Socket
Socket
Sign inDemoInstall

bandwidth-throttle-stream

Package Overview
Dependencies
0
Maintainers
1
Versions
16
Alerts
File Explorer

Advanced tools

Install Socket

Detect and block malicious and high-risk dependencies

Install

    bandwidth-throttle-stream

A Node.js and Deno transform stream for throttling bandwidth


Version published
Weekly downloads
7
increased by133.33%
Maintainers
1
Install size
85.8 kB
Created
Weekly downloads
 

Readme

Source

CI Coverage Status

Bandwidth Throttle Stream

A Node.js and Deno transform stream for throttling bandwidth which distributes available bandwidth evenly between all requests in a "group", accurately simulating the effect of network conditions on simultaneous overlapping requests.

Features
  • Idiomatic pipeable Transform API for use in Node.js
  • Idiomatic pipeable TransformStream API for use in Deno
  • Distributes the desired bandwidth evenly over each second
  • Distributes the desired bandwidth evenly between all active requests
  • Abortable requests ensure bandwidth is redistributed if a client aborts a request
Contents

Node.js Installation

Firstly, install the package using your package manager of choice.

npm install bandwidth-throttle-stream

You may then import the createBandwidthThrottleGroup() factory function into your project.

import {createBandwidthThrottleGroup} from 'bandwidth-throttle-stream';

Deno Installation

In Deno, all libraries are imported from URLs as ES modules. Versioned releases of bandwidth-throttle-stream are available from the Pika CDN:

import {createBandwidthThrottleGroup} from 'https://cdn.pika.dev/bandwidth-throttle-stream/mod.ts';

The above URL will return the latest release, but it is strongly advised to lock your import to a specific version using the following syntax, where the x.y.z semver can be any published version of the library:

import {createBandwidthThrottleGroup} from 'https://cdn.pika.dev/bandwidth-throttle-stream@x.y.z/mod.ts';

Usage

Creating a Group

Using the imported createBandwidthThrottleGroup factory function, we must firstly create a "bandwidth throttle group" which will be configured with a specific throughput in bytes (B) per second.

// Create a group with a configured available bandwidth in bytes (B) per second.

const bandwidthThrottleGroup = createBandwidthThrottleGroup({
    bytesPerSecond: 500000 // 500KB/s
});

Typically we would create a single group only for a server running a simulation, which all incoming network requests to be throttled are routed through. However, we could also create multiple groups if we wanted to run multiple simulations with different configurations on a single server.

Attaching Throttles

Once we've created a group, we can then attach individual pipeable "throttles" to it, as requests come into our server.

The most simple integration would be to insert the throttle (via .pipe, or .pipeThrough) between a readable stream (e.g file system readout, server-side HTTP response), and the response stream of the incoming client request to be throttled.

Node.js example: Piping between readable and writable streams
// Attach a throttle to a group (e.g. in response to an incoming request)

const throttle = bandwidthThrottleGroup.createBandwidthThrottle(contentLength);

// Throttle the response by piping a `stream.Readable` to a `stream.Writable`
// via the throttle

someReadableStream
    .pipe(throttle)
    .pipe(someWritableStream);

Deno example: Piping between a readable stream and a reader:
// Attach a throttle to a group (e.g. in response to an incoming request)

const throttle = bandwidthThrottleGroup.createBandwidthThrottle(contentLength);

// Throttle the response by piping a `ReadableStream` to a `ReadableStreamDefaultReader`:

someReadableStream
    .pipeThrough(throttle)
    .getReader()

Note that a number value for contentLength (in "bytes") must be passed when creating an individual throttle. This should be the total size of data for the request being passed through the throttle, and is used to allocate memory upfront in a single Uint8Array typed array, thus preventing expensive GC calls as backpressure builds up. When throttling HTTP requests, contentLength can be obtained from the 'content-length' header, once the headers of the request have arrived:

Node.js (Express) example: Obtaining content-length from req headers:
const contentLength = parseInt(req.get('content-length'))
Deno example: Obtaining content-length from fetch headers:
const { body, headers } = await fetch(destination);

const contentLength = parseInt(headers.get("content-length"));
Handling Output

In most cases however, we require more granular control of data output than simply piping to a writable stream (for example when throttling an HTTP request).

In these cases, we can use any of the Node.js stream events available such as data and end:

Node.js example: Hooking into the end event of a writable stream
request
    .pipe(throttle)
    .on('data', chunk => response.write(chunk)
    .on('end', () => {
        // Set the response status of the HTTP request to 200
        response.status(200);
        // End the request
        response.end();
    });
Deno example: responding to a request with a reader and a status code
import {readerToDenoReader} from 'https://cdn.pika.dev/bandwidth-throttle-sream@^0.2.0/mod.ts';

...

await request.respond({
    status: 200
    body: readerToDenoReader(reader, contentLength),
});

// request sent successfully

Note that in the Deno example, a reader may be passed directly to request.respond() allowing real-time streaming of the throttled output. However, the Deno std server expects a Deno.Reader as a body (rather than the standard ReadableStreamDefaultReader), meaning that conversion is needed between the two.

The readerToDenoReader util is exposed for this purpose, and must be provided with both a reference to ReadableStreamDefaultReader (reader), and the contentLength of the request.

Configuration Options

Each bandwidth throttle group accepts an optional object of configuration options:

const bandwidthThrottleGroup = createBandwidthThrottleGroup({
    bytesPerSecond: 500000 // 500KB/s,
    ticksPerSecond: 20 // aim to write output 20x per second
});

The following options are available.

interface IConfig {
    /**
     * The maximum number of bytes allowed to pass through the
     * throttle, each second.
     *
     * @default Infinity
     */

    bytesPerSecond?: number;

    /**
     * Defines how frequently the processing of bytes should be
     * distributed across each second. Each time the internal
     * scheduler "ticks", data will be processed and written out.
     *
     * A higher value will ensure smoother throttling for requests
     * that complete within a second, but will be more expensive
     * computationally and will ultimately be constrained by the
     * performance of the JavaScript runtime.
     *
     * @default 40
     */

    ticksPerSecond?: number;
}

Dynamic Configuration

A group can be reconfigured at any point after creation via its .configure() method, which accepts the same configuration interface as the createBandwidthThrottleGroup() factory.

// Create a group with no throttling

const bandwidthThrottleGroup = createBandwidthThrottleGroup();

// ... after some configuration event:

bandwidthThrottleGroup.configure({
    bytesPerSecond: 6000000
})

Aborted Requests

When a client aborts a requests, its important that we also abort the throttle, ensuring the group can re-balance available bandwidth correctly, and backpressure buffer memory is released.

Node.js example: Handling aborted requests
const throttle = bandwidthThrottleGroup.createBandwidthThrottle(contentLength);

request.on('aborted', () => {
    // Client aborted request

    throttle.abort();
});

request
    .pipe(throttle)
    .pipe(response);
Deno example: Handling aborted requests
const throttle = bandwidthThrottleGroup.createBandwidthThrottle(contentLength);

request
    .pipeThrough(throttle)
    .getReader()

try {
    await request.respond({
        status: 200
        body: readerToDenoReader(reader, contentLength),
    });
} catch(err) {
    // request aborted or failed

    throttle.abort();
}

FAQs

Last updated on 09 Jun 2020

Did you know?

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc