🚀 DAY 5 OF LAUNCH WEEK: Introducing Socket Firewall Enterprise.Learn more →
Socket
Book a DemoInstallSign in
Socket

aiwrapper

Package Overview
Dependencies
Maintainers
1
Versions
58
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

aiwrapper

A Universal AI Wrapper for JavaScript & TypeScript

latest
Source
npmnpm
Version
2.0.0
Version published
Maintainers
1
Created
Source

AIWrapper

A universal AI wrapper for JavaScript & TypeScript.

Use LLMs from anywhere—servers, browsers and web-apps. AIWrapper works in anything that runs JavaScript.

:warning: It's in early WIP stage and the API may change.

Features

  • Generate plain text or JSON objects with a simple API
  • Use different LLM providers: OpenAI, Anthropic, Groq, DeepSeek, Ollama and any OpenAI-compatible services
  • Output objects based on Zod schemas or JSON Schema
  • Swap models quickly or chain different models together
  • Use it with JavaScript or TypeScript from anywhere

Installation

npm install aiwrapper

Quick Start

Generate Text

import { Lang } from "aiwrapper";

const lang = Lang.openai({ apiKey: "YOUR KEY" });
const result = await lang.ask("Say hi!");
console.log(result.answer);

Lang (LLM) Examples

Initialize a Model

import { Lang } from "aiwrapper";

const lang = Lang.openai({ apiKey: "YOUR KEY" }); // or Lang.anthropic

Connect to Custom OpenAI-compatible APIs

import { Lang } from "aiwrapper";

// Connect to a custom OpenAI-compatible API
const lang = Lang.openaiLike({
  apiKey: "YOUR KEY", // Optional - not needed for APIs without authentication
  model: "model-name",
  baseURL: "https://your-custom-api.example.com/v1",
  systemPrompt: "Optional system prompt",
  
  // Optional headers for authentication or other purposes
  headers: {
    "X-Custom-Header": "custom-value",
    "Authorization": "Basic dXNlcm5hbWU6cGFzc3dvcmQ=" // Alternative auth method example
  },
  
  // Additional properties to include in the request body
  bodyProperties: {
    temperature: 0.7,
    presence_penalty: 0.6,
    frequency_penalty: 0.1
  }
});

// Use it just like any other LLM provider
const result = await lang.ask("Hello!");
console.log(result.answer);

Stream Results

await lang.ask("Hello, AI!", {
  onResult: (msg) => console.log(msg)
});

Use Templates

// In most cases - a prompt template should be just a function that returns a string
function getPrompt(product) {
  return `You are a naming consultant for new companies. What is a good name for a company that makes ${product}?     
Write just the name. Nothing else aside from the name - no extra comments or characters that are not part of the name.`;
}

const prompt = getPrompt("colorful socks");

await lang.ask(prompt, {
  onResult: (msg) => console.log(msg)
});

Conversation Management

// Start a conversation
const result = await lang.ask("Hello, who are you?");
console.log(result.answer);

// Add a user message and continue the conversation
result.addUserMessage("Tell me more about yourself");
const newResult = await lang.chat(result);
console.log(newResult.answer);

// Continue the conversation further
newResult.addUserMessage("What can you help me with?");
const finalResult = await lang.chat(newResult);
console.log(finalResult.answer);

// You can also create message collections directly
import { LangMessages } from "aiwrapper";

const messages = new LangMessages();
messages.addSystemMessage("You are a helpful assistant.");
messages.addUserMessage("Tell me about TypeScript.");

const chatResult = await lang.chat(messages);
console.log(chatResult.answer);

Getting Objects from LLMs

// We can ask for an object with a particular schema
// You can use either Zod schemas or JSON Schema

// Option 1: Using Zod schema (recommended for TypeScript users)
import { z } from "aiwrapper";

// Schema for an array of strings
const companyNamesSchema = z.array(z.string());

const result = await lang.askForObject(
  "You are a naming consultant for new companies. What are 3 good names for a company that makes colorful socks?",
  companyNamesSchema
);

// TypeScript automatically infers the type as string[]
console.log(result.object); // ["Chromatic Toe", "SockSpectra", "VividStep"]

// Option 2: Using JSON Schema (compatible with existing code)
const jsonSchema = {
  type: "array",
  items: {
    type: "string"
  }
};

const result2 = await lang.askForObject(
  "You are a naming consultant for new companies. What are 3 good names for a company that makes colorful socks?",
  jsonSchema
);

console.log(result2.object); // ["Chromatic Toe", "SockSpectra", "VividStep"]

Getting Complex Objects


// Option 1: Using Zod schema
import { z } from "aiwrapper";

// Define a schema using Zod
const companySchema = z.object({
  name: z.string(),
  tagline: z.string(),
  marketingStrategy: z.object({
    target: z.string(),
    channels: z.array(z.string()),
    budget: z.number()
  })
});

// TypeScript automatically infers the correct type
const result = await lang.askForObject(
  "Create a company profile for a business that makes colorful socks",
  companySchema
);

console.log(result.object);
// The object is fully typed with TypeScript!

// Option 2: Using JSON Schema
const jsonSchema = {
  type: "object",
  properties: {
    name: { type: "string" },
    tagline: { type: "string" },
    marketingStrategy: {
      type: "object",
      properties: {
        target: { type: "string" },
        channels: {
          type: "array",
          items: { type: "string" }
        },
        budget: { type: "number" }
      }
    }
  },
  required: ["name", "tagline", "marketingStrategy"]
};

const result2 = await lang.askForObject(
  "Create a company profile for a business that makes colorful socks",
  jsonSchema
);

console.log(result2.object);
/* Example output:
{
  "name": "ChromaSocks",
  "tagline": "Step into Color, Step into Life",
  "marketingStrategy": {
    "target": "Fashion-conscious young adults aged 18-35",
    "channels": ["Instagram", "TikTok", "Influencer partnerships"],
    "budget": 50000
  }
}
*/

Keywords

AI

FAQs

Package last updated on 26 Oct 2025

Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts