fields
Each create transaction method has optional fields that you don't specify manually in most cases:
| chainId | 'W'.charCodeAt(0) or 87 means Mainnet 'T'.charCodeAt(0) or 84 means Testnet
 | Defined by configuration of Waves node that is set in Constructor | 
| fee | Transaction fee | Calculated automatically as described in Transaction fee section | 
| proofs | Array of transaction signatures | Added by signorbroadcastmethod (see How to Sign and Broadcast Transactions). If you specify a proof manually, it is also added to the array | 
| senderPublicKey | Base58 encoded public key of transaction sender | Returned by login method | 
How to Sign and Broadcast Transactions
Each create transaction method returns object that features the sign and broadcast methods.
To sign transaction use sign method. For example:
signer.invoke({
   dApp: address,
   call: { function: name, args: convertedArgs },
}).sign();
To sign transaction and immediately send it to blockchain use broadcast method. For example:
signer.invoke({
   dApp: address,
   call: { function: name, args: convertedArgs },
}).broadcast();
Note: this broadcast method has the same options as the signer.broadcast method that is described below.
You can sign or broadcast several transactions at once. For example:
signer.alias({ 'new_alias', })
  .data([{ key: 'value', type: 'integer', value: 1 ])
  .transfer({ recipient: '3P8pGyzZL9AUuFs9YRYPDV3vm73T48ptZxs', amount: 10000 })
}).broadcast();
alias
Creates Create Alias transaction.
alias(data: {
  alias: 'string'
})
Parameters:
| alias* |  | Short and easy to remember name of address. See Alias for more information | 
* Required parameter.
See Common fields for other fields description.
Usage:
const data = {
  alias: 'new_alias',
}
const [tx] = await signer
  .alias(data)
  .broadcast();
burn
Creates Burn transaction.
burn(data: {
    assetId*: 'string',
    quantity*: LONG,
})
Parameters:
| assetId* |  | Base58 encoded ID of the asset to burn | 
| quantity* |  | Amount of asset multiplied by 10^ decimals. For example,decimalsof WAVES is 8, so the real amount is multipied by 10^8.{ "WAVES": 677728840 }means 6.77728840 | 
* Required parameter.
See Common fields for other fields description.
Usage:
const data = {
  assetId: '4uK8i4ThRGbehENwa6MxyLtxAjAo1Rj9fduborGExarC',
  quantity: 100,
}
const [tx] = await signer
  .burn(data)
  .broadcast();
cancelLease
Creates Lease Cancel transaction.
cancelLease(data: {
    leaseId: 'string',
})
Parameters:
| leasetId* |  | Base58 encoded ID of the Lease transaction | 
* Required parameter.
See Common fields for other fields description.
Usage:
const data = {
  leaseId: '69HK14PEHq2UGRfRYghVW8Kc3487uJaoUmk2ntT4kw7X',
}
const [tx] = await signer
  .cancelLease(data)
  .broadcast();
data
Creates Data transaction.
data(data: [{
  key: 'string',
  type: 'string' | 'integer' | 'binary' | 'boolean',
  value: 'string' | number | boolean,
])
Parameters:
| key* |  | Key of a record. Maximum of 100 characters | 
| type |  | Type of a record | 
| value* |  | Value of a record. Maximum of 5 Kbytes | 
* Required parameter.
See Common fields for other fields description.
Usage:
const records = [
  { key: 'name', type: 'string', value: 'Lorem ipsum dolor sit amet' },
  { key: 'value', type: 'integer', value: 1234567 },
  { key: 'flag', type: 'boolean', value: true }
]
const [tx] = await signer
  .data({ data: records })
  .broadcast();
invoke
Creates Invoke Scipt transaction.
invoke(data: {
  dApp: 'string',
  fee: LONG,
  payment: [{
    assetId: 'string',
    amount: LONG,
  }],
  call: {
    function: 'string',
    args: [{
      type: 'integer' | 'string' | 'binary',
      value: number | 'string',
    }],
  },
  feeAssetId: 'string',
})
Parameters:
| dApp* |  | Base58 encoded address or alias (with alias:T:prefix) of the dApp whose script should be invoked | 
| fee |  | We recommend to specify fee depending on number of action performed by called function (see Transaction Fee) | 
| payment |  | Payments attached to the transaction. Maximum of two payments | 
| payment.assetId* |  | Base58 encoded ID of the asset to pay. WAVESornullmeans WAVES | 
| payment.amount* |  | Amount of asset multiplied by 10^ decimals. For example,decimalsof WAVES is 8, so the real amount is multipied by 10^8.{ "WAVES": 677728840 }means 6.77728840 | 
| call | Default function should be invoked in the dApp | Parameters for called function | 
| call.function* |  | Name of the function that is called | 
| call.args* |  | Arguments for the function  that is called | 
| call.args.type* |  | Type of argument | 
| call.args.value* |  | Value of argument | 
| feeAssetId | WAVES | Base58 encoded ID of the sponsored asset to pay the fee. See the Sponsored Fee article for more information. nullor omitted field means WAVES | 
* Required parameter.
See Common fields for other fields description.
Usage:
const data = {
  dApp: '3Fb641A9hWy63K18KsBJwns64McmdEATgJd',
  fee: 1000000,
  payment: [{
    assetId: '73pu8pHFNpj9tmWuYjqnZ962tXzJvLGX86dxjZxGYhoK',
    amount: 7,
  }],
  call: {
    function: 'foo',
    args: [
      { type: 'integer', value: 1 },
      { type: 'binary', value: 'base64:AAA=' },
      { type: 'string', value: 'foo' }
    ],
  },
}
const [tx] = await signer
  .invoke(data)
  .broadcast();
issue
Creates Issue transaction.
issue(data: {
  name: 'string',
  decimals: number,
  quantity: LONG,
  reissuable: boolean,
  description: 'string',
  script: 'string',
})
Parameters:
| name* |  | Asset name | 
| decimals* |  | Number of digits in decimal part | 
| quantity* |  | Amount of asset multiplied by 10^ decimals | 
| reissuable* |  | trueβ asset reissue is possible.
 falseβ asset reissue is not possible | 
| description* |  | Asset description | 
| script |  | Base64 encoded script (with base64:prefix) to be attached to to asset | 
* Required parameter.
See Common fields for other fields description.
Usage:
const data = {
  name: 'MyToken',
  decimals: 8,
  quantity: 100000000000,
  reissuable: true,
  description: 'It is a gaming token',
}
const [tx] = await signer
  .issue(data)
  .broadcast();
lease
Creates Lease transaction.
lease(data: {
    amount: LONG,
    recipient: 'string',
})
Parameters:
| amount* |  | Amount of WAVES multiplied by 10^8. For example, { "WAVES": 677728840 }means 6.77728840 | 
| recipient* |  | Base58 encoded address or alias (with alias:T:prefix) of the recipient | 
* Required parameter.
See Common fields for other fields description.
Usage:
const data = {
    amount: 10000,
    recipient: 'alias:T:merry',
}
const [tx] = await signer
  .lease(data)
  .broadcast();
massTransfer
Creates Mass Transfer transaction.
massTransfer(data: {
  assetId: 'string',
  transfers: [{
    amount: LONG,
    recipient: 'string',
  }],
  attachment: 'string',
})
Parameters:
| assetId | WAVES | Base58 encoded ID of the asset to transfer | 
| transfers* |  | List of transfers | 
| transfers.amount* |  | Amount of asset multiplied by 10^ decimals. For example,decimalsof WAVES is 8, so the real amount is multipied by 10^8.{ "WAVES": 677728840 }means 6.77728840 | 
| transfers.recipient* |  | Base58 encoded address or alias (with alias:T:prefix) of the recipient | 
| attachment |  | Optional binary data base58 encoded. This field is often used to attach a comment to the transaction. The maximum data size is 140 bytes | 
* Required parameter.
See Common fields for other fields description.
Usage:
const crypto = require('@waves/ts-lib-crypto')
const data = {
    transfers: [
    {
      amount: 100,
      recipient: '3P23fi1qfVw6RVDn4CH2a5nNouEtWNQ4THs',
    },
    {
      amount: 200,
      recipient: 'alias:T:merry',
    }],
    attachment: crypto.base58Encode(crypto.stringToBytes('sample message for recipient'))
]
const [tx] = await signer
  .massTransfer(data)
  .broadcast();
reissue
Creates Reissue transaction.
reissue(data: {
  assetId: 'string',
  quantity: LONG,
  reissuable: boolean,
})
Parameters:
| assetId* |  | Base58 encoded ID of the asset to reissue | 
| quantity* |  | Amount of asset multiplied by 10^ decimalsto reissue | 
| reissuable* |  | trueβ asset reissue is possible.
 falseβ asset reissue is not possible | 
* Required parameter.
See Common fields for other fields description.
Usage:
const data = {
  assetId: 'AcrRM9STdBu5PNiFveTCbRFTS8tADhKcsbC2KBp8A4tx'
  quantity: 100000000000,
  reissuable: true,
}
const [tx] = await signer
  .reissue(data)
  .broadcast();
setAssetScript
Creates Set Asset Script transaction.
setAssetScript(data: {
  assetId: 'string',
  script: 'string',
})
Parameters:
| assetId* |  | Base58 encoded ID of the asset | 
| script |  | Base64 encoded script (with base64:prefix) to be attached to the asset | 
* Required parameter.
See Common fields for other fields description.
Usage:
const data = {
  assetId: 'AcrRM9STdBu5PNiFveTCbRFTS8tADhKcsbC2KBp8A4tx',
  script: 'base64:AwZd0cYf',
}
const [tx] = await signer
  .setAssetScript(data)
  .broadcast();
setScript
Creates Set Script transaction.
setScript(data: {
  script: 'string',
})
Parameters:
| script |  | Base64 encoded account script or dApp script (with base64:prefix) to be attached to the user account.nullmeans cancelling the script | 
See Common fields for other fields description.
Usage:
const data = {
  script: 'base64:AAIDAAAAAAAAAAQIARIAAAAAAAAAAA...',
}
const [tx] = await signer
  .setScript(data)
  .broadcast();
Creates Sponsor Fee transaction.
sponsorship(data: {
    assetId: 'string',
    minSponsoredAssetFee: LONG,
})
Parameters:
| assetId* |  | Base58 encoded ID of the asset | 
| minSponsoredAssetFee |  | Required amount of sponsored token to be charged to users (per 0.001 WAVES) multiplied by 10^ decimals | 
* Required parameter.
See Common fields for other fields description.
Usage:
const data = {
  assetId: 'AcrRM9STdBu5PNiFveTCbRFTS8tADhKcsbC2KBp8A4tx',
  minSponsoredAssetFee: 314,
}
const [tx] = await signer
  .sponsorship(data)
  .broadcast();
transfer
Creates Transfer transaction.
transfer(data: {
  recipient: 'string',
  amount: LONG,
  assetId: 'string',
  attachment: 'string',
  feeAssetId: 'string',
})
Parameters:
| recipient* |  | Base58 encoded address or alias (with alias:T:prefix) of the recipient | 
| amount* |  | Amount of asset multiplied by 10^ decimals. For example,decimalsof WAVES is 8, so the real amount is multipied by 10^8.{ "WAVES": 677728840 }means 6.77728840 | 
| assetId | WAVES | Base58 encoded ID of the asset to transfer. nullor omitted field means WAVES | 
| attachment |  | Optional binary data base58 encoded. This field is often used to attach a comment to the transaction. The maximum data size is 140 bytes | 
| feeAssetId | WAVES | Base58 encoded ID of the sponsored asset to pay the fee. See the Sponsored Fee article for more information. nullor omitted field means WAVES | 
* Required parameter.
See Common fields for other fields description.
Usage:
const crypto = require('@waves/ts-lib-crypto')
const data = {
  recipient: '3P8pGyzZL9AUuFs9YRYPDV3vm73T48ptZxs',
  amount: 10000,
  attachment: crypto.base58Encode(crypto.stringToBytes('sample message for recipient'))
}
const [tx] = await signer
  .transfer(data)
  .broadcast();
batch
Creates list of transactions.
batch([{
  type: number,
  ... 
}])
Parameters:
* Required parameter.
Usage:
const [transfer, alias, issue] = await signer.batch([
  {
    type: 4,
    recipient: 'alias:T:merry',
    amount: 100000000
  },
  {
    type: 10,
    alias: 'send33'
  },
  {
    type: 3,
    name: 'SomeTokenName',
    description: 'Some Token Description',
    reissuable: false,
    quantity: 100,
    decimals: 1
  }
]).sign(); 
In this example, sign method returns array of signed transactions in the same order as they are defined in batch.
Others
broadcast
Sends transactions that are already signed to the blockchain.
broadcast(tx,[options])
Returns: Promise of node response. See the POST /transactions/broadcast method description of Node API.
Parameters:
| tx* |  | Signed transaction or array of signed transactions | 
| options.chain | false | [Type: boolean] Send the next transaction only after the previous transaction is put in the blockchain and confirmed | 
| options.confirmations | -1 | Number of confirmations after that the Promise is resolved: less than 0 β Promise is resolved when the transaction is put in UTX pool
 0 β Promise is resolved when the block that contains the transaction is added to the blockchain
 1 β Promise is resolved when the next block is added to the blockchain and so on
 | 
* Required parameter.
Usage:
const [transfer1] = await signer.transfer({amount: 1, recipient: 'alias:T:merry'}).sign();
const [transfer2] = await signer.transfer({amount: 1, recipient: 'alias:T:merry'}).sign();
await signer.broadcast([transfer1, transfer2], {chain: true, confirmations: 2});
In this example:
- transfer1transaction is sent to the node and put in UTX pool.
- Block with transfer1and two more blocks are added to the blockchain.
- transfer2transaction is sent to the node and put in UTX pool.
- Block with transfer2and two more blocks are added to the blockchain.
- Promise is resolved and you can notify user that his/her transactions are confirmed.
getNetworkByte
Obtains chain ID.
getNetworkByte();
Returns: Promise of chain ID.
Usage:
const chainId = signer.getNetworkByte();
setProvider
Specifies a Provider that is used to sign transactions. See Provider Interface to find out the provider requirements.
setProvider(provider);
Parameters:
| provider* |  | Object that features Provider interface | 
* Required parameter.
Usage:
signer.setProvider(new Provider());
waitTxConfirm
Waits for the transaction to appear in the blockchain.
waitTxConfirm(tx, confirmations)
Parameters:
| tx* |  | Transaction or array transactions that are sent to the blockchain | 
| confirmations* |  | Number of blocks added to the blockchain after the block that contains the transaction | 
* Required parameter.
Usage:
const [tx] = await signer
  .transfer({amount: 10000000, recipient: 'alias:T:merry'})
  .broadcast();
signer.waitTxConfirm(tx, 1).then((tx) => {
  
}});
Provider Interface
:warning: To ensure the security of user data, Provider should be based on iframe.
Provider should feature the following interface:
interface Provider {
    
    on(
        event: 'login',
        handler:({ address: string; publicKey: string }) => any 
    ) => Provider;
    
    on( event: 'logout', handler:() => any) => Provider;
    
    once(
        event: 'login',
        handler:({ address: string; publicKey: string }) => any 
    ) => Provider;
    
    once( event: 'logout', handler:() => any) => Provider;
    
    off(
        event: 'login',
        handler:({ address: string; publicKey: string }) => any 
    ) => Provider;
    off( event: 'logout', handler:() => any) => Provider;
    
    connect(options: {NODE_URL: string, NETWORK_BYTE: number}): Promise<void>;
    
    login(): Promise<{address: string, publicKey: string}>;
    
    logout(): Promise<void>;
    
    signMessage(data: string | number): Promise<string>;
    
    signTypedData(data: Array<TypedData>): Promise<string>;
    
    sign<T extends SignerTx>(toSign: T[]): Promise<SignedTx<T>>;
    sign<T extends Array<SignerTx>>(toSign: T): Promise<SignedTx<T>>;
}
Error Codes
| SignerOptionsError | 1000 | validation | Invalid signer options: NODE_URL, debug | 
| SignerNetworkByteError | 1001 | network | Could not fetch network from {NODE_URL}: Failed to fetch | 
| SignerAuthError | 1002 | authorization | Can't use method: getBalance. User must be logged in | 
| SignerProviderConnectError | 1003 | network | Could not connect the Provider | 
| SignerEnsureProviderError | 1004 | provider | Can't use method: login. Provider instance is missing π Possible reasons: the user is in Incognito mode or has disabled cookies
 | 
| SignerProviderInterfaceError | 1005 | validation | Invalid provider properties: connect | 
| SignerProviderInternalError | 1006 | provider | Provider internal error: {...}. This is not error of signer. | 
| SignerApiArgumentsError | 1007 | validation | Validation error for invoke transaction: {...}. Invalid arguments: senderPublicKey | 
| SignerNetworkError | 1008 | network | Network Error |