Socket
Socket
Sign inDemoInstall

io-ts

Package Overview
Dependencies
1
Maintainers
1
Versions
120
Alerts
File Explorer

Advanced tools

Install Socket

Detect and block malicious and high-risk dependencies

Install

io-ts


Version published
Maintainers
1
Install size
2.00 MB
Created

Package description

What is io-ts?

The io-ts npm package is a TypeScript library that allows for the definition of runtime types, and the automatic validation of runtime values against those types. It leverages TypeScript's type system to ensure that data structures conform to specified schemas, providing a bridge between the runtime data and compile-time types.

What are io-ts's main functionalities?

Runtime type validation

This feature allows you to define a type and then validate an object against that type at runtime. If the object matches the type, the 'Right' branch is executed; otherwise, the 'Left' branch indicates a validation error.

{"const t = require('io-ts');\nconst User = t.type({\n  name: t.string,\n  age: t.number\n});\nconst result = User.decode({ name: 'Alice', age: 25 });\nif (result._tag === 'Right') {\n  console.log('Valid!', result.right);\n} else {\n  console.log('Invalid!', result.left);\n}"}

Type composition

io-ts allows for the composition of types, enabling complex type definitions by combining simpler ones. This is useful for building up the shape of data structures from reusable type components.

{"const t = require('io-ts');\nconst Name = t.string;\nconst Age = t.number;\nconst User = t.type({ name: Name, age: Age });\nconst result = User.decode({ name: 'Bob', age: 'not-a-number' });\n// result will be an instance of Left since 'age' is not a number"}

Custom types

io-ts allows the creation of custom types with additional validation logic. In this example, a 'PositiveNumber' type is created that only accepts positive numbers.

{"const t = require('io-ts');\nconst PositiveNumber = t.brand(\n  t.number,\n  (n): n is t.Branded<number, { readonly PositiveNumber: unique symbol }> => n > 0,\n  'PositiveNumber'\n);\nconst result = PositiveNumber.decode(-5);\n// result will be an instance of Left since the number is not positive"}

Other packages similar to io-ts

Readme

Source

build status dependency status npm downloads Minified Size

The idea

Blog post: "Typescript and validations at runtime boundaries" by @lorefnon

A value of type Type<A, O, I> (called "codec") is the runtime representation of the static type A.

Also a codec can

  • decode inputs of type I (through decode)
  • encode outputs of type O (through encode)
  • be used as a custom type guard (through is)
class Type<A, O, I> {
  readonly _A: A
  readonly _O: O
  readonly _I: I
  constructor(
    /** a unique name for this codec */
    readonly name: string,
    /** a custom type guard */
    readonly is: (u: unknown) => u is A,
    /** succeeds if a value of type I can be decoded to a value of type A */
    readonly validate: (input: I, context: Context) => Either<Errors, A>,
    /** converts a value of type A to a value of type O */
    readonly encode: (a: A) => O
  ) {}
  /** a version of `validate` with a default context */
  decode(i: I): Either<Errors, A>
}

Note. The Either type is defined in fp-ts, a library containing implementations of common algebraic types in TypeScript.

Example

A codec representing string can be defined as

import * as t from 'io-ts'

const isString = (u: unknown): u is string => typeof u === 'string'

const string = new t.Type<string, string, unknown>(
  'string',
  isString,
  (u, c) => (isString(u) ? t.success(u) : t.failure(u, c)),
  t.identity
)

A codec can be used to validate an object in memory (for example an API payload)

const Person = t.type({
  name: t.string,
  age: t.number
})

// validation succeeded
Person.decode(JSON.parse('{"name":"Giulio","age":43}')) // => Right({name: "Giulio", age: 43})

// validation failed
Person.decode(JSON.parse('{"name":"Giulio"}')) // => Left([...])

TypeScript compatibility

The stable version is tested against TypeScript 3.2.4.

io-ts versionrequired TypeScript version
1.6.x3.2.2+
1.5.33.0.1+
1.5.2-2.7.2+

Note. If you are running < typescript@3.0.1 you have to polyfill unknown.

You can use unknown-ts as a polyfill.

Error reporters

A reporter implements the following interface

interface Reporter<A> {
  report: (validation: Validation<any>) => A
}

This package exports a default PathReporter reporter

Example

import { PathReporter } from 'io-ts/lib/PathReporter'

const result = Person.decode({ name: 'Giulio' })

console.log(PathReporter.report(result))
// => ['Invalid value undefined supplied to : { name: string, age: number }/age: number']

You can define your own reporter. Errors has the following type

interface ContextEntry {
  readonly key: string
  readonly type: Decoder<any, any>
}

interface Context extends ReadonlyArray<ContextEntry> {}

interface ValidationError {
  readonly value: unknown
  readonly context: Context
}

interface Errors extends Array<ValidationError> {}

Example

import * as t from 'io-ts'

const getPaths = <A>(v: t.Validation<A>): Array<string> => {
  return v.fold(errors => errors.map(error => error.context.map(({ key }) => key).join('.')), () => ['no errors'])
}

const Person = t.type({
  name: t.string,
  age: t.number
})

console.log(getPaths(Person.decode({}))) // => [ '.name', '.age' ]

Custom error messages

You can set your own error message by providing a message argument to failure

Example

const NumberFromString = new t.Type<number, string, unknown>(
  'NumberFromString',
  t.number.is,
  (u, c) =>
    t.string.validate(u, c).chain(s => {
      const n = +s
      return isNaN(n) ? t.failure(u, c, 'cannot parse to a number') : t.success(n)
    }),
  String
)

console.log(PathReporter.report(NumberFromString.decode('a')))
// => ['cannot parse to a number']

Community

  • io-ts-types - A collection of codecs and combinators for use with io-ts
  • io-ts-reporters - Error reporters for io-ts
  • geojson-iots - codecs for GeoJSON as defined in rfc7946 made with io-ts
  • graphql-to-io-ts - Generate typescript and cooresponding io-ts types from a graphql schema

TypeScript integration

codecs can be inspected

instrospection

This library uses TypeScript extensively. Its API is defined in a way which automatically infers types for produced values

inference

Note that the type annotation isn't needed, TypeScript infers the type automatically based on a schema.

Static types can be extracted from codecs using the TypeOf operator

type Person = t.TypeOf<typeof Person>

// same as
type Person = {
  name: string
  age: number
}

Implemented types / combinators

import * as t from 'io-ts'
TypeTypeScriptcodec / combinator
nullnullt.null or t.nullType
undefinedundefinedt.undefined
voidvoidt.void or t.voidType
stringstringt.string
numbernumbert.number
booleanbooleant.boolean
unknownunknownt.unknown
nevernevert.never
objectobjectt.object
array of unknownArray<unknown>t.UnknownArray
array of typeArray<A>t.array(A)
record of unknownRecord<string, unknown>t.UnknownRecord
record of typeRecord<K, A>t.record(K, A)
functionFunctiont.Function
literal's't.literal('s')
partialPartial<{ name: string }>t.partial({ name: t.string })
readonlyReadonly<A>t.readonly(A)
readonly arrayReadonlyArray<A>t.readonlyArray(A)
type aliastype T = { name: A }t.type({ name: A })
tuple[ A, B ]t.tuple([ A, B ])
unionA | Bt.union([ A, B ]) or t.taggedUnion(tag, [ A, B ])
intersectionA & Bt.intersection([ A, B ])
keyofkeyof Mt.keyof(M)
recursive typest.recursion(name, definition)
branded types / refinementst.brand(A, predicate, brand)
integert.Int (built-in branded codec)
exact typest.exact(type)
strictt.strict({ name: A }) (an alias of t.exact(t.type({ name: A })))

Recursive types

Recursive types can't be inferred by TypeScript so you must provide the static type as a hint

interface Category {
  name: string
  categories: Array<Category>
}

const Category: t.RecursiveType<t.Type<Category>> = t.recursion('Category', () =>
  t.type({
    name: t.string,
    categories: t.array(Category)
  })
)

Mutually recursive types

interface Foo {
  type: 'Foo'
  b: Bar | undefined
}

interface Bar {
  type: 'Bar'
  a: Foo | undefined
}

const Foo: t.RecursiveType<t.Type<Foo>> = t.recursion('Foo', () =>
  t.interface({
    type: t.literal('Foo'),
    b: t.union([Bar, t.undefined])
  })
)

const Bar: t.RecursiveType<t.Type<Bar>> = t.recursion('Bar', () =>
  t.interface({
    type: t.literal('Bar'),
    a: t.union([Foo, t.undefined])
  })
)

const FooBar = t.taggedUnion('type', [Foo, Bar])

Tagged unions

If you are encoding tagged unions, instead of the general purpose union combinator, you may want to use the taggedUnion combinator in order to get better performances

const A = t.type({
  tag: t.literal('A'),
  foo: t.string
})

const B = t.type({
  tag: t.literal('B'),
  bar: t.number
})

// the actual presence of the tag is statically checked
const U = t.taggedUnion('tag', [A, B])

Branded types / Refinements

You can refine a codec (any codec) using the brand combinator

const Positive = t.brand(t.number, n => n >= 0, 'Positive')

type Positive = t.TypeOf<typeof Positive>
/*
same as
type Positive = number & t.Brand<"Positive">
*/

const PositiveInt = t.intersection([t.Int, Positive])

type PositiveInt = t.TypeOf<typeof PositiveInt>
/*
same as
type PositiveInt = number & t.Brand<"Int"> & t.Brand<"Positive">
*/

const Person = t.type({
  name: t.string,
  age: PositiveInt
})

const Adult = t.brand(Person, person => person.age >= 18, 'Adult')

type Adult = t.TypeOf<typeof Adult>
/*
same as
type Adult = {
    name: string;
    age: number & t.Brand<"Int"> & t.Brand<"Positive">;
} & t.Brand<"Adult">
*/

Exact types

You can make a codec exact (which means that additional properties are stripped) using the exact combinator

const Person = t.type({
  name: t.string,
  age: t.number
})

const ExactPerson = t.exact(Person)

Person.decode({ name: 'Giulio', age: 43, surname: 'Canti' }) // ok, result is right({ name: 'Giulio', age: 43, surname: 'Canti' })
ExactPerson.decode({ name: 'Giulio', age: 43, surname: 'Canti' }) // ok but result is right({ name: 'Giulio', age: 43 })

Mixing required and optional props

You can mix required and optional props using an intersection

const A = t.type({
  foo: t.string
})

const B = t.partial({
  bar: t.number
})

const C = t.intersection([A, B])

type C = t.TypeOf<typeof C>

// same as
type C = {
  foo: string
} & {
  bar?: number | undefined
}

You can apply partial to an already defined codec via its props field

const Person = t.type({
  name: t.string,
  age: t.number
})

const PartialPerson = t.partial(Person.props)

type PartialPerson = t.TypeOf<typeof PartialPerson>

// same as
type PartialPerson = {
  name?: string
  age?: number
}

Custom types

You can define your own types. Let's see an example

import * as t from 'io-ts'

// represents a Date from an ISO string
const DateFromString = new t.Type<Date, string, unknown>(
  'DateFromString',
  (u): u is Date => u instanceof Date,
  (u, c) =>
    t.string.validate(u, c).chain(s => {
      const d = new Date(s)
      return isNaN(d.getTime()) ? t.failure(u, c) : t.success(d)
    }),
  a => a.toISOString()
)

const s = new Date(1973, 10, 30).toISOString()

DateFromString.decode(s)
// right(new Date('1973-11-29T23:00:00.000Z'))

DateFromString.decode('foo')
// left(errors...)

Note that you can deserialize while validating.

Generic Types

Polymorphic codecs are represented using functions. For example, the following typescript:

interface ResponseBody<T> {
  result: T
  _links: Links
}
interface Links {
  previous: string
  next: string
}

Would be:

import * as t from 'io-ts'

// t.Mixed = t.Type<any, any, unknown>
const ResponseBody = <RT extends t.Mixed>(type: RT) =>
  t.interface({
    result: type,
    _links: Links
  })

const Links = t.interface({
  previous: t.string,
  next: t.string
})

And used like:

const UserModel = t.type({
  name: t.string
})

functionThatRequiresRuntimeType(ResponseBody(t.array(UserModel)), ...params)

Piping

You can pipe two codecs if their type parameters do align

const NumberDecoder = new t.Type<number, string, string>(
  'NumberDecoder',
  t.number.is,
  (s, c) => {
    const n = parseFloat(s)
    return isNaN(n) ? t.failure(s, c) : t.success(n)
  },
  String
)

const NumberFromString = t.string.pipe(
  NumberDecoder,
  'NumberFromString'
)

Tips and Tricks

Is there a way to turn the checks off in production code?

No, however you can define your own logic for that (if you really trust the input)

import * as t from 'io-ts'
import { Either, right } from 'fp-ts/lib/Either'

const { NODE_ENV } = process.env

export function unsafeDecode<A, O, I>(value: I, type: t.Type<A, O, I>): Either<t.Errors, A> {
  if (NODE_ENV !== 'production' || type.encode !== t.identity) {
    return type.decode(value)
  } else {
    // unsafe cast
    return right(value as any)
  }
}

// or...

import { failure } from 'io-ts/lib/PathReporter'

export function unsafeGet<A, O, I>(value: I, type: t.Type<A, O, I>): A {
  if (NODE_ENV !== 'production' || type.encode !== t.identity) {
    return type.decode(value).getOrElseL(errors => {
      throw new Error(failure(errors).join('\n'))
    })
  } else {
    // unsafe cast
    return value as any
  }
}

Union of string literals

Use keyof instead of union when defining a union of string literals

const Bad = t.union([
  t.literal('foo'),
  t.literal('bar'),
  t.literal('baz')
  // etc...
])

const Good = t.keyof({
  foo: null,
  bar: null,
  baz: null
  // etc...
})

Benefits

  • unique check for free
  • better performance, O(log(n)) vs O(n)

Keywords

FAQs

Last updated on 04 Feb 2019

Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap

Packages

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc