Native Abstractions for Node.js
A header file filled with macro and utility goodness for making add-on development for Node.js easier across versions 0.8, 0.10 and 0.11, and eventually 0.12.
Current version: 0.4.4 (See nan.h for complete ChangeLog)
Thanks to the crazy changes in V8 (and some in Node core), keeping native addons compiling happily across versions, particularly 0.10 to 0.11/0.12, is a minor nightmare. The goal of this project is to store all logic necessary to develop native Node.js addons without having to inspect NODE_MODULE_VERSION
and get yourself into a macro-tangle.
This project also contains some helper utilities that make addon development a bit more pleasant.
Usage
Simply add NAN as a dependency in the package.json of your Node addon:
"dependencies": {
...
"nan" : "~0.4.4"
...
}
Pull in the path to NAN in your binding.gyp so that you can use #include "nan.h"
in your .cpp:
"include_dirs" : [
"<!(node -p -e \"require('path').relative('.', require('path').dirname(require.resolve('nan')))\")"
]
This works like a -I<path-to-NAN>
when compiling your addon.
Example
See LevelDOWN for a full example of NAN in use.
For a simpler example, see the async pi estimation example in the examples directory for full code and an explanation of what this Monte Carlo Pi estimation example does. Below are just some parts of the full example that illustrate the use of NAN.
Compare to the current 0.10 version of this example, found in the node-addon-examples repository and also a 0.11 version of the same found here.
Note that there is no embedded version sniffing going on here and also the async work is made much simpler, see below for details on the NanAsyncWorker
class.
#include <node.h>
#include "nan.h"
using namespace v8;
void InitAll(Handle<Object> exports) {
exports->Set(NanSymbol("calculateSync"),
FunctionTemplate::New(CalculateSync)->GetFunction());
exports->Set(NanSymbol("calculateAsync"),
FunctionTemplate::New(CalculateAsync)->GetFunction());
}
NODE_MODULE(addon, InitAll)
#include <node.h>
#include "nan.h"
NAN_METHOD(CalculateSync);
#include <node.h>
#include "nan.h"
#include "sync.h"
using namespace v8;
NAN_METHOD(CalculateSync) {
NanScope();
int points = args[0]->Uint32Value();
double est = Estimate(points);
NanReturnValue(Number::New(est));
}
#include <node.h>
#include "nan.h"
#include "async.h"
using namespace v8;
class PiWorker : public NanAsyncWorker {
public:
PiWorker(NanCallback *callback, int points)
: NanAsyncWorker(callback), points(points) {}
~PiWorker() {}
void Execute () {
estimate = Estimate(points);
}
void HandleOKCallback () {
NanScope();
Local<Value> argv[] = {
Local<Value>::New(Null())
, Number::New(estimate)
};
callback->Call(2, argv);
};
private:
int points;
double estimate;
};
NAN_METHOD(CalculateAsync) {
NanScope();
int points = args[0]->Uint32Value();
NanCallback *callback = new NanCallback(args[1].As<Function>());
NanAsyncQueueWorker(new PiWorker(callback, points));
NanReturnUndefined();
}
API
NAN_METHOD
NAN_GETTER
NAN_SETTER
NAN_PROPERTY_GETTER
NAN_PROPERTY_SETTER
NAN_PROPERTY_ENUMERATOR
NAN_PROPERTY_DELETER
NAN_PROPERTY_QUERY
NAN_WEAK_CALLBACK
NAN_DEPRECATED
NAN_INLINE
NanReturnValue
NanReturnUndefined
NanReturnNull
NanReturnEmptyString
NanScope
NanLocker
NanUnlocker
NanGetInternalFieldPointer
NanSetInternalFieldPointer
NanObjectWrapHandle
NanMakeWeak
NanSymbol
NanGetPointerSafe
NanSetPointerSafe
NanFromV8String
NanBooleanOptionValue
NanUInt32OptionValue
NanError
, NanTypeError
, NanRangeError
NanThrowError
, NanThrowTypeError
, NanThrowRangeError
, NanThrowError(Handle)
, NanThrowError(Handle, int)
NanNewBufferHandle(char *, size_t, FreeCallback, void *)
, NanNewBufferHandle(char *, uint32_t)
, NanNewBufferHandle(uint32_t)
NanBufferUse(char *, uint32_t)
NanNewContextHandle
NanHasInstance
NanPersistentToLocal
NanDispose
NanAssignPersistent
NanInitPersistent
NanCallback
NanAsyncWorker
NanAsyncQueueWorker
NAN_METHOD(methodname)
Use NAN_METHOD
to define your V8 accessible methods:
class Foo : public node::ObjectWrap {
...
static NAN_METHOD(Bar);
static NAN_METHOD(Baz);
}
NAN_METHOD(Foo::Bar) {
...
}
NAN_METHOD(Foo::Baz) {
...
}
The reason for this macro is because of the method signature change in 0.11:
Handle<Value> name(const Arguments& args)
void name(const FunctionCallbackInfo<Value>& args)
The introduction of FunctionCallbackInfo
brings additional complications:
NAN_GETTER(methodname)
Use NAN_GETTER
to declare your V8 accessible getters. You get a Local<String>
property
and an appropriately typed args
object that can act like the args
argument to a NAN_METHOD
call.
You can use NanReturnNull()
, NanReturnEmptyString()
, NanReturnUndefined()
and NanReturnValue()
in a NAN_GETTER
.
NAN_SETTER(methodname)
Use NAN_SETTER
to declare your V8 accessible setters. Same as NAN_GETTER
but you also get a Local<Value>
value
object to work with.
You can use NanReturnNull()
, NanReturnEmptyString()
, NanReturnUndefined()
and NanReturnValue()
in a NAN_SETTER
.
NAN_PROPERTY_GETTER(cbname)
Use NAN_PROPERTY_GETTER
to declare your V8 accessible property getters. You get a Local<String>
property
and an appropriately typed args
object that can act similar to the args
argument to a NAN_METHOD
call.
You can use NanReturnNull()
, NanReturnEmptyString()
, NanReturnUndefined()
and NanReturnValue()
in a NAN_PROPERTY_GETTER
.
NAN_PROPERTY_SETTER(cbname)
Use NAN_PROPERTY_SETTER
to declare your V8 accessible property setters. Same as NAN_PROPERTY_GETTER
but you also get a Local<Value>
value
object to work with.
You can use NanReturnNull()
, NanReturnEmptyString()
, NanReturnUndefined()
and NanReturnValue()
in a NAN_PROPERTY_SETTER
.
NAN_PROPERTY_ENUMERATOR(cbname)
Use NAN_PROPERTY_ENUMERATOR
to declare your V8 accessible property enumerators. You get an appropriately typed args
object like the args
argument to a NAN_PROPERTY_GETTER
call.
You can use NanReturnNull()
, NanReturnEmptyString()
, NanReturnUndefined()
and NanReturnValue()
in a NAN_PROPERTY_ENUMERATOR
.
NAN_PROPERTY_DELETER(cbname)
Use NAN_PROPERTY_DELETER
to declare your V8 accessible property deleters. Same as NAN_PROPERTY_GETTER
.
You can use NanReturnNull()
, NanReturnEmptyString()
, NanReturnUndefined()
and NanReturnValue()
in a NAN_PROPERTY_DELETER
.
NAN_PROPERTY_QUERY(cbname)
Use NAN_PROPERTY_QUERY
to declare your V8 accessible property queries. Same as NAN_PROPERTY_GETTER
.
You can use NanReturnNull()
, NanReturnEmptyString()
, NanReturnUndefined()
and NanReturnValue()
in a NAN_PROPERTY_QUERY
.
NAN_WEAK_CALLBACK(type, cbname)
Use NAN_WEAK_CALLBACK
to declare your V8 WeakReference callbacks. There is an object argument accessible through NAN_WEAK_CALLBACK_OBJECT
. The type
argument gives the type of the data
argument, accessible through NAN_WEAK_CALLBACK_DATA(type)
.
static NAN_WEAK_CALLBACK(BufferReference*, WeakCheck) {
if (NAN_WEAK_CALLBACK_DATA(BufferReference*)->noLongerNeeded_) {
delete NAN_WEAK_CALLBACK_DATA(BufferReference*);
} else {
NanMakeWeak(NAN_WEAK_CALLBACK_OBJECT, NAN_WEAK_CALLBACK_DATA(BufferReference*), &WeakCheck);
}
}
NAN_DEPRECATED(declarator)
Declares a function as deprecated. Identical to V8_DEPRECATED
.
static NAN_DEPRECATED(NAN_METHOD(foo)) {
...
}
NAN_INLINE(declarator)
Inlines a function. Identical to V8_INLINE
.
static NAN_INLINE(int foo(int bar)) {
...
}
NanReturnValue(Handle<Value>)
Use NanReturnValue
when you want to return a value from your V8 accessible method:
NAN_METHOD(Foo::Bar) {
...
NanReturnValue(String::New("FooBar!"));
}
No return
statement required.
NanReturnUndefined()
Use NanReturnUndefined
when you don't want to return anything from your V8 accessible method:
NAN_METHOD(Foo::Baz) {
...
NanReturnUndefined();
}
NanReturnNull()
Use NanReturnNull
when you want to return Null
from your V8 accessible method:
NAN_METHOD(Foo::Baz) {
...
NanReturnNull();
}
NanReturnEmptyString()
Use NanReturnEmptyString
when you want to return an empty String
from your V8 accessible method:
NAN_METHOD(Foo::Baz) {
...
NanReturnEmptyString();
}
NanScope()
The introduction of isolate
references for many V8 calls in Node 0.11 makes NanScope()
necessary, use it in place of HandleScope scope
:
NAN_METHOD(Foo::Bar) {
NanScope();
NanReturnValue(String::New("FooBar!"));
}
NanLocker()
The introduction of isolate
references for many V8 calls in Node 0.11 makes NanLocker()
necessary, use it in place of Locker locker
:
NAN_METHOD(Foo::Bar) {
NanLocker();
...
NanUnlocker();
}
NanUnlocker()
The introduction of isolate
references for many V8 calls in Node 0.11 makes NanUnlocker()
necessary, use it in place of Unlocker unlocker
:
NAN_METHOD(Foo::Bar) {
NanLocker();
...
NanUnlocker();
}
void * NanGetInternalFieldPointer(Handle<Object>, int)
Gets a pointer to the internal field with at index
from a V8 Object
handle.
Local<Object> obj;
...
NanGetInternalFieldPointer(obj, 0);
void NanSetInternalFieldPointer(Handle<Object>, int, void *)
Sets the value of the internal field at index
on a V8 Object
handle.
static Persistent<Function> dataWrapperCtor;
...
Local<Object> wrapper = NanPersistentToLocal(dataWrapperCtor)->NewInstance();
NanSetInternalFieldPointer(wrapper, 0, this);
Local<Object> NanObjectWrapHandle(Object)
When you want to fetch the V8 object handle from a native object you've wrapped with Node's ObjectWrap
, you should use NanObjectWrapHandle
:
NanObjectWrapHandle(iterator)->Get(String::NewSymbol("end"))
NanMakeWeak(Persistent<T>, parameter, callback)
Make a persistent reference weak.
String NanSymbol(char *)
This isn't strictly about compatibility, it's just an easier way to create string symbol objects (i.e. String::NewSymbol(x)
), for getting and setting object properties, or names of objects.
bool foo = false;
if (obj->Has(NanSymbol("foo")))
foo = optionsObj->Get(NanSymbol("foo"))->BooleanValue()
Type NanGetPointerSafe(Type *[, Type])
A helper for getting values from optional pointers. If the pointer is NULL
, the function returns the optional default value, which defaults to 0
. Otherwise, the function returns the value the pointer points to.
char *plugh(uint32_t *optional) {
char res[] = "xyzzy";
uint32_t param = NanGetPointerSafe<uint32_t>(optional, 0x1337);
switch (param) {
...
}
NanSetPointerSafe<uint32_t>(optional, 0xDEADBEEF);
}
bool NanSetPointerSafe(Type *, Type)
A helper for setting optional argument pointers. If the pointer is NULL
, the function simply return false
. Otherwise, the value is assigned to the variable the pointer points to.
const char *plugh(size_t *outputsize) {
char res[] = "xyzzy";
if !(NanSetPointerSafe<size_t>(outputsize, strlen(res) + 1)) {
...
}
...
}
char* NanFromV8String(Handle<Value>[, enum Nan::Encoding, size_t *, char *, size_t, int])
When you want to convert a V8 String
to a char*
use NanFromV8String
. It is possible to define an encoding that defaults to Nan::UTF8
as well as a pointer to a variable that will be assigned the number of bytes in the returned string. It is also possible to supply a buffer and its length to the function in order not to have a new buffer allocated. The final argument allows optionally setting String::WriteOptions
, which default to String::HINT_MANY_WRITES_EXPECTED | String::NO_NULL_TERMINATION
.
Just remember that you'll end up with an object that you'll need to delete[]
at some point unless you supply your own buffer:
size_t count;
char* name = NanFromV8String(args[0]);
char* decoded = NanFromV8String(args[1], Nan::BASE64, &count, NULL, 0, String::HINT_MANY_WRITES_EXPECTED);
char param_copy[count];
memcpy(param_copy, decoded, count);
delete[] decoded;
bool NanBooleanOptionValue(Handle<Value>, Handle<String>[, bool])
When you have an "options" object that you need to fetch properties from, boolean options can be fetched with this pair. They check first if the object exists (IsEmpty
), then if the object has the given property (Has
) then they get and convert/coerce the property to a bool
.
The optional last parameter is the default value, which is false
if left off:
bool foo = NanBooleanOptionValue(optionsObj, NanSymbol("foo"));
bool bar = NanBooleanOptionValueDefTrue(optionsObj, NanSymbol("bar"), true);
uint32_t NanUInt32OptionValue(Handle<Value>, Handle<String>, uint32_t)
Similar to NanBooleanOptionValue
, use NanUInt32OptionValue
to fetch an integer option from your options object. Can be any kind of JavaScript Number
and it will be coerced to an unsigned 32-bit integer.
Requires all 3 arguments as a default is not optional:
uint32_t count = NanUInt32OptionValue(optionsObj, NanSymbol("count"), 1024);
NanError(message), NanTypeError(message), NanRangeError(message)
For making Error
, TypeError
and RangeError
objects.
Local<Value> res = NanError("you must supply a callback argument");
NanThrowError(message), NanThrowTypeError(message), NanThrowRangeError(message), NanThrowError(Local<Value>), NanThrowError(Local<Value>, int)
For throwing Error
, TypeError
and RangeError
objects. You should return
this call:
return NanThrowError("you must supply a callback argument");
Can also handle any custom object you may want to throw. If used with the error code argument, it will add the supplied error code to the error object as a property called code
.
Local<Object> NanNewBufferHandle(char *, uint32_t), Local<Object> NanNewBufferHandle(uint32_t)
The Buffer
API has changed a little in Node 0.11, this helper provides consistent access to Buffer
creation:
NanNewBufferHandle((char*)value.data(), value.size());
Can also be used to initialize a Buffer
with just a size
argument.
Can also be supplied with a NAN_WEAK_CALLBACK
and a hint for the garbage collector, when dealing with weak references.
Local<Object> NanBufferUse(char*, uint32_t)
Buffer::New(char*, uint32_t)
prior to 0.11 would make a copy of the data.
While it was possible to get around this, it required a shim by passing a
callback. So the new API Buffer::Use(char*, uint32_t)
was introduced to remove
needing to use this shim.
NanBufferUse
uses the char*
passed as the backing data, and will free the
memory automatically when the weak callback is called. Keep this in mind, as
careless use can lead to "double free or corruption" and other cryptic failures.
bool NanHasInstance(Persistent<FunctionTemplate>&, Handle<Value>)
Can be used to check the type of an object to determine it is of a particular class you have already defined and have a Persistent<FunctionTemplate>
handle for.
Local<Type> NanPersistentToLocal(Persistent<Type>&)
Aside from FunctionCallbackInfo
, the biggest and most painful change to V8 in Node 0.11 is the many restrictions now placed on Persistent
handles. They are difficult to assign and difficult to fetch the original value out of.
Use NanPersistentToLocal
to convert a Persistent
handle back to a Local
handle.
Local<Object> handle = NanPersistentToLocal(persistentHandle);
### Local<Context> NanNewContextHandle([ExtensionConfiguration*, Handle<ObjectTemplate>, Handle<Value>])
Creates a new `Local` handle.
Local<FunctionTemplate> ftmpl = FunctionTemplate::New();
Local<ObjectTemplate> otmpl = ftmpl->InstanceTemplate();
Local<Context> ctx = NanNewContextHandle(NULL, otmpl);
void NanDispose(Persistent<T> &)
Use NanDispose
to dispose a Persistent
handle.
NanDispose(persistentHandle);
NanAssignPersistent(type, handle, object)
Use NanAssignPersistent
to assign a non-Persistent
handle to a Persistent
one. You can no longer just declare a Persistent
handle and assign directly to it later, you have to Reset
it in Node 0.11, so this makes it easier.
In general it is now better to place anything you want to protect from V8's garbage collector as properties of a generic Object
and then assign that to a Persistent
. This works in older versions of Node also if you use NanAssignPersistent
:
Persistent<Object> persistentHandle;
...
Local<Object> obj = Object::New();
obj->Set(NanSymbol("key"), keyHandle);
NanAssignPersistent(Object, persistentHandle, obj)
NanInitPersistent(type, name, object)
User NanInitPersistent
to declare and initialize a new Persistent
with the supplied object. The assignment operator for Persistent
is no longer public in Node 0.11, so this macro makes it easier to declare and initializing a new Persistent
. See NanAssignPersistent
for more information.
Local<Object> obj = Object::New();
obj->Set(NanSymbol("key"), keyHandle);
NanInitPersistent(Object, persistentHandle, obj);
NanCallback
Because of the difficulties imposed by the changes to Persistent
handles in V8 in Node 0.11, creating Persistent
versions of your Local<Function>
handles is annoyingly tricky. NanCallback
makes it easier by taking your Local
handle, making it persistent until the NanCallback
is deleted and even providing a handy Call()
method to fetch and execute the callback Function
.
Local<Function> callbackHandle = callback = args[0].As<Function>();
NanCallback *callback = new NanCallback(callbackHandle);
delete callback;
You can execute the callback like so:
callback->Call(0, NULL);
Local<Value> argv[] = {
Exception::Error(String::New("fail!"))
};
callback->Call(1, argv);
Local<Value> argv[] = {
Local<Value>::New(Null()),
String::New("w00t!")
};
callback->Call(2, argv);
NanCallback
also has a Local<Function> GetCallback()
method that you can use to fetch a local handle to the underlying callback function if you need it.
NanAsyncWorker
NanAsyncWorker
is an abstract class that you can subclass to have much of the annoying async queuing and handling taken care of for you. It can even store arbitrary V8 objects for you and have them persist while the async work is in progress.
See a rough outline of the implementation:
class NanAsyncWorker {
public:
NanAsyncWorker (NanCallback *callback);
virtual ~NanAsyncWorker ();
virtual void WorkComplete ();
virtual void Execute ();
protected:
const char *errmsg;
void SavePersistent(const char *key, Local<Object> &obj);
Local<Object> GetFromPersistent(const char *key);
virtual void HandleOKCallback ();
virtual void HandleErrorCallback ();
};
NanAsyncQueueWorker(NanAsyncWorker *)
NanAsyncQueueWorker
will run a NanAsyncWorker
asynchronously via libuv. Both the execute and after_work steps are taken care of for you—most of the logic for this is embedded in NanAsyncWorker
.
Contributors
NAN is only possible due to the excellent work of the following contributors:
Licence & copyright
Copyright (c) 2013 NAN contributors (listed above).
Native Abstractions for Node.js is licensed under an MIT +no-false-attribs license. All rights not explicitly granted in the MIT license are reserved. See the included LICENSE file for more details.