Comparing version 3.2.0 to 4.0.0
import * as models from './models'; | ||
interface CohereService { | ||
init(key: string, version?: string): void; | ||
generate(model: string, config: models.generate): Promise<models.cohereResponse<models.text>>; | ||
embed(model: string, config: models.embed): Promise<models.cohereResponse<models.embeddings>>; | ||
chooseBest(model: string, config: models.chooseBest): Promise<models.cohereResponse<models.scores>>; | ||
extract(model: string, config: models.extract): Promise<models.cohereResponse<models.extraction[]>>; | ||
generate(config: models.generate): Promise<models.cohereResponse<models.text>>; | ||
embed(config: models.embed): Promise<models.cohereResponse<models.embeddings>>; | ||
extract(config: models.extract): Promise<models.cohereResponse<models.extraction[]>>; | ||
} | ||
@@ -15,3 +14,3 @@ declare class Cohere implements CohereService { | ||
*/ | ||
generate(model: string, config: models.generate): Promise<models.cohereResponse<models.text>>; | ||
generate(config: models.generate): Promise<models.cohereResponse<models.text>>; | ||
/** Returns text embeddings. An embedding is a list of floating point numbers that captures semantic | ||
@@ -21,21 +20,13 @@ * information about the text that it represents. | ||
*/ | ||
embed(model: string, config: models.embed): Promise<models.cohereResponse<models.embeddings>>; | ||
/** Uses likelihood to perform classification. Given a query text that you'd like to classify between | ||
* a number of options, Choose Best will return a score between the query and each option. | ||
* See: https://docs.cohere.ai/choose-best-reference | ||
*/ | ||
embed(config: models.embed): Promise<models.cohereResponse<models.embeddings>>; | ||
/** | ||
* @deprecated Will be deleted in favor of 'classify'. | ||
*/ | ||
chooseBest(model: string, config: models.chooseBest): Promise<models.cohereResponse<models.scores>>; | ||
/** | ||
* Classifies text as one of the given labels. Returns a confidence score for each label. | ||
*/ | ||
classify(model: string, config: models.classify): Promise<models.cohereResponse<models.classifications>>; | ||
classify(config: models.classify): Promise<models.cohereResponse<models.classifications>>; | ||
/** | ||
* Extract text from texts, with examples | ||
*/ | ||
extract(model: string, config: models.extract): Promise<models.cohereResponse<models.extraction[]>>; | ||
extract(config: models.extract): Promise<models.cohereResponse<models.extraction[]>>; | ||
} | ||
declare const cohere: Cohere; | ||
export = cohere; |
@@ -38,3 +38,2 @@ (function webpackUniversalModuleDefinition(root, factory) { | ||
ENDPOINT["EMBED"] = "/embed"; | ||
ENDPOINT["CHOOSE_BEST"] = "/choose-best"; | ||
ENDPOINT["CLASSIFY"] = "/classify"; | ||
@@ -50,4 +49,4 @@ ENDPOINT["EXTRACT"] = "/extract"; | ||
}; | ||
Cohere.prototype.makeRequest = function (model, endpoint, data) { | ||
return api_service_1.default.post("/" + model + endpoint, data); | ||
Cohere.prototype.makeRequest = function (endpoint, data) { | ||
return api_service_1.default.post(endpoint, data); | ||
}; | ||
@@ -57,4 +56,4 @@ /** Generates realistic text conditioned on a given input. | ||
*/ | ||
Cohere.prototype.generate = function (model, config) { | ||
return this.makeRequest(model, ENDPOINT.GENERATE, config); | ||
Cohere.prototype.generate = function (config) { | ||
return this.makeRequest(ENDPOINT.GENERATE, config); | ||
}; | ||
@@ -65,3 +64,3 @@ /** Returns text embeddings. An embedding is a list of floating point numbers that captures semantic | ||
*/ | ||
Cohere.prototype.embed = function (model, config) { | ||
Cohere.prototype.embed = function (config) { | ||
var _this = this; | ||
@@ -83,3 +82,3 @@ var createBatches = function (array) { | ||
return Promise.all(createBatches(config.texts).map(function (texts) { | ||
return _this.makeRequest(model, ENDPOINT.EMBED, __assign(__assign({}, config), { texts: texts })); | ||
return _this.makeRequest(ENDPOINT.EMBED, __assign(__assign({}, config), { texts: texts })); | ||
})).then(function (results) { | ||
@@ -97,17 +96,7 @@ var embeddings = []; | ||
}; | ||
/** Uses likelihood to perform classification. Given a query text that you'd like to classify between | ||
* a number of options, Choose Best will return a score between the query and each option. | ||
* See: https://docs.cohere.ai/choose-best-reference | ||
*/ | ||
/** | ||
* @deprecated Will be deleted in favor of 'classify'. | ||
*/ | ||
Cohere.prototype.chooseBest = function (model, config) { | ||
return this.makeRequest(model, ENDPOINT.CHOOSE_BEST, config); | ||
}; | ||
/** | ||
* Classifies text as one of the given labels. Returns a confidence score for each label. | ||
*/ | ||
Cohere.prototype.classify = function (model, config) { | ||
return this.makeRequest(model, ENDPOINT.CLASSIFY, config); | ||
Cohere.prototype.classify = function (config) { | ||
return this.makeRequest(ENDPOINT.CLASSIFY, config); | ||
}; | ||
@@ -117,4 +106,4 @@ /** | ||
*/ | ||
Cohere.prototype.extract = function (model, config) { | ||
return this.makeRequest(model, ENDPOINT.EXTRACT, config); | ||
Cohere.prototype.extract = function (config) { | ||
return this.makeRequest(ENDPOINT.EXTRACT, config); | ||
}; | ||
@@ -121,0 +110,0 @@ return Cohere; |
@@ -8,2 +8,4 @@ export interface cohereResponse<T> { | ||
export interface generate { | ||
/** Denotes the model to be used. Defaults to the best performing model */ | ||
model?: string; | ||
/** Represents the prompt or text to be completed. */ | ||
@@ -48,2 +50,4 @@ prompt: string; | ||
export interface embed { | ||
/** Denotes the model to be used. Defaults to the best performing model */ | ||
model?: string; | ||
/** An array of strings for the model to embed. */ | ||
@@ -55,14 +59,5 @@ texts: string[]; | ||
export interface chooseBest { | ||
/** Used to query the options. */ | ||
query: string; | ||
/** Each string concatenates to the query. */ | ||
options: string[]; | ||
/** One of PREPEND_OPTION|APPEND_OPTION to specify where the option string will be placed and | ||
* how to compute the log-likelihood. | ||
*/ | ||
mode: 'PREPEND_OPTION' | 'APPEND_OPTION'; | ||
} | ||
export interface classify { | ||
/** Denotes the model to be used. Defaults to the best performing model */ | ||
model?: string; | ||
/** An array of strings that you would like to classify. */ | ||
@@ -78,3 +73,3 @@ inputs: string[]; | ||
export type cohereParameters = generate | embed | chooseBest | classify | extract; | ||
export type cohereParameters = generate | embed | classify | extract; | ||
@@ -81,0 +76,0 @@ /* -- responses -- */ |
{ | ||
"name": "cohere-ai", | ||
"version": "3.2.0", | ||
"version": "4.0.0", | ||
"description": "A Node.js SDK with TypeScript support for the Cohere API.", | ||
@@ -12,3 +12,4 @@ "homepage": "https://docs.cohere.ai", | ||
"dev": "webpack --progress --env development --env nodemon", | ||
"test": "npm run build && mocha -r ts-node/register test/test.ts" | ||
"test": "npm run build && mocha -r ts-node/register test/test.ts", | ||
"publish": "npm run build && npm publish" | ||
}, | ||
@@ -15,0 +16,0 @@ "files": [ |
@@ -40,3 +40,2 @@ # Welcome to the Cohere AI Node.js SDK. | ||
/generate | cohere.generate() | ||
/choose-best | cohere.chooseBest() | ||
/embed | cohere.embed() | ||
@@ -100,3 +99,3 @@ | ||
## Local development instructions | ||
To tinker with the package library itself, please check the development instructions [readme](https://github.com/cohere-ai/cohere-node/blob/main/DEV.md). | ||
## cohere-node package readme | ||
If you'd like to help contribute to the package library itself or modify it locally, please check the development instructions [readme](https://github.com/cohere-ai/cohere-node/blob/main/DEV.md). |
Sorry, the diff of this file is not supported yet
License Policy Violation
LicenseThis package is not allowed per your license policy. Review the package's license to ensure compliance.
Found 1 instance in 1 package
New author
Supply chain riskA new npm collaborator published a version of the package for the first time. New collaborators are usually benign additions to a project, but do indicate a change to the security surface area of a package.
Found 1 instance in 1 package
License Policy Violation
LicenseThis package is not allowed per your license policy. Review the package's license to ensure compliance.
Found 1 instance in 1 package
36393
456
99
2