Socket
Socket
Sign inDemoInstall

node-cint64

Package Overview
Dependencies
0
Maintainers
1
Versions
12
Alerts
File Explorer

Advanced tools

Install Socket

Detect and block malicious and high-risk dependencies

Install

    node-cint64

Providing native 64-bit integer arithmetic for Node!


Version published
Weekly downloads
48
decreased by-55.96%
Maintainers
1
Created
Weekly downloads
 

Readme

Source

node-cint64

Build Status 64-bit native signed integers for Node 6 and newer! I think we currently support most if not all native operations. This uses a C++ addon wrapping a int64_t to provide exact C++ specified semantics.

NOTE: Node 6 and older are now unsupported! The latest version that should work with those is 1.1.3

Installation

npm install node-cint64

Usage

var Int64 = require('node-cint64').Int64;

// Int64 can take either a Number or a Buffer. If you insert a buffer, it will
// load the first 8 bytes of the buffer in little-endian order into an int64_t
// (buf[0] will be the lowest 8 bits, buf[7] the highest)
var a = new Int64(7);

// A Javascript Number can store 32-bits, so you can use bitshifts and an or
// to load all 64 bits in two operations
var b = new Int64(4294967295).shiftLeft(32).or(new Int64(4294967295)); // === -1

// All instructions currently allocate a new int64 instead of modifying the
// existing value. New methods may be added that modify an existing Int64 Object

// All unary operations are Int64 methods that take no arguments and return
// a new Int64 object containing the result

// All binary operations are Int64 methods that take a Number or an Int64
/ Object as its argument, and return a new Int64 Object containing the result

var c = new Int64(1);
var d = new Int64(2);

// shiftLeft() does a signed left shift.
e = c.shiftLeft(1); // e == c << 1 = 2
e = c.shiftLeft(2); // e == c << 2 = 4

// shiftRight() does a signed right shift
e = c.shiftRight(1); // e == c >> 1 = 0

// not() returns an inverted version of the original number
var e = c.not(); // e == ~c == -2

// and(), or(), and xor() perform their respective binary operation on the operands.
e = c.and(d); // e == 1 & 2 == 0
e = c.or(d); // e == 1 | 2 == 3
e = c.xor(d); // e == 1 ^ 2 == 3

// add(), sub(), mul(), and div() perform standard addition, subtraction,
// multiplication, and division, respectively
e = c.add(d); // e == c + d == 3
e = c.sub(d); // e == c - d == -1
e = c.mul(d); // e == c * d == 2
e = c.div(d); // e == c / d == 0

// mod() returns the modulus of a with respect to b
e = c.mod(d); // e == c % d == 1

// neg() negates the number
e = c.neg(); // e == -c == -1

// abs() returns the absolute value of a number
e = c.abs(); // e == abs(c) == 1

// Int64 also has the standard set of comparison functions, each of which is an
// Int64 method that takes a Number or Int64 Object and does a comparison, and
// returns the result as a Boolean
e = c.gt(e); // e == (c > d) == false
e = c.geq(e); // e == (c >= d) == false
e = c.lt(e); // e == (c < d) == true
e = c.leq(e); // e == (c <= d) == true
e = c.eq(e); // e == (c == d) == false
e = c.neq(e); // e == (c != d) == true

// Of course, to really use these operations there needs to be a way to convert
// the int64 back into Javascript-usable values. So currently there are two
// operations that return Javascript intepretations of the int64 value,
// toNumber(), and toString()

// toNumber() returns a Number containing the floating-point version of the int64
e = c.toNumber(); // e === 1

// toString() takes an optional Number that determines the base of the result,
// and converts the int64 into a String representing the number in that base.
// The base can be anything in the range [2, 64], and the output will be using
// the standard base64 set of characters to represent digits. If the number
// if negative, there will be a negative sign prepended to it.
e = c.toString(10); // e === '1'


// intoBuffer() is kind of complicated, so here's its type signature:
// #intoBuffer(Buffer b, [number dstStart, [number srcStart, [number srcEnd]])
// intoBuffer() copies the int64's bytes into the Buffer passed as b. It is
// modelled after Buffer#copy(), and throws a TypeError whenever an invalid
// argument is passed in.

var f = new Int64(new Buffer([0, 1, 2, 3, 4, 5, 6, 7]));
var buf = new Buffer(8);
c.intoBuffer(buf); // buf now contains the bytes from c in little-endian order
// buf = [0, 1, 2, 3, 4, 5, 6, 7]

// dstStart, if it is included, will set the position of the
// first byte copied into the target buffer. It defaults to zero.
buf.fill(0);
c.intoBuffer(buf, 1); // buf = [0, 0, 1, 2, 3, 4, 5, 6]

// srcStart, if it is included, will set the first byte of the int64 that will
// be copied into the buffer.
buf.fill(0);
c.intoBuffer(buf, 0, 3); // buf = [3, 4, 5, 6, 7, 0, 0, 0]

// srcEnd, if it is included, determines the last byte as (srcEnd-1), so that
// srcEnd - srcStart bytes, starting at srcStart are copied
b.fill(0);
c.intoBuffer(buf, 0, 0, 4); // buf = [0, 1, 2, 0, 0, 0, 0, 0]

TODOS

  • Add more tests

Keywords

FAQs

Last updated on 05 May 2019

Did you know?

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc