Socket
Socket
Sign inDemoInstall

merkletreejs

Package Overview
Dependencies
5
Maintainers
1
Versions
77
Alerts
File Explorer

Advanced tools

Install Socket

Detect and block malicious and high-risk dependencies

Install

Comparing version 0.2.10 to 0.2.11

dist/MerkleTree.d.ts

507

dist/index.d.ts

@@ -1,506 +0,3 @@

/// <reference types="node" />
interface Options {
/** If set to `true`, an odd node will be duplicated and combined to make a pair to generate the layer hash. */
duplicateOdd?: boolean;
/** If set to `true`, the leaves will hashed using the set hashing algorithms. */
hashLeaves?: boolean;
/** If set to `true`, constructs the Merkle Tree using the [Bitcoin Merkle Tree implementation](http://www.righto.com/2014/02/bitcoin-mining-hard-way-algorithms.html). Enable it when you need to replicate Bitcoin constructed Merkle Trees. In Bitcoin Merkle Trees, single nodes are combined with themselves, and each output hash is hashed again. */
isBitcoinTree?: boolean;
/** If set to `true`, the leaves will be sorted. */
sortLeaves?: boolean;
/** If set to `true`, the hashing pairs will be sorted. */
sortPairs?: boolean;
/** If set to `true`, the leaves and hashing pairs will be sorted. */
sort?: boolean;
}
/**
* Class reprensenting a Merkle Tree
* @namespace MerkleTree
*/
export declare class MerkleTree {
private duplicateOdd;
private hashAlgo;
private hashLeaves;
private isBitcoinTree;
private leaves;
private layers;
private sortLeaves;
private sortPairs;
private sort;
/**
* @desc Constructs a Merkle Tree.
* All nodes and leaves are stored as Buffers.
* Lonely leaf nodes are promoted to the next level up without being hashed again.
* @param {Buffer[]} leaves - Array of hashed leaves. Each leaf must be a Buffer.
* @param {Function} hashAlgorithm - Algorithm used for hashing leaves and nodes
* @param {Object} options - Additional options
* @example
*```js
*const MerkleTree = require('merkletreejs')
*const crypto = require('crypto')
*
*function sha256(data) {
* // returns Buffer
* return crypto.createHash('sha256').update(data).digest()
*}
*
*const leaves = ['a', 'b', 'c'].map(x => keccak(x))
*
*const tree = new MerkleTree(leaves, sha256)
*```
*/
constructor(leaves: any[], hashAlgorithm?: any, options?: Options);
private _createHashes;
/**
* getLeaves
* @desc Returns array of leaves of Merkle Tree.
* @return {Buffer[]}
* @example
*```js
*const leaves = tree.getLeaves()
*```
*/
getLeaves(values?: any[]): Buffer[];
/**
* getHexLeaves
* @desc Returns array of leaves of Merkle Tree as hex strings.
* @return {String[]}
* @example
*```js
*const leaves = tree.getHexLeaves()
*```
*/
getHexLeaves(): string[];
/**
* marshalLeaves
* @desc Returns array of leaves of Merkle Tree as a JSON string.
* @param {String[]|Buffer[]} - Merkle tree leaves
* @return {String} - List of leaves as JSON string
* @example
*```js
*const jsonStr = MerkleTree.marshalLeaves(leaves)
*```
*/
static marshalLeaves(leaves: any[]): string;
/**
* unmarshalLeaves
* @desc Returns array of leaves of Merkle Tree as a Buffers.
* @param {String|Object} - JSON stringified leaves
* @return {Buffer[]} - Unmarshalled list of leaves
* @example
*```js
*const leaves = MerkleTree.unmarshalLeaves(jsonStr)
*```
*/
static unmarshalLeaves(jsonStr: string | object): Buffer[];
/**
* getLayers
* @desc Returns multi-dimensional array of all layers of Merkle Tree, including leaves and root.
* @return {Buffer[]}
* @example
*```js
*const layers = tree.getLayers()
*```
*/
getLayers(): Buffer[];
/**
* getHexLayers
* @desc Returns multi-dimensional array of all layers of Merkle Tree, including leaves and root as hex strings.
* @return {String[]}
* @example
*```js
*const layers = tree.getHexLayers()
*```
*/
getHexLayers(): string[];
/**
* getLayersFlat
* @desc Returns single flat array of all layers of Merkle Tree, including leaves and root.
* @return {Buffer[]}
* @example
*```js
*const layers = tree.getLayersFlat()
*```
*/
getLayersFlat(): Buffer[];
/**
* getHexLayersFlat
* @desc Returns single flat array of all layers of Merkle Tree, including leaves and root as hex string.
* @return {String[]}
* @example
*```js
*const layers = tree.getHexLayersFlat()
*```
*/
getHexLayersFlat(): string[];
/**
* getRoot
* @desc Returns the Merkle root hash as a Buffer.
* @return {Buffer}
* @example
*```js
*const root = tree.getRoot()
*```
*/
getRoot(): Buffer;
/**
* getHexRoot
* @desc Returns the Merkle root hash as a hex string.
* @return {String}
* @example
*```js
*const root = tree.getHexRoot()
*```
*/
getHexRoot(): string;
/**
* getProof
* @desc Returns the proof for a target leaf.
* @param {Buffer} leaf - Target leaf
* @param {Number} [index] - Target leaf index in leaves array.
* Use if there are leaves containing duplicate data in order to distinguish it.
* @return {Object[]} - Array of objects containing a position property of type string
* with values of 'left' or 'right' and a data property of type Buffer.
* @example
* ```js
*const proof = tree.getProof(leaves[2])
*```
*
* @example
*```js
*const leaves = ['a', 'b', 'a'].map(x => keccak(x))
*const tree = new MerkleTree(leaves, keccak)
*const proof = tree.getProof(leaves[2], 2)
*```
*/
getProof(leaf: Buffer, index?: number): any[];
/**
* getHexProof
* @desc Returns the proof for a target leaf as hex strings.
* @param {Buffer} leaf - Target leaf
* @param {Number} [index] - Target leaf index in leaves array.
* Use if there are leaves containing duplicate data in order to distinguish it.
* @return {String[]} - Proof array as hex strings.
* @example
* ```js
*const proof = tree.getHexProof(leaves[2])
*```
*/
getHexProof(leaf: Buffer, index?: number): string[];
/**
* marshalProof
* @desc Returns proof array as JSON string.
* @param {String[]|Object[]} proof - Merkle tree proof array
* @return {String} - Proof array as JSON string.
* @example
* ```js
*const jsonStr = MerkleTree.marshalProof(proof)
*```
*/
static marshalProof(proof: any[]): string;
/**
* unmarshalProof
* @desc Returns the proof for a target leaf as a list of Buffers.
* @param {String|Object} - Merkle tree leaves
* @return {String|Object} - Marshalled proof
* @example
* ```js
*const proof = MerkleTree.unmarshalProof(jsonStr)
*```
*/
static unmarshalProof(jsonStr: string | object): any[];
/**
* getProofIndices
* @desc Returns the proof indices for given tree indices.
* @param {Number[]} treeIndices - Tree indices
* @param {Number} depth - Tree depth; number of layers.
* @return {Number[]} - Proof indices
* @example
* ```js
*const proofIndices = tree.getProofIndices([2,5,6], 4)
*console.log(proofIndices) // [ 23, 20, 19, 8, 3 ]
*```
*/
getProofIndices(treeIndices: number[], depth: number): number[];
/**
* getMultiProof
* @desc Returns the multiproof for given tree indices.
* @param {Number[]} indices - Tree indices.
* @return {Buffer[]} - Multiproofs
* @example
* ```js
*const indices = [2, 5, 6]
*const proof = tree.getMultiProof(indices)
*```
*/
getMultiProof(tree?: any[], indices?: any[]): Buffer[];
/**
* getHexMultiProof
* @desc Returns the multiproof for given tree indices as hex strings.
* @param {Number[]} indices - Tree indices.
* @return {String[]} - Multiproofs as hex strings.
* @example
* ```js
*const indices = [2, 5, 6]
*const proof = tree.getHexMultiProof(indices)
*```
*/
getHexMultiProof(tree: Buffer[], indices: number[]): string[];
/**
* getProofFlags
* @desc Returns list of booleans where proofs should be used instead of hashing.
* Proof flags are used in the Solidity multiproof verifiers.
* @param {Buffer[]} leaves
* @param {Buffer[]} proofs
* @return {Boolean[]} - Boolean flags
* @example
* ```js
*const indices = [2, 5, 6]
*const proof = tree.getMultiProof(indices)
*const proofFlags = tree.getProofFlags(leaves, proof)
*```
*/
getProofFlags(leaves: Buffer[], proofs: Buffer[]): boolean[];
/**
* verify
* @desc Returns true if the proof path (array of hashes) can connect the target node
* to the Merkle root.
* @param {Object[]} proof - Array of proof objects that should connect
* target node to Merkle root.
* @param {Buffer} targetNode - Target node Buffer
* @param {Buffer} root - Merkle root Buffer
* @return {Boolean}
* @example
*```js
*const root = tree.getRoot()
*const proof = tree.getProof(leaves[2])
*const verified = tree.verify(proof, leaves[2], root)
*```
*/
verify(proof: any[], targetNode: Buffer, root: Buffer): boolean;
/**
* verifyMultiProof
* @desc Returns true if the multiproofs can connect the leaves to the Merkle root.
* @param {Buffer} root - Merkle tree root
* @param {Number[]} indices - Leave indices
* @param {Buffer[]} leaves - Leaf values at indices.
* @param {Number} depth - Tree depth
* @param {Buffer[]} proof - Multiproofs given indices
* @return {Boolean}
* @example
*```js
*const root = tree.getRoot()
*const treeFlat = tree.getLayersFlat()
*const depth = tree.getDepth()
*const indices = [2, 5, 6]
*const proofLeaves = indices.map(i => leaves[i])
*const proof = tree.getMultiProof(treeFlat, indices)
*const verified = tree.verifyMultiProof(root, indices, proofLeaves, depth, proof)
*```
*/
verifyMultiProof(root: Buffer, indices: number[], leaves: Buffer[], depth: number, proof: Buffer[]): boolean;
/**
* getDepth
* @desc Returns the tree depth (number of layers)
* @return {Number}
* @example
*```js
*const depth = tree.getDepth()
*```
*/
getDepth(): number;
/**
* getLayersAsObject
* @desc Returns the layers as nested objects instead of an array.
* @example
*```js
*const layersObj = tree.getLayersAsObject()
*```
*/
getLayersAsObject(): any;
toJSON(): void;
/**
* print
* @desc Prints out a visual representation of the merkle tree.
* @example
*```js
*tree.print()
*```
*/
print(): void;
/**
* toTreeString
* @desc Returns a visual representation of the merkle tree as a string.
* @return {String}
* @example
*```js
*console.log(tree.toTreeString())
*```
*/
private _toTreeString;
/**
* toString
* @desc Returns a visual representation of the merkle tree as a string.
* @example
*```js
*console.log(tree.toString())
*```
*/
toString(): string;
/**
* getMultiProof
* @desc Returns the multiproof for given tree indices.
* @param {Buffer[]} tree - Tree as a flat array.
* @param {Number[]} indices - Tree indices.
* @return {Buffer[]} - Multiproofs
*
*@example
* ```js
*const flatTree = tree.getLayersFlat()
*const indices = [2, 5, 6]
*const proof = MerkleTree.getMultiProof(flatTree, indices)
*```
*/
static getMultiProof(tree: Buffer[], indices: number[]): Buffer[];
/**
* getPairNode
* @desc Returns the node at the index for given layer.
* @param {Buffer[]} layer - Tree layer
* @param {Number} index - Index at layer.
* @return {Buffer} - Node
*
*@example
* ```js
*const node = tree.getPairNode(layer, index)
*```
*/
private _getPairNode;
/**
* bufferIndexOf
* @desc Returns the first index of which given buffer is found in array.
* @param {Buffer[]} haystack - Array of buffers.
* @param {Buffer} needle - Buffer to find.
* @return {Number} - Index number
*
* @example
* ```js
*const index = tree.bufferIndexOf(haystack, needle)
*```
*/
private _bufferIndexOf;
/**
* bufferify
* @desc Returns a buffer type for the given value.
* @param {String|Number|Object|Buffer} value
* @return {Buffer}
*
* @example
* ```js
*const buf = MerkleTree.bufferify('0x1234')
*```
*/
static bufferify(value: any): Buffer;
/**
* isHexString
* @desc Returns true if value is a hex string.
* @param {String} value
* @return {Boolean}
*
* @example
* ```js
*console.log(MerkleTree.isHexString('0x1234'))
*```
*/
static isHexString(v: string): boolean;
/**
* print
* @desc Prints out a visual representation of the given merkle tree.
* @param {Object} tree - Merkle tree instance.
* @return {String}
* @example
*```js
*MerkleTree.print(tree)
*```
*/
static print(tree: any): void;
/**
* bufferToHex
* @desc Returns a hex string with 0x prefix for given buffer.
* @param {Buffer} value
* @return {String}
* @example
*```js
*const hexStr = tree.bufferToHex(Buffer.from('A'))
*```
*/
bufferToHex(value: Buffer): string;
/**
* bufferToHex
* @desc Returns a hex string with 0x prefix for given buffer.
* @param {Buffer} value
* @return {String}
* @example
*```js
*const hexStr = MerkleTree.bufferToHex(Buffer.from('A'))
*```
*/
static bufferToHex(value: Buffer): string;
/**
* bufferify
* @desc Returns a buffer type for the given value.
* @param {String|Number|Object|Buffer} value
* @return {Buffer}
*
* @example
* ```js
*const buf = tree.bufferify('0x1234')
*```
*/
bufferify(value: any): Buffer;
/**
* bufferifyFn
* @desc Returns a function that will bufferify the return value.
* @param {Function}
* @return {Function}
*
* @example
* ```js
*const fn = tree.bufferifyFn((value) => sha256(value))
*```
*/
private _bufferifyFn;
/**
* isHexString
* @desc Returns true if value is a hex string.
* @param {String} value
* @return {Boolean}
*
* @example
* ```js
*console.log(MerkleTree.isHexString('0x1234'))
*```
*/
private _isHexString;
/**
* log2
* @desc Returns the log2 of number.
* @param {Number} value
* @return {Number}
*/
private _log2;
/**
* zip
* @desc Returns true if value is a hex string.
* @param {String[]|Number[]|Buffer[]} a - first array
* @param {String[]|Number[]|Buffer[]} b - second array
* @return {String[][]|Number[][]|Buffer[][]}
*
* @example
* ```js
*const zipped = tree.zip(['a', 'b'],['A', 'B'])
*console.log(zipped) // [ [ 'a', 'A' ], [ 'b', 'B' ] ]
*```
*/
private _zip;
}
import MerkleTree from './MerkleTree';
export { MerkleTree };
export default MerkleTree;

@@ -7,973 +7,4 @@ "use strict";

exports.MerkleTree = void 0;
const buffer_reverse_1 = __importDefault(require("buffer-reverse"));
const crypto_js_1 = __importDefault(require("crypto-js"));
const sha256_1 = __importDefault(require("crypto-js/sha256"));
const treeify_1 = __importDefault(require("treeify"));
/**
* Class reprensenting a Merkle Tree
* @namespace MerkleTree
*/
class MerkleTree {
/**
* @desc Constructs a Merkle Tree.
* All nodes and leaves are stored as Buffers.
* Lonely leaf nodes are promoted to the next level up without being hashed again.
* @param {Buffer[]} leaves - Array of hashed leaves. Each leaf must be a Buffer.
* @param {Function} hashAlgorithm - Algorithm used for hashing leaves and nodes
* @param {Object} options - Additional options
* @example
*```js
*const MerkleTree = require('merkletreejs')
*const crypto = require('crypto')
*
*function sha256(data) {
* // returns Buffer
* return crypto.createHash('sha256').update(data).digest()
*}
*
*const leaves = ['a', 'b', 'c'].map(x => keccak(x))
*
*const tree = new MerkleTree(leaves, sha256)
*```
*/
constructor(leaves, hashAlgorithm = sha256_1.default, options = {}) {
this.isBitcoinTree = !!options.isBitcoinTree;
this.hashLeaves = !!options.hashLeaves;
this.sortLeaves = !!options.sortLeaves;
this.sortPairs = !!options.sortPairs;
this.sort = !!options.sort;
if (this.sort) {
this.sortLeaves = true;
this.sortPairs = true;
}
this.duplicateOdd = !!options.duplicateOdd;
this.hashAlgo = this._bufferifyFn(hashAlgorithm);
if (this.hashLeaves) {
leaves = leaves.map(this.hashAlgo);
}
this.leaves = leaves.map(this.bufferify);
if (this.sortLeaves) {
this.leaves = this.leaves.sort(Buffer.compare);
}
this.layers = [this.leaves];
this._createHashes(this.leaves);
}
_createHashes(nodes) {
while (nodes.length > 1) {
const layerIndex = this.layers.length;
this.layers.push([]);
for (let i = 0; i < nodes.length; i += 2) {
if (i + 1 === nodes.length) {
if (nodes.length % 2 === 1) {
let data = nodes[nodes.length - 1];
let hash = data;
// is bitcoin tree
if (this.isBitcoinTree) {
// Bitcoin method of duplicating the odd ending nodes
data = Buffer.concat([buffer_reverse_1.default(data), buffer_reverse_1.default(data)]);
hash = this.hashAlgo(data);
hash = buffer_reverse_1.default(this.hashAlgo(hash));
this.layers[layerIndex].push(hash);
continue;
}
else {
if (!this.duplicateOdd) {
this.layers[layerIndex].push(nodes[i]);
continue;
}
}
}
}
const left = nodes[i];
const right = i + 1 === nodes.length ? left : nodes[i + 1];
let data = null;
let combined = null;
if (this.isBitcoinTree) {
combined = [buffer_reverse_1.default(left), buffer_reverse_1.default(right)];
}
else {
combined = [left, right];
}
if (this.sortPairs) {
combined.sort(Buffer.compare);
}
data = Buffer.concat(combined);
let hash = this.hashAlgo(data);
// double hash if bitcoin tree
if (this.isBitcoinTree) {
hash = buffer_reverse_1.default(this.hashAlgo(hash));
}
this.layers[layerIndex].push(hash);
}
nodes = this.layers[layerIndex];
}
}
/**
* getLeaves
* @desc Returns array of leaves of Merkle Tree.
* @return {Buffer[]}
* @example
*```js
*const leaves = tree.getLeaves()
*```
*/
getLeaves(values) {
if (Array.isArray(values)) {
if (this.hashLeaves) {
values = values.map(this.hashAlgo);
if (this.sortLeaves) {
values = values.sort(Buffer.compare);
}
}
return this.leaves.filter(x => this._bufferIndexOf(values, x) !== -1);
}
return this.leaves;
}
/**
* getHexLeaves
* @desc Returns array of leaves of Merkle Tree as hex strings.
* @return {String[]}
* @example
*```js
*const leaves = tree.getHexLeaves()
*```
*/
getHexLeaves() {
return this.leaves.map(x => this.bufferToHex(x));
}
/**
* marshalLeaves
* @desc Returns array of leaves of Merkle Tree as a JSON string.
* @param {String[]|Buffer[]} - Merkle tree leaves
* @return {String} - List of leaves as JSON string
* @example
*```js
*const jsonStr = MerkleTree.marshalLeaves(leaves)
*```
*/
static marshalLeaves(leaves) {
return JSON.stringify(leaves.map(x => MerkleTree.bufferToHex(x)), null, 2);
}
/**
* unmarshalLeaves
* @desc Returns array of leaves of Merkle Tree as a Buffers.
* @param {String|Object} - JSON stringified leaves
* @return {Buffer[]} - Unmarshalled list of leaves
* @example
*```js
*const leaves = MerkleTree.unmarshalLeaves(jsonStr)
*```
*/
static unmarshalLeaves(jsonStr) {
let parsed = null;
if (typeof jsonStr === 'string') {
parsed = JSON.parse(jsonStr);
}
else if (jsonStr instanceof Object) {
parsed = jsonStr;
}
else {
throw new Error('Expected type of string or object');
}
if (!parsed) {
return [];
}
if (!Array.isArray(parsed)) {
throw new Error('Expected JSON string to be array');
}
return parsed.map(x => MerkleTree.bufferify(x));
}
/**
* getLayers
* @desc Returns multi-dimensional array of all layers of Merkle Tree, including leaves and root.
* @return {Buffer[]}
* @example
*```js
*const layers = tree.getLayers()
*```
*/
getLayers() {
return this.layers;
}
/**
* getHexLayers
* @desc Returns multi-dimensional array of all layers of Merkle Tree, including leaves and root as hex strings.
* @return {String[]}
* @example
*```js
*const layers = tree.getHexLayers()
*```
*/
getHexLayers() {
return this.layers.reduce((acc, item, i) => {
if (Array.isArray(item)) {
acc.push(item.map(x => this.bufferToHex(x)));
}
else {
acc.push(item);
}
return acc;
}, []);
}
/**
* getLayersFlat
* @desc Returns single flat array of all layers of Merkle Tree, including leaves and root.
* @return {Buffer[]}
* @example
*```js
*const layers = tree.getLayersFlat()
*```
*/
getLayersFlat() {
const layers = this.layers.reduce((acc, item, i) => {
if (Array.isArray(item)) {
acc.unshift(...item);
}
else {
acc.unshift(item);
}
return acc;
}, []);
layers.unshift(Buffer.from([0]));
return layers;
}
/**
* getHexLayersFlat
* @desc Returns single flat array of all layers of Merkle Tree, including leaves and root as hex string.
* @return {String[]}
* @example
*```js
*const layers = tree.getHexLayersFlat()
*```
*/
getHexLayersFlat() {
return this.getLayersFlat().map(x => this.bufferToHex(x));
}
/**
* getRoot
* @desc Returns the Merkle root hash as a Buffer.
* @return {Buffer}
* @example
*```js
*const root = tree.getRoot()
*```
*/
getRoot() {
return this.layers[this.layers.length - 1][0] || Buffer.from([]);
}
/**
* getHexRoot
* @desc Returns the Merkle root hash as a hex string.
* @return {String}
* @example
*```js
*const root = tree.getHexRoot()
*```
*/
getHexRoot() {
return this.bufferToHex(this.getRoot());
}
/**
* getProof
* @desc Returns the proof for a target leaf.
* @param {Buffer} leaf - Target leaf
* @param {Number} [index] - Target leaf index in leaves array.
* Use if there are leaves containing duplicate data in order to distinguish it.
* @return {Object[]} - Array of objects containing a position property of type string
* with values of 'left' or 'right' and a data property of type Buffer.
* @example
* ```js
*const proof = tree.getProof(leaves[2])
*```
*
* @example
*```js
*const leaves = ['a', 'b', 'a'].map(x => keccak(x))
*const tree = new MerkleTree(leaves, keccak)
*const proof = tree.getProof(leaves[2], 2)
*```
*/
getProof(leaf, index) {
leaf = this.bufferify(leaf);
const proof = [];
if (typeof index !== 'number') {
index = -1;
for (let i = 0; i < this.leaves.length; i++) {
if (Buffer.compare(leaf, this.leaves[i]) === 0) {
index = i;
}
}
}
if (index <= -1) {
return [];
}
if (this.isBitcoinTree && index === (this.leaves.length - 1)) {
// Proof Generation for Bitcoin Trees
for (let i = 0; i < this.layers.length - 1; i++) {
const layer = this.layers[i];
const isRightNode = index % 2;
const pairIndex = (isRightNode ? index - 1 : index);
if (pairIndex < layer.length) {
proof.push({
data: layer[pairIndex]
});
}
// set index to parent index
index = (index / 2) | 0;
}
return proof;
}
else {
// Proof Generation for Non-Bitcoin Trees
for (let i = 0; i < this.layers.length; i++) {
const layer = this.layers[i];
const isRightNode = index % 2;
const pairIndex = (isRightNode ? index - 1 : index + 1);
if (pairIndex < layer.length) {
proof.push({
position: isRightNode ? 'left' : 'right',
data: layer[pairIndex]
});
}
// set index to parent index
index = (index / 2) | 0;
}
return proof;
}
}
/**
* getHexProof
* @desc Returns the proof for a target leaf as hex strings.
* @param {Buffer} leaf - Target leaf
* @param {Number} [index] - Target leaf index in leaves array.
* Use if there are leaves containing duplicate data in order to distinguish it.
* @return {String[]} - Proof array as hex strings.
* @example
* ```js
*const proof = tree.getHexProof(leaves[2])
*```
*/
getHexProof(leaf, index) {
return this.getProof(leaf, index).map(x => this.bufferToHex(x.data));
}
/**
* marshalProof
* @desc Returns proof array as JSON string.
* @param {String[]|Object[]} proof - Merkle tree proof array
* @return {String} - Proof array as JSON string.
* @example
* ```js
*const jsonStr = MerkleTree.marshalProof(proof)
*```
*/
static marshalProof(proof) {
const json = proof.map(x => {
if (typeof x === 'string') {
return x;
}
if (Buffer.isBuffer(x)) {
return MerkleTree.bufferToHex(x);
}
return {
position: x.position,
data: MerkleTree.bufferToHex(x.data)
};
});
return JSON.stringify(json, null, 2);
}
/**
* unmarshalProof
* @desc Returns the proof for a target leaf as a list of Buffers.
* @param {String|Object} - Merkle tree leaves
* @return {String|Object} - Marshalled proof
* @example
* ```js
*const proof = MerkleTree.unmarshalProof(jsonStr)
*```
*/
static unmarshalProof(jsonStr) {
let parsed = null;
if (typeof jsonStr === 'string') {
parsed = JSON.parse(jsonStr);
}
else if (jsonStr instanceof Object) {
parsed = jsonStr;
}
else {
throw new Error('Expected type of string or object');
}
if (!parsed) {
return [];
}
if (!Array.isArray(parsed)) {
throw new Error('Expected JSON string to be array');
}
return parsed.map(x => {
if (typeof x === 'string') {
return MerkleTree.bufferify(x);
}
else if (x instanceof Object) {
return {
position: x.position,
data: MerkleTree.bufferify(x.data)
};
}
else {
throw new Error('Expected item to be of type string or object');
}
});
}
/**
* getProofIndices
* @desc Returns the proof indices for given tree indices.
* @param {Number[]} treeIndices - Tree indices
* @param {Number} depth - Tree depth; number of layers.
* @return {Number[]} - Proof indices
* @example
* ```js
*const proofIndices = tree.getProofIndices([2,5,6], 4)
*console.log(proofIndices) // [ 23, 20, 19, 8, 3 ]
*```
*/
getProofIndices(treeIndices, depth) {
const leafCount = Math.pow(2, depth);
let maximalIndices = new Set();
for (const index of treeIndices) {
let x = leafCount + index;
while (x > 1) {
maximalIndices.add(x ^ 1);
x = (x / 2) | 0;
}
}
const a = treeIndices.map(index => leafCount + index);
const b = Array.from(maximalIndices).sort((a, b) => a - b).reverse();
maximalIndices = a.concat(b);
const redundantIndices = new Set();
const proof = [];
for (let index of maximalIndices) {
if (!redundantIndices.has(index)) {
proof.push(index);
while (index > 1) {
redundantIndices.add(index);
if (!redundantIndices.has(index ^ 1))
break;
index = (index / 2) | 0;
}
}
}
return proof.filter(index => {
return !treeIndices.includes(index - leafCount);
});
}
/**
* getMultiProof
* @desc Returns the multiproof for given tree indices.
* @param {Number[]} indices - Tree indices.
* @return {Buffer[]} - Multiproofs
* @example
* ```js
*const indices = [2, 5, 6]
*const proof = tree.getMultiProof(indices)
*```
*/
getMultiProof(tree, indices) {
if (!indices) {
indices = tree;
tree = this.getLayersFlat();
if (!indices.every(x => typeof x === 'number')) {
let els = indices;
if (this.sortPairs) {
els = els.sort(Buffer.compare);
}
let ids = els.map((el) => this._bufferIndexOf(this.leaves, el)).sort((a, b) => a === b ? 0 : a > b ? 1 : -1);
if (!ids.every((idx) => idx !== -1)) {
throw new Error('Element does not exist in Merkle tree');
}
const hashes = [];
const proof = [];
let nextIds = [];
for (let i = 0; i < this.layers.length; i++) {
const layer = this.layers[i];
for (let j = 0; j < ids.length; j++) {
const idx = ids[j];
const pairElement = this._getPairNode(layer, idx);
hashes.push(layer[idx]);
if (pairElement) {
proof.push(pairElement);
}
nextIds.push((idx / 2) | 0);
}
ids = nextIds.filter((value, i, self) => self.indexOf(value) === i);
nextIds = [];
}
return proof.filter((value) => !hashes.includes(value));
}
}
return this.getProofIndices(indices, this._log2((tree.length / 2) | 0)).map(index => tree[index]);
}
/**
* getHexMultiProof
* @desc Returns the multiproof for given tree indices as hex strings.
* @param {Number[]} indices - Tree indices.
* @return {String[]} - Multiproofs as hex strings.
* @example
* ```js
*const indices = [2, 5, 6]
*const proof = tree.getHexMultiProof(indices)
*```
*/
getHexMultiProof(tree, indices) {
return this.getMultiProof(tree, indices).map(this.bufferToHex);
}
/**
* getProofFlags
* @desc Returns list of booleans where proofs should be used instead of hashing.
* Proof flags are used in the Solidity multiproof verifiers.
* @param {Buffer[]} leaves
* @param {Buffer[]} proofs
* @return {Boolean[]} - Boolean flags
* @example
* ```js
*const indices = [2, 5, 6]
*const proof = tree.getMultiProof(indices)
*const proofFlags = tree.getProofFlags(leaves, proof)
*```
*/
getProofFlags(leaves, proofs) {
let ids = leaves.map((el) => this._bufferIndexOf(this.leaves, el)).sort((a, b) => a === b ? 0 : a > b ? 1 : -1);
if (!ids.every((idx) => idx !== -1)) {
throw new Error('Element does not exist in Merkle tree');
}
const tested = [];
const flags = [];
for (let index = 0; index < this.layers.length; index++) {
const layer = this.layers[index];
ids = ids.reduce((ids, idx) => {
const skipped = tested.includes(layer[idx]);
if (!skipped) {
const pairElement = this._getPairNode(layer, idx);
const proofUsed = proofs.includes(layer[idx]) || proofs.includes(pairElement);
pairElement && flags.push(!proofUsed);
tested.push(layer[idx]);
tested.push(pairElement);
}
ids.push((idx / 2) | 0);
return ids;
}, []);
}
return flags;
}
/**
* verify
* @desc Returns true if the proof path (array of hashes) can connect the target node
* to the Merkle root.
* @param {Object[]} proof - Array of proof objects that should connect
* target node to Merkle root.
* @param {Buffer} targetNode - Target node Buffer
* @param {Buffer} root - Merkle root Buffer
* @return {Boolean}
* @example
*```js
*const root = tree.getRoot()
*const proof = tree.getProof(leaves[2])
*const verified = tree.verify(proof, leaves[2], root)
*```
*/
verify(proof, targetNode, root) {
let hash = this.bufferify(targetNode);
root = this.bufferify(root);
if (!Array.isArray(proof) ||
!targetNode ||
!root) {
return false;
}
for (let i = 0; i < proof.length; i++) {
const node = proof[i];
let data = null;
let isLeftNode = null;
// case for when proof is hex values only
if (typeof node === 'string') {
data = this.bufferify(node);
isLeftNode = true;
}
else if (node instanceof Object) {
data = this.bufferify(node.data);
isLeftNode = (node.position === 'left');
}
else {
throw new Error('Expected node to be of type string or object');
}
const buffers = [];
if (this.isBitcoinTree) {
buffers.push(buffer_reverse_1.default(hash));
buffers[isLeftNode ? 'unshift' : 'push'](buffer_reverse_1.default(data));
hash = this.hashAlgo(Buffer.concat(buffers));
hash = buffer_reverse_1.default(this.hashAlgo(hash));
}
else {
if (this.sortPairs) {
if (Buffer.compare(hash, data) === -1) {
buffers.push(hash, data);
hash = this.hashAlgo(Buffer.concat(buffers));
}
else {
buffers.push(data, hash);
hash = this.hashAlgo(Buffer.concat(buffers));
}
}
else {
buffers.push(hash);
buffers[isLeftNode ? 'unshift' : 'push'](data);
hash = this.hashAlgo(Buffer.concat(buffers));
}
}
}
return Buffer.compare(hash, root) === 0;
}
/**
* verifyMultiProof
* @desc Returns true if the multiproofs can connect the leaves to the Merkle root.
* @param {Buffer} root - Merkle tree root
* @param {Number[]} indices - Leave indices
* @param {Buffer[]} leaves - Leaf values at indices.
* @param {Number} depth - Tree depth
* @param {Buffer[]} proof - Multiproofs given indices
* @return {Boolean}
* @example
*```js
*const root = tree.getRoot()
*const treeFlat = tree.getLayersFlat()
*const depth = tree.getDepth()
*const indices = [2, 5, 6]
*const proofLeaves = indices.map(i => leaves[i])
*const proof = tree.getMultiProof(treeFlat, indices)
*const verified = tree.verifyMultiProof(root, indices, proofLeaves, depth, proof)
*```
*/
verifyMultiProof(root, indices, leaves, depth, proof) {
root = this.bufferify(root);
leaves = leaves.map(this.bufferify);
proof = proof.map(this.bufferify);
const tree = {};
for (const [index, leaf] of this._zip(indices, leaves)) {
tree[(Math.pow(2, depth)) + index] = leaf;
}
for (const [index, proofitem] of this._zip(this.getProofIndices(indices, depth), proof)) {
tree[index] = proofitem;
}
let indexqueue = Object.keys(tree).map(x => +x).sort((a, b) => a - b);
indexqueue = indexqueue.slice(0, indexqueue.length - 1);
let i = 0;
while (i < indexqueue.length) {
const index = indexqueue[i];
if (index >= 2 && ({}).hasOwnProperty.call(tree, index ^ 1)) {
tree[(index / 2) | 0] = this.hashAlgo(Buffer.concat([tree[index - (index % 2)], tree[index - (index % 2) + 1]]));
indexqueue.push((index / 2) | 0);
}
i += 1;
}
return !indices.length || (({}).hasOwnProperty.call(tree, 1) && tree[1].equals(root));
}
/**
* getDepth
* @desc Returns the tree depth (number of layers)
* @return {Number}
* @example
*```js
*const depth = tree.getDepth()
*```
*/
getDepth() {
return this.getLayers().length - 1;
}
/**
* getLayersAsObject
* @desc Returns the layers as nested objects instead of an array.
* @example
*```js
*const layersObj = tree.getLayersAsObject()
*```
*/
getLayersAsObject() {
const layers = this.getLayers().map((layer) => layer.map((value) => value.toString('hex')));
const objs = [];
for (let i = 0; i < layers.length; i++) {
const arr = [];
for (let j = 0; j < layers[i].length; j++) {
const obj = { [layers[i][j]]: null };
if (objs.length) {
obj[layers[i][j]] = {};
const a = objs.shift();
const akey = Object.keys(a)[0];
obj[layers[i][j]][akey] = a[akey];
if (objs.length) {
const b = objs.shift();
const bkey = Object.keys(b)[0];
obj[layers[i][j]][bkey] = b[bkey];
}
}
arr.push(obj);
}
objs.push(...arr);
}
return objs[0];
}
toJSON() {
}
/**
* print
* @desc Prints out a visual representation of the merkle tree.
* @example
*```js
*tree.print()
*```
*/
print() {
MerkleTree.print(this);
}
/**
* toTreeString
* @desc Returns a visual representation of the merkle tree as a string.
* @return {String}
* @example
*```js
*console.log(tree.toTreeString())
*```
*/
_toTreeString() {
const obj = this.getLayersAsObject();
return treeify_1.default.asTree(obj, true);
}
/**
* toString
* @desc Returns a visual representation of the merkle tree as a string.
* @example
*```js
*console.log(tree.toString())
*```
*/
toString() {
return this._toTreeString();
}
/**
* getMultiProof
* @desc Returns the multiproof for given tree indices.
* @param {Buffer[]} tree - Tree as a flat array.
* @param {Number[]} indices - Tree indices.
* @return {Buffer[]} - Multiproofs
*
*@example
* ```js
*const flatTree = tree.getLayersFlat()
*const indices = [2, 5, 6]
*const proof = MerkleTree.getMultiProof(flatTree, indices)
*```
*/
static getMultiProof(tree, indices) {
const t = new MerkleTree([]);
return t.getMultiProof(tree, indices);
}
/**
* getPairNode
* @desc Returns the node at the index for given layer.
* @param {Buffer[]} layer - Tree layer
* @param {Number} index - Index at layer.
* @return {Buffer} - Node
*
*@example
* ```js
*const node = tree.getPairNode(layer, index)
*```
*/
_getPairNode(layer, idx) {
const pairIdx = idx % 2 === 0 ? idx + 1 : idx - 1;
if (pairIdx < layer.length) {
return layer[pairIdx];
}
else {
return null;
}
}
/**
* bufferIndexOf
* @desc Returns the first index of which given buffer is found in array.
* @param {Buffer[]} haystack - Array of buffers.
* @param {Buffer} needle - Buffer to find.
* @return {Number} - Index number
*
* @example
* ```js
*const index = tree.bufferIndexOf(haystack, needle)
*```
*/
_bufferIndexOf(array, element) {
for (let i = 0; i < array.length; i++) {
if (element.equals(array[i])) {
return i;
}
}
return -1;
}
/**
* bufferify
* @desc Returns a buffer type for the given value.
* @param {String|Number|Object|Buffer} value
* @return {Buffer}
*
* @example
* ```js
*const buf = MerkleTree.bufferify('0x1234')
*```
*/
static bufferify(value) {
if (!Buffer.isBuffer(value)) {
// crypto-js support
if (typeof value === 'object' && value.words) {
return Buffer.from(value.toString(crypto_js_1.default.enc.Hex), 'hex');
}
else if (MerkleTree.isHexString(value)) {
return Buffer.from(value.replace(/^0x/, ''), 'hex');
}
else if (typeof value === 'string') {
return Buffer.from(value);
}
}
return value;
}
/**
* isHexString
* @desc Returns true if value is a hex string.
* @param {String} value
* @return {Boolean}
*
* @example
* ```js
*console.log(MerkleTree.isHexString('0x1234'))
*```
*/
static isHexString(v) {
return (typeof v === 'string' && /^(0x)?[0-9A-Fa-f]*$/.test(v));
}
/**
* print
* @desc Prints out a visual representation of the given merkle tree.
* @param {Object} tree - Merkle tree instance.
* @return {String}
* @example
*```js
*MerkleTree.print(tree)
*```
*/
static print(tree) {
console.log(tree.toString());
}
/**
* bufferToHex
* @desc Returns a hex string with 0x prefix for given buffer.
* @param {Buffer} value
* @return {String}
* @example
*```js
*const hexStr = tree.bufferToHex(Buffer.from('A'))
*```
*/
bufferToHex(value) {
return MerkleTree.bufferToHex(value);
}
/**
* bufferToHex
* @desc Returns a hex string with 0x prefix for given buffer.
* @param {Buffer} value
* @return {String}
* @example
*```js
*const hexStr = MerkleTree.bufferToHex(Buffer.from('A'))
*```
*/
static bufferToHex(value) {
return '0x' + value.toString('hex');
}
/**
* bufferify
* @desc Returns a buffer type for the given value.
* @param {String|Number|Object|Buffer} value
* @return {Buffer}
*
* @example
* ```js
*const buf = tree.bufferify('0x1234')
*```
*/
bufferify(value) {
return MerkleTree.bufferify(value);
}
/**
* bufferifyFn
* @desc Returns a function that will bufferify the return value.
* @param {Function}
* @return {Function}
*
* @example
* ```js
*const fn = tree.bufferifyFn((value) => sha256(value))
*```
*/
_bufferifyFn(f) {
return function (value) {
const v = f(value);
if (Buffer.isBuffer(v)) {
return v;
}
if (this._isHexString(v)) {
return Buffer.from(v, 'hex');
}
// crypto-js support
return Buffer.from(f(crypto_js_1.default.enc.Hex.parse(value.toString('hex'))).toString(crypto_js_1.default.enc.Hex), 'hex');
};
}
/**
* isHexString
* @desc Returns true if value is a hex string.
* @param {String} value
* @return {Boolean}
*
* @example
* ```js
*console.log(MerkleTree.isHexString('0x1234'))
*```
*/
_isHexString(value) {
return MerkleTree.isHexString(value);
}
/**
* log2
* @desc Returns the log2 of number.
* @param {Number} value
* @return {Number}
*/
_log2(n) {
return n === 1 ? 0 : 1 + this._log2((n / 2) | 0);
}
/**
* zip
* @desc Returns true if value is a hex string.
* @param {String[]|Number[]|Buffer[]} a - first array
* @param {String[]|Number[]|Buffer[]} b - second array
* @return {String[][]|Number[][]|Buffer[][]}
*
* @example
* ```js
*const zipped = tree.zip(['a', 'b'],['A', 'B'])
*console.log(zipped) // [ [ 'a', 'A' ], [ 'b', 'B' ] ]
*```
*/
_zip(a, b) {
return a.map((e, i) => [e, b[i]]);
}
}
exports.MerkleTree = MerkleTree;
if (typeof window !== 'undefined') {
;
window.MerkleTree = MerkleTree;
}
exports.default = MerkleTree;
const MerkleTree_1 = __importDefault(require("./MerkleTree"));
exports.MerkleTree = MerkleTree_1.default;
exports.default = MerkleTree_1.default;
{
"name": "merkletreejs",
"version": "0.2.10",
"version": "0.2.11",
"description": "Construct Merkle Trees and verify proofs",

@@ -15,3 +15,3 @@ "main": "dist/index.js",

"build:browser": "browserify -t [ babelify --presets [ @babel/preset-env ] ] dist/index.js | uglifyjs > merkletree.js",
"lint": "standardx --fix index.ts test/*.js",
"lint": "standardx --fix src/*.ts test/*.js",
"docs": "rm -rf docs/ && typedoc --plugin typedoc-plugin-markdown -hideSources --theme markdown --hideGenerator --excludeExternals --excludePrivate --out docs index.ts",

@@ -18,0 +18,0 @@ "prepare": "npm run lint && npm run build"

@@ -368,2 +368,28 @@ <h3 align="center">

### getPositionalHexProof
▸ **getPositionalHexProof**(`leaf`: Buffer, `index?`: number): *(string | number)[][]*
getPositionalHexProof
**`desc`** Returns the proof for a target leaf as hex strings and corresponding position as binary.
**`example`**
```js
const proof = tree.getPositionalHexProof(leaves[2])
```
**Parameters:**
Name | Type | Description |
------ | ------ | ------ |
`leaf` | Buffer | Target leaf |
`index?` | number | - |
**Returns:** *(string | number)[][]*
- Proof array as hex strings with position.
___
### getHexRoot

@@ -370,0 +396,0 @@

Sorry, the diff of this file is too big to display

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc