paillier-bigint
Advanced tools
Comparing version 3.0.5 to 3.0.6
@@ -1,1 +0,1 @@ | ||
var paillierBigint=function(n){"use strict";function t(n){return(n=BigInt(n))>=0n?n:-n}function e(n){if(1n===(n=BigInt(n)))return 1;let t=1;do{t++}while((n>>=1n)>1n);return t}function r(n,t){if((n=BigInt(n))<=0n|(t=BigInt(t))<=0n)return NaN;let e=0n,r=1n,i=1n,o=0n;for(;0n!==n;){const s=t/n,u=t%n,c=e-i*s,a=r-o*s;t=n,n=u,e=i,r=o,i=c,o=a}return{b:t,x:e,y:r}}function i(n,e){return n=BigInt(n),e=BigInt(e),0n===n&&0n===e?0n:t(n*e)/function(n,e){if(n=t(n),e=t(e),0n===n)return e;if(0n===e)return n;let r=0n;for(;!(1n&(n|e));)n>>=1n,e>>=1n,r++;for(;!(1n&n);)n>>=1n;do{for(;!(1n&e);)e>>=1n;if(n>e){const t=n;n=e,e=t}e-=n}while(e);return n<<r}(n,e)}function o(n,t){const e=r(u(n,t),t);return 1n!==e.b?NaN:u(e.x,t)}function s(n,e,r){if(0n===(r=BigInt(r)))return NaN;if(1n===r)return 0n;if(n=u(n,r),(e=BigInt(e))<0n)return o(s(n,t(e),r),r);let i=1n;for(;e>0;)e%2n===1n&&(i=i*n%r),e/=2n,n=n**2n%r;return i}function u(n,t){return(t=BigInt(t))<=0?NaN:(n=BigInt(n)%t)<0?n+t:n}function c(n,t=16){return"number"==typeof n&&(n=BigInt(n)),new Promise((e,r)=>{const i=new Worker(w());i.onmessage=n=>{i.terminate(),e(n.data.isPrime)},i.onmessageerror=n=>{r(n)},i.postMessage({rnd:n,iterations:t,id:0})})}function a(n,t=16){if(n<1)throw new RangeError(`bitLength MUST be > 0 and it is ${n}`);if(!y){let e=0n;do{e=d(g(n,!0))}while(!m(e,t));return new Promise(n=>{n(e)})}return new Promise(e=>{const r=[],i=(i,o)=>{if(i.isPrime){for(let n=0;n<r.length;n++)r[n].terminate();for(;r.length;)r.pop();e(i.value)}else{const e=d(g(n,!0));try{o.postMessage({rnd:e,iterations:t,id:i.id})}catch(n){}}};{const n=w();for(let t=0;t<self.navigator.hardwareConcurrency-1;t++){const t=new Worker(n);t.onmessage=n=>i(n.data,t),r.push(t)}}for(let e=0;e<r.length;e++){const i=d(g(n,!0));r[e].postMessage({rnd:i,iterations:t,id:e})}})}function l(n,t=16){if(n<1)throw new RangeError(`bitLength MUST be > 0 and it is ${n}`);let e=0n;do{e=d(g(n,!0))}while(!m(e,t));return e}function f(n,t=1n){if(n<=t)throw new Error("max must be > min");const r=n-t,i=e(r);let o;do{o=d(g(i))}while(o>r);return o+t}function g(n,t=!1){if(n<1)throw new RangeError(`bitLength MUST be > 0 and it is ${n}`);const e=h(Math.ceil(n/8),!1),r=n%8;if(r&&(e[0]=e[0]&2**r-1),t){const n=r?2**(r-1):128;e[0]=e[0]|n}return e}function h(n,t=!1){if(n<1)throw new RangeError(`byteLength MUST be > 0 and it is ${n}`);{const e=new Uint8Array(n);return crypto.getRandomValues(e),t&&(e[0]=128|e[0]),e}}function d(n){let t=0n;for(const e of n.values()){const n=BigInt(e);t=(t<<BigInt(8))+n}return t}function w(){let n=`'use strict';const ${r.name}=${r.toString()};const ${o.name}=${o.toString()};const ${s.name}=${s.toString()};const ${u.name}=${u.toString()};const ${g.name}=${g.toString()};const ${h.name}=${h.toString()};const ${f.name}=${f.toString()};const ${c.name}=${m.toString()};${e.toString()}${d.toString()}`;return n+=`onmessage = ${async function(n){const t=await c(n.data.rnd,n.data.iterations);postMessage({isPrime:t,value:n.data.rnd,id:n.data.id})}.toString()};`,function(n){n=`(() => {${n}})()`;const t=new Blob([n],{type:"text/javascript"});return window.URL.createObjectURL(t)}(n)}function m(n,t=16){if(2n===n)return!0;if(0n===(1n&n)||1n===n)return!1;const e=[3n,5n,7n,11n,13n,17n,19n,23n,29n,31n,37n,41n,43n,47n,53n,59n,61n,67n,71n,73n,79n,83n,89n,97n,101n,103n,107n,109n,113n,127n,131n,137n,139n,149n,151n,157n,163n,167n,173n,179n,181n,191n,193n,197n,199n,211n,223n,227n,229n,233n,239n,241n,251n,257n,263n,269n,271n,277n,281n,283n,293n,307n,311n,313n,317n,331n,337n,347n,349n,353n,359n,367n,373n,379n,383n,389n,397n,401n,409n,419n,421n,431n,433n,439n,443n,449n,457n,461n,463n,467n,479n,487n,491n,499n,503n,509n,521n,523n,541n,547n,557n,563n,569n,571n,577n,587n,593n,599n,601n,607n,613n,617n,619n,631n,641n,643n,647n,653n,659n,661n,673n,677n,683n,691n,701n,709n,719n,727n,733n,739n,743n,751n,757n,761n,769n,773n,787n,797n,809n,811n,821n,823n,827n,829n,839n,853n,857n,859n,863n,877n,881n,883n,887n,907n,911n,919n,929n,937n,941n,947n,953n,967n,971n,977n,983n,991n,997n,1009n,1013n,1019n,1021n,1031n,1033n,1039n,1049n,1051n,1061n,1063n,1069n,1087n,1091n,1093n,1097n,1103n,1109n,1117n,1123n,1129n,1151n,1153n,1163n,1171n,1181n,1187n,1193n,1201n,1213n,1217n,1223n,1229n,1231n,1237n,1249n,1259n,1277n,1279n,1283n,1289n,1291n,1297n,1301n,1303n,1307n,1319n,1321n,1327n,1361n,1367n,1373n,1381n,1399n,1409n,1423n,1427n,1429n,1433n,1439n,1447n,1451n,1453n,1459n,1471n,1481n,1483n,1487n,1489n,1493n,1499n,1511n,1523n,1531n,1543n,1549n,1553n,1559n,1567n,1571n,1579n,1583n,1597n];for(let t=0;t<e.length&&e[t]<=n;t++){const r=e[t];if(n===r)return!0;if(n%r===0n)return!1}let r=0n;const i=n-1n;let o=i;for(;o%2n===0n;)o/=2n,++r;const u=i/2n**r;do{let t=s(f(i,2n),u,n);if(1n===t||t===i)continue;let e=1;for(;e<r&&(t=s(t,2n,n),t!==i);){if(1n===t)return!1;e++}if(t!==i)return!1}while(--t);return!0}let y=!1;self.Worker&&(y=!0);class b{constructor(n,t){this.n=n,this._n2=this.n**2n,this.g=t}get bitLength(){return e(this.n)}encrypt(n){const t=f(this.n);return s(this.g,n,this._n2)*s(t,this.n,this._n2)%this._n2}addition(...n){return n.reduce((n,t)=>n*t%this._n2,1n)}multiply(n,t){return s(BigInt(n),BigInt(t),this._n2)}}class p{constructor(n,t,e,r=null,i=null){this.lambda=n,this.mu=t,this._p=r||null,this._q=i||null,this.publicKey=e}get bitLength(){return e(this.publicKey.n)}get n(){return this.publicKey.n}decrypt(n){return $(s(n,this.lambda,this.publicKey._n2),this.publicKey.n)*this.mu%this.publicKey.n}}function $(n,t){return(n-1n)/t}function B(n,t){return(f(n)*n+1n)*s(f(n),n,t)%t}return n.PrivateKey=p,n.PublicKey=b,n.generateRandomKeys=async function(n=3072,t=!1){let r,u,c,l,f,g;do{r=await a(Math.floor(n/2)+1),u=await a(Math.floor(n/2)),c=r*u}while(u===r||e(c)!==n);if(!0===t)l=c+1n,f=(r-1n)*(u-1n),g=o(f,c);else{const n=c**2n;l=B(c,n),f=i(r-1n,u-1n),g=o($(s(l,f,n),c),c)}const h=new b(c,l);return{publicKey:h,privateKey:new p(f,g,h,r,u)}},n.generateRandomKeysSync=function(n=3072,t=!1){let r,u,c,a,f,g;do{r=l(Math.floor(n/2)+1),u=l(Math.floor(n/2)),c=r*u}while(u===r||e(c)!==n);if(!0===t)a=c+1n,f=(r-1n)*(u-1n),g=o(f,c);else{const n=c**2n;a=B(c,n),f=i(r-1n,u-1n),g=o($(s(a,f,n),c),c)}const h=new b(c,a);return{publicKey:h,privateKey:new p(f,g,h,r,u)}},n}({}); | ||
var paillierBigint=function(n){"use strict";function t(n){return(n=BigInt(n))>=0n?n:-n}function e(n){if(1n===(n=BigInt(n)))return 1;let t=1;do{t++}while((n>>=1n)>1n);return t}function r(n,t){if((n=BigInt(n))<=0n|(t=BigInt(t))<=0n)return NaN;let e=0n,r=1n,i=1n,o=0n;for(;0n!==n;){const s=t/n,u=t%n,a=e-i*s,c=r-o*s;t=n,n=u,e=i,r=o,i=a,o=c}return{b:t,x:e,y:r}}function i(n,e){return n=BigInt(n),e=BigInt(e),0n===n&&0n===e?0n:t(n*e)/function(n,e){if(n=t(n),e=t(e),0n===n)return e;if(0n===e)return n;let r=0n;for(;!(1n&(n|e));)n>>=1n,e>>=1n,r++;for(;!(1n&n);)n>>=1n;do{for(;!(1n&e);)e>>=1n;if(n>e){const t=n;n=e,e=t}e-=n}while(e);return n<<r}(n,e)}function o(n,t){const e=r(u(n,t),t);return 1n!==e.b?NaN:u(e.x,t)}function s(n,e,r){if(0n===(r=BigInt(r)))return NaN;if(1n===r)return 0n;if(n=u(n,r),(e=BigInt(e))<0n)return o(s(n,t(e),r),r);let i=1n;for(;e>0;)e%2n===1n&&(i=i*n%r),e/=2n,n=n**2n%r;return i}function u(n,t){return(t=BigInt(t))<=0?NaN:(n=BigInt(n)%t)<0?n+t:n}function a(n,t=16){return"number"==typeof n&&(n=BigInt(n)),new Promise((e,r)=>{const i=new Worker(m());i.onmessage=n=>{i.terminate(),e(n.data.isPrime)},i.onmessageerror=n=>{r(n)},i.postMessage({rnd:n,iterations:t,id:0})})}function c(n,t=16){if(n<1)throw new RangeError(`bitLength MUST be > 0 and it is ${n}`);if(!y){let e=0n;do{e=d(h(n,!0))}while(!w(e,t));return new Promise(n=>{n(e)})}return new Promise(e=>{const r=[],i=(i,o)=>{if(i.isPrime){for(let n=0;n<r.length;n++)r[n].terminate();for(;r.length;)r.pop();e(i.value)}else{const e=d(h(n,!0));try{o.postMessage({rnd:e,iterations:t,id:i.id})}catch(n){}}};{const n=m();for(let t=0;t<self.navigator.hardwareConcurrency-1;t++){const t=new Worker(n);t.onmessage=n=>i(n.data,t),r.push(t)}}for(let e=0;e<r.length;e++){const i=d(h(n,!0));r[e].postMessage({rnd:i,iterations:t,id:e})}})}function l(n,t=16){if(n<1)throw new RangeError(`bitLength MUST be > 0 and it is ${n}`);let e=0n;do{e=d(h(n,!0))}while(!w(e,t));return e}function f(n,t=1n){if(n<=t)throw new Error("max must be > min");const r=n-t,i=e(r);let o;do{o=d(h(i))}while(o>r);return o+t}function h(n,t=!1){if(n<1)throw new RangeError(`bitLength MUST be > 0 and it is ${n}`);const e=g(Math.ceil(n/8),!1),r=n%8;if(r&&(e[0]=e[0]&2**r-1),t){const n=r?2**(r-1):128;e[0]=e[0]|n}return e}function g(n,t=!1){if(n<1)throw new RangeError(`byteLength MUST be > 0 and it is ${n}`);{const e=new Uint8Array(n);return crypto.getRandomValues(e),t&&(e[0]=128|e[0]),e}}function d(n){let t=0n;for(const e of n.values()){const n=BigInt(e);t=(t<<BigInt(8))+n}return t}function m(){let n=`'use strict';const ${r.name}=${r.toString()};const ${o.name}=${o.toString()};const ${s.name}=${s.toString()};const ${u.name}=${u.toString()};const ${h.name}=${h.toString()};const ${g.name}=${g.toString()};const ${f.name}=${f.toString()};const ${a.name}=${w.toString()};${e.toString()}${d.toString()}`;return n+=`onmessage = ${async function(n){const t=await a(n.data.rnd,n.data.iterations);postMessage({isPrime:t,value:n.data.rnd,id:n.data.id})}.toString()};`,function(n){n=`(() => {${n}})()`;const t=new Blob([n],{type:"text/javascript"});return window.URL.createObjectURL(t)}(n)}function w(n,t=16){if(2n===n)return!0;if(0n===(1n&n)||1n===n)return!1;const e=[3n,5n,7n,11n,13n,17n,19n,23n,29n,31n,37n,41n,43n,47n,53n,59n,61n,67n,71n,73n,79n,83n,89n,97n,101n,103n,107n,109n,113n,127n,131n,137n,139n,149n,151n,157n,163n,167n,173n,179n,181n,191n,193n,197n,199n,211n,223n,227n,229n,233n,239n,241n,251n,257n,263n,269n,271n,277n,281n,283n,293n,307n,311n,313n,317n,331n,337n,347n,349n,353n,359n,367n,373n,379n,383n,389n,397n,401n,409n,419n,421n,431n,433n,439n,443n,449n,457n,461n,463n,467n,479n,487n,491n,499n,503n,509n,521n,523n,541n,547n,557n,563n,569n,571n,577n,587n,593n,599n,601n,607n,613n,617n,619n,631n,641n,643n,647n,653n,659n,661n,673n,677n,683n,691n,701n,709n,719n,727n,733n,739n,743n,751n,757n,761n,769n,773n,787n,797n,809n,811n,821n,823n,827n,829n,839n,853n,857n,859n,863n,877n,881n,883n,887n,907n,911n,919n,929n,937n,941n,947n,953n,967n,971n,977n,983n,991n,997n,1009n,1013n,1019n,1021n,1031n,1033n,1039n,1049n,1051n,1061n,1063n,1069n,1087n,1091n,1093n,1097n,1103n,1109n,1117n,1123n,1129n,1151n,1153n,1163n,1171n,1181n,1187n,1193n,1201n,1213n,1217n,1223n,1229n,1231n,1237n,1249n,1259n,1277n,1279n,1283n,1289n,1291n,1297n,1301n,1303n,1307n,1319n,1321n,1327n,1361n,1367n,1373n,1381n,1399n,1409n,1423n,1427n,1429n,1433n,1439n,1447n,1451n,1453n,1459n,1471n,1481n,1483n,1487n,1489n,1493n,1499n,1511n,1523n,1531n,1543n,1549n,1553n,1559n,1567n,1571n,1579n,1583n,1597n];for(let t=0;t<e.length&&e[t]<=n;t++){const r=e[t];if(n===r)return!0;if(n%r===0n)return!1}let r=0n;const i=n-1n;let o=i;for(;o%2n===0n;)o/=2n,++r;const u=i/2n**r;do{let t=s(f(i,2n),u,n);if(1n===t||t===i)continue;let e=1;for(;e<r&&(t=s(t,2n,n),t!==i);){if(1n===t)return!1;e++}if(t!==i)return!1}while(--t);return!0}let y=!1;self.Worker&&(y=!0);class p{constructor(n,t){this.n=n,this._n2=this.n**2n,this.g=t}get bitLength(){return e(this.n)}encrypt(n,t=f(this.n)){return s(this.g,n,this._n2)*s(t,this.n,this._n2)%this._n2}addition(...n){return n.reduce((n,t)=>n*t%this._n2,1n)}multiply(n,t){return s(BigInt(n),BigInt(t),this._n2)}}class b{constructor(n,t,e,r=null,i=null){this.lambda=n,this.mu=t,this._p=r||null,this._q=i||null,this.publicKey=e}get bitLength(){return e(this.publicKey.n)}get n(){return this.publicKey.n}decrypt(n){return $(s(n,this.lambda,this.publicKey._n2),this.publicKey.n)*this.mu%this.publicKey.n}getRandomFactor(n){if(this.publicKey.g!==this.n+1n)throw RangeError("Cannot recover the random factor if publicKey.g != publicKey.n + 1. You should generate yout keys using the simple variant, e.g. generateRandomKeys(3072, true) )");const t=this.decrypt(n),e=(this._p-1n)*(this._q-1n),r=o(this.n,e);return s(n*(1n-t*this.n)%this.publicKey._n2,r,this.n)}}function $(n,t){return(n-1n)/t}function K(n,t){return(f(n)*n+1n)*s(f(n),n,t)%t}return n.PrivateKey=b,n.PublicKey=p,n.generateRandomKeys=async function(n=3072,t=!1){let r,u,a,l,f,h;do{r=await c(Math.floor(n/2)+1),u=await c(Math.floor(n/2)),a=r*u}while(u===r||e(a)!==n);if(!0===t)l=a+1n,f=(r-1n)*(u-1n),h=o(f,a);else{const n=a**2n;l=K(a,n),f=i(r-1n,u-1n),h=o($(s(l,f,n),a),a)}const g=new p(a,l);return{publicKey:g,privateKey:new b(f,h,g,r,u)}},n.generateRandomKeysSync=function(n=3072,t=!1){let r,u,a,c,f,h;do{r=l(Math.floor(n/2)+1),u=l(Math.floor(n/2)),a=r*u}while(u===r||e(a)!==n);if(!0===t)c=a+1n,f=(r-1n)*(u-1n),h=o(f,a);else{const n=a**2n;c=K(a,n),f=i(r-1n,u-1n),h=o($(s(c,f,n),a),a)}const g=new p(a,c);return{publicKey:g,privateKey:new b(f,h,g,r,u)}},n}({}); |
@@ -1,1 +0,1 @@ | ||
function n(n){return(n=BigInt(n))>=0n?n:-n}function t(n){if(1n===(n=BigInt(n)))return 1;let t=1;do{t++}while((n>>=1n)>1n);return t}function e(n,t){if((n=BigInt(n))<=0n|(t=BigInt(t))<=0n)return NaN;let e=0n,r=1n,i=1n,o=0n;for(;0n!==n;){const s=t/n,u=t%n,c=e-i*s,a=r-o*s;t=n,n=u,e=i,r=o,i=c,o=a}return{b:t,x:e,y:r}}function r(t,e){return t=BigInt(t),e=BigInt(e),0n===t&&0n===e?0n:n(t*e)/function(t,e){if(t=n(t),e=n(e),0n===t)return e;if(0n===e)return t;let r=0n;for(;!(1n&(t|e));)t>>=1n,e>>=1n,r++;for(;!(1n&t);)t>>=1n;do{for(;!(1n&e);)e>>=1n;if(t>e){const n=t;t=e,e=n}e-=t}while(e);return t<<r}(t,e)}function i(n,t){const r=e(s(n,t),t);return 1n!==r.b?NaN:s(r.x,t)}function o(t,e,r){if(0n===(r=BigInt(r)))return NaN;if(1n===r)return 0n;if(t=s(t,r),(e=BigInt(e))<0n)return i(o(t,n(e),r),r);let u=1n;for(;e>0;)e%2n===1n&&(u=u*t%r),e/=2n,t=t**2n%r;return u}function s(n,t){return(t=BigInt(t))<=0?NaN:(n=BigInt(n)%t)<0?n+t:n}function u(n,t=16){return"number"==typeof n&&(n=BigInt(n)),new Promise((e,r)=>{const i=new Worker(d());i.onmessage=n=>{i.terminate(),e(n.data.isPrime)},i.onmessageerror=n=>{r(n)},i.postMessage({rnd:n,iterations:t,id:0})})}function c(n,t=16){if(n<1)throw new RangeError(`bitLength MUST be > 0 and it is ${n}`);if(!m){let e=0n;do{e=g(l(n,!0))}while(!w(e,t));return new Promise(n=>{n(e)})}return new Promise(e=>{const r=[],i=(i,o)=>{if(i.isPrime){for(let n=0;n<r.length;n++)r[n].terminate();for(;r.length;)r.pop();e(i.value)}else{const e=g(l(n,!0));try{o.postMessage({rnd:e,iterations:t,id:i.id})}catch(n){}}};{const n=d();for(let t=0;t<self.navigator.hardwareConcurrency-1;t++){const t=new Worker(n);t.onmessage=n=>i(n.data,t),r.push(t)}}for(let e=0;e<r.length;e++){const i=g(l(n,!0));r[e].postMessage({rnd:i,iterations:t,id:e})}})}function a(n,t=16){if(n<1)throw new RangeError(`bitLength MUST be > 0 and it is ${n}`);let e=0n;do{e=g(l(n,!0))}while(!w(e,t));return e}function f(n,e=1n){if(n<=e)throw new Error("max must be > min");const r=n-e,i=t(r);let o;do{o=g(l(i))}while(o>r);return o+e}function l(n,t=!1){if(n<1)throw new RangeError(`bitLength MUST be > 0 and it is ${n}`);const e=h(Math.ceil(n/8),!1),r=n%8;if(r&&(e[0]=e[0]&2**r-1),t){const n=r?2**(r-1):128;e[0]=e[0]|n}return e}function h(n,t=!1){if(n<1)throw new RangeError(`byteLength MUST be > 0 and it is ${n}`);{const e=new Uint8Array(n);return crypto.getRandomValues(e),t&&(e[0]=128|e[0]),e}}function g(n){let t=0n;for(const e of n.values()){const n=BigInt(e);t=(t<<BigInt(8))+n}return t}function d(){let n=`'use strict';const ${e.name}=${e.toString()};const ${i.name}=${i.toString()};const ${o.name}=${o.toString()};const ${s.name}=${s.toString()};const ${l.name}=${l.toString()};const ${h.name}=${h.toString()};const ${f.name}=${f.toString()};const ${u.name}=${w.toString()};${t.toString()}${g.toString()}`;return n+=`onmessage = ${async function(n){const t=await u(n.data.rnd,n.data.iterations);postMessage({isPrime:t,value:n.data.rnd,id:n.data.id})}.toString()};`,function(n){n=`(() => {${n}})()`;const t=new Blob([n],{type:"text/javascript"});return window.URL.createObjectURL(t)}(n)}function w(n,t=16){if(2n===n)return!0;if(0n===(1n&n)||1n===n)return!1;const e=[3n,5n,7n,11n,13n,17n,19n,23n,29n,31n,37n,41n,43n,47n,53n,59n,61n,67n,71n,73n,79n,83n,89n,97n,101n,103n,107n,109n,113n,127n,131n,137n,139n,149n,151n,157n,163n,167n,173n,179n,181n,191n,193n,197n,199n,211n,223n,227n,229n,233n,239n,241n,251n,257n,263n,269n,271n,277n,281n,283n,293n,307n,311n,313n,317n,331n,337n,347n,349n,353n,359n,367n,373n,379n,383n,389n,397n,401n,409n,419n,421n,431n,433n,439n,443n,449n,457n,461n,463n,467n,479n,487n,491n,499n,503n,509n,521n,523n,541n,547n,557n,563n,569n,571n,577n,587n,593n,599n,601n,607n,613n,617n,619n,631n,641n,643n,647n,653n,659n,661n,673n,677n,683n,691n,701n,709n,719n,727n,733n,739n,743n,751n,757n,761n,769n,773n,787n,797n,809n,811n,821n,823n,827n,829n,839n,853n,857n,859n,863n,877n,881n,883n,887n,907n,911n,919n,929n,937n,941n,947n,953n,967n,971n,977n,983n,991n,997n,1009n,1013n,1019n,1021n,1031n,1033n,1039n,1049n,1051n,1061n,1063n,1069n,1087n,1091n,1093n,1097n,1103n,1109n,1117n,1123n,1129n,1151n,1153n,1163n,1171n,1181n,1187n,1193n,1201n,1213n,1217n,1223n,1229n,1231n,1237n,1249n,1259n,1277n,1279n,1283n,1289n,1291n,1297n,1301n,1303n,1307n,1319n,1321n,1327n,1361n,1367n,1373n,1381n,1399n,1409n,1423n,1427n,1429n,1433n,1439n,1447n,1451n,1453n,1459n,1471n,1481n,1483n,1487n,1489n,1493n,1499n,1511n,1523n,1531n,1543n,1549n,1553n,1559n,1567n,1571n,1579n,1583n,1597n];for(let t=0;t<e.length&&e[t]<=n;t++){const r=e[t];if(n===r)return!0;if(n%r===0n)return!1}let r=0n;const i=n-1n;let s=i;for(;s%2n===0n;)s/=2n,++r;const u=i/2n**r;do{let t=o(f(i,2n),u,n);if(1n===t||t===i)continue;let e=1;for(;e<r&&(t=o(t,2n,n),t!==i);){if(1n===t)return!1;e++}if(t!==i)return!1}while(--t);return!0}let m=!1;self.Worker&&(m=!0);class b{constructor(n,t){this.n=n,this._n2=this.n**2n,this.g=t}get bitLength(){return t(this.n)}encrypt(n){const t=f(this.n);return o(this.g,n,this._n2)*o(t,this.n,this._n2)%this._n2}addition(...n){return n.reduce((n,t)=>n*t%this._n2,1n)}multiply(n,t){return o(BigInt(n),BigInt(t),this._n2)}}class p{constructor(n,t,e,r=null,i=null){this.lambda=n,this.mu=t,this._p=r||null,this._q=i||null,this.publicKey=e}get bitLength(){return t(this.publicKey.n)}get n(){return this.publicKey.n}decrypt(n){return $(o(n,this.lambda,this.publicKey._n2),this.publicKey.n)*this.mu%this.publicKey.n}}function $(n,t){return(n-1n)/t}async function y(n=3072,e=!1){let s,u,a,f,l,h;do{s=await c(Math.floor(n/2)+1),u=await c(Math.floor(n/2)),a=s*u}while(u===s||t(a)!==n);if(!0===e)f=a+1n,l=(s-1n)*(u-1n),h=i(l,a);else{const n=a**2n;f=I(a,n),l=r(s-1n,u-1n),h=i($(o(f,l,n),a),a)}const g=new b(a,f);return{publicKey:g,privateKey:new p(l,h,g,s,u)}}function B(n=3072,e=!1){let s,u,c,f,l,h;do{s=a(Math.floor(n/2)+1),u=a(Math.floor(n/2)),c=s*u}while(u===s||t(c)!==n);if(!0===e)f=c+1n,l=(s-1n)*(u-1n),h=i(l,c);else{const n=c**2n;f=I(c,n),l=r(s-1n,u-1n),h=i($(o(f,l,n),c),c)}const g=new b(c,f);return{publicKey:g,privateKey:new p(l,h,g,s,u)}}function I(n,t){return(f(n)*n+1n)*o(f(n),n,t)%t}export{p as PrivateKey,b as PublicKey,y as generateRandomKeys,B as generateRandomKeysSync}; | ||
function n(n){return(n=BigInt(n))>=0n?n:-n}function t(n){if(1n===(n=BigInt(n)))return 1;let t=1;do{t++}while((n>>=1n)>1n);return t}function e(n,t){if((n=BigInt(n))<=0n|(t=BigInt(t))<=0n)return NaN;let e=0n,r=1n,i=1n,o=0n;for(;0n!==n;){const s=t/n,u=t%n,c=e-i*s,a=r-o*s;t=n,n=u,e=i,r=o,i=c,o=a}return{b:t,x:e,y:r}}function r(t,e){return t=BigInt(t),e=BigInt(e),0n===t&&0n===e?0n:n(t*e)/function(t,e){if(t=n(t),e=n(e),0n===t)return e;if(0n===e)return t;let r=0n;for(;!(1n&(t|e));)t>>=1n,e>>=1n,r++;for(;!(1n&t);)t>>=1n;do{for(;!(1n&e);)e>>=1n;if(t>e){const n=t;t=e,e=n}e-=t}while(e);return t<<r}(t,e)}function i(n,t){const r=e(s(n,t),t);return 1n!==r.b?NaN:s(r.x,t)}function o(t,e,r){if(0n===(r=BigInt(r)))return NaN;if(1n===r)return 0n;if(t=s(t,r),(e=BigInt(e))<0n)return i(o(t,n(e),r),r);let u=1n;for(;e>0;)e%2n===1n&&(u=u*t%r),e/=2n,t=t**2n%r;return u}function s(n,t){return(t=BigInt(t))<=0?NaN:(n=BigInt(n)%t)<0?n+t:n}function u(n,t=16){return"number"==typeof n&&(n=BigInt(n)),new Promise((e,r)=>{const i=new Worker(d());i.onmessage=n=>{i.terminate(),e(n.data.isPrime)},i.onmessageerror=n=>{r(n)},i.postMessage({rnd:n,iterations:t,id:0})})}function c(n,t=16){if(n<1)throw new RangeError(`bitLength MUST be > 0 and it is ${n}`);if(!m){let e=0n;do{e=g(f(n,!0))}while(!w(e,t));return new Promise(n=>{n(e)})}return new Promise(e=>{const r=[],i=(i,o)=>{if(i.isPrime){for(let n=0;n<r.length;n++)r[n].terminate();for(;r.length;)r.pop();e(i.value)}else{const e=g(f(n,!0));try{o.postMessage({rnd:e,iterations:t,id:i.id})}catch(n){}}};{const n=d();for(let t=0;t<self.navigator.hardwareConcurrency-1;t++){const t=new Worker(n);t.onmessage=n=>i(n.data,t),r.push(t)}}for(let e=0;e<r.length;e++){const i=g(f(n,!0));r[e].postMessage({rnd:i,iterations:t,id:e})}})}function a(n,t=16){if(n<1)throw new RangeError(`bitLength MUST be > 0 and it is ${n}`);let e=0n;do{e=g(f(n,!0))}while(!w(e,t));return e}function l(n,e=1n){if(n<=e)throw new Error("max must be > min");const r=n-e,i=t(r);let o;do{o=g(f(i))}while(o>r);return o+e}function f(n,t=!1){if(n<1)throw new RangeError(`bitLength MUST be > 0 and it is ${n}`);const e=h(Math.ceil(n/8),!1),r=n%8;if(r&&(e[0]=e[0]&2**r-1),t){const n=r?2**(r-1):128;e[0]=e[0]|n}return e}function h(n,t=!1){if(n<1)throw new RangeError(`byteLength MUST be > 0 and it is ${n}`);{const e=new Uint8Array(n);return crypto.getRandomValues(e),t&&(e[0]=128|e[0]),e}}function g(n){let t=0n;for(const e of n.values()){const n=BigInt(e);t=(t<<BigInt(8))+n}return t}function d(){let n=`'use strict';const ${e.name}=${e.toString()};const ${i.name}=${i.toString()};const ${o.name}=${o.toString()};const ${s.name}=${s.toString()};const ${f.name}=${f.toString()};const ${h.name}=${h.toString()};const ${l.name}=${l.toString()};const ${u.name}=${w.toString()};${t.toString()}${g.toString()}`;return n+=`onmessage = ${async function(n){const t=await u(n.data.rnd,n.data.iterations);postMessage({isPrime:t,value:n.data.rnd,id:n.data.id})}.toString()};`,function(n){n=`(() => {${n}})()`;const t=new Blob([n],{type:"text/javascript"});return window.URL.createObjectURL(t)}(n)}function w(n,t=16){if(2n===n)return!0;if(0n===(1n&n)||1n===n)return!1;const e=[3n,5n,7n,11n,13n,17n,19n,23n,29n,31n,37n,41n,43n,47n,53n,59n,61n,67n,71n,73n,79n,83n,89n,97n,101n,103n,107n,109n,113n,127n,131n,137n,139n,149n,151n,157n,163n,167n,173n,179n,181n,191n,193n,197n,199n,211n,223n,227n,229n,233n,239n,241n,251n,257n,263n,269n,271n,277n,281n,283n,293n,307n,311n,313n,317n,331n,337n,347n,349n,353n,359n,367n,373n,379n,383n,389n,397n,401n,409n,419n,421n,431n,433n,439n,443n,449n,457n,461n,463n,467n,479n,487n,491n,499n,503n,509n,521n,523n,541n,547n,557n,563n,569n,571n,577n,587n,593n,599n,601n,607n,613n,617n,619n,631n,641n,643n,647n,653n,659n,661n,673n,677n,683n,691n,701n,709n,719n,727n,733n,739n,743n,751n,757n,761n,769n,773n,787n,797n,809n,811n,821n,823n,827n,829n,839n,853n,857n,859n,863n,877n,881n,883n,887n,907n,911n,919n,929n,937n,941n,947n,953n,967n,971n,977n,983n,991n,997n,1009n,1013n,1019n,1021n,1031n,1033n,1039n,1049n,1051n,1061n,1063n,1069n,1087n,1091n,1093n,1097n,1103n,1109n,1117n,1123n,1129n,1151n,1153n,1163n,1171n,1181n,1187n,1193n,1201n,1213n,1217n,1223n,1229n,1231n,1237n,1249n,1259n,1277n,1279n,1283n,1289n,1291n,1297n,1301n,1303n,1307n,1319n,1321n,1327n,1361n,1367n,1373n,1381n,1399n,1409n,1423n,1427n,1429n,1433n,1439n,1447n,1451n,1453n,1459n,1471n,1481n,1483n,1487n,1489n,1493n,1499n,1511n,1523n,1531n,1543n,1549n,1553n,1559n,1567n,1571n,1579n,1583n,1597n];for(let t=0;t<e.length&&e[t]<=n;t++){const r=e[t];if(n===r)return!0;if(n%r===0n)return!1}let r=0n;const i=n-1n;let s=i;for(;s%2n===0n;)s/=2n,++r;const u=i/2n**r;do{let t=o(l(i,2n),u,n);if(1n===t||t===i)continue;let e=1;for(;e<r&&(t=o(t,2n,n),t!==i);){if(1n===t)return!1;e++}if(t!==i)return!1}while(--t);return!0}let m=!1;self.Worker&&(m=!0);class p{constructor(n,t){this.n=n,this._n2=this.n**2n,this.g=t}get bitLength(){return t(this.n)}encrypt(n,t=l(this.n)){return o(this.g,n,this._n2)*o(t,this.n,this._n2)%this._n2}addition(...n){return n.reduce((n,t)=>n*t%this._n2,1n)}multiply(n,t){return o(BigInt(n),BigInt(t),this._n2)}}class y{constructor(n,t,e,r=null,i=null){this.lambda=n,this.mu=t,this._p=r||null,this._q=i||null,this.publicKey=e}get bitLength(){return t(this.publicKey.n)}get n(){return this.publicKey.n}decrypt(n){return b(o(n,this.lambda,this.publicKey._n2),this.publicKey.n)*this.mu%this.publicKey.n}getRandomFactor(n){if(this.publicKey.g!==this.n+1n)throw RangeError("Cannot recover the random factor if publicKey.g != publicKey.n + 1. You should generate yout keys using the simple variant, e.g. generateRandomKeys(3072, true) )");const t=this.decrypt(n),e=(this._p-1n)*(this._q-1n),r=i(this.n,e);return o(n*(1n-t*this.n)%this.publicKey._n2,r,this.n)}}function b(n,t){return(n-1n)/t}async function $(n=3072,e=!1){let s,u,a,l,f,h;do{s=await c(Math.floor(n/2)+1),u=await c(Math.floor(n/2)),a=s*u}while(u===s||t(a)!==n);if(!0===e)l=a+1n,f=(s-1n)*(u-1n),h=i(f,a);else{const n=a**2n;l=I(a,n),f=r(s-1n,u-1n),h=i(b(o(l,f,n),a),a)}const g=new p(a,l);return{publicKey:g,privateKey:new y(f,h,g,s,u)}}function B(n=3072,e=!1){let s,u,c,l,f,h;do{s=a(Math.floor(n/2)+1),u=a(Math.floor(n/2)),c=s*u}while(u===s||t(c)!==n);if(!0===e)l=c+1n,f=(s-1n)*(u-1n),h=i(f,c);else{const n=c**2n;l=I(c,n),f=r(s-1n,u-1n),h=i(b(o(l,f,n),c),c)}const g=new p(c,l);return{publicKey:g,privateKey:new y(f,h,g,s,u)}}function I(n,t){return(l(n)*n+1n)*o(l(n),n,t)%t}export{y as PrivateKey,p as PublicKey,$ as generateRandomKeys,B as generateRandomKeysSync}; |
@@ -1,2 +0,2 @@ | ||
import { bitLength, randBetween, modPow, prime, modInv, lcm, primeSync } from 'bigint-crypto-utils' | ||
import { bitLength, randBetween, modPow, modInv, prime, lcm, primeSync } from 'bigint-crypto-utils' | ||
@@ -30,7 +30,7 @@ /** | ||
* @param {bigint} m - a bigint representation of a cleartext message | ||
* @param {bigint} [r] - the random integer factor for encryption. By default is a random in (1,n) | ||
* | ||
* @returns {bigint} - the encryption of m with this public key | ||
*/ | ||
encrypt (m) { | ||
const r = randBetween(this.n) | ||
encrypt (m, r = randBetween(this.n)) { | ||
return (modPow(this.g, m, this._n2) * modPow(r, this.n, this._n2)) % this._n2 | ||
@@ -101,11 +101,31 @@ } | ||
/** | ||
* Paillier private-key decryption | ||
* | ||
* @param {bigint} c - a bigint encrypted with the public key | ||
* | ||
* @returns {bigint} - the decryption of c with this private key | ||
*/ | ||
* Paillier private-key decryption | ||
* | ||
* @param {bigint} c - a bigint encrypted with the public key | ||
* | ||
* @returns {bigint} - the decryption of c with this private key | ||
*/ | ||
decrypt (c) { | ||
return (L(modPow(c, this.lambda, this.publicKey._n2), this.publicKey.n) * this.mu) % this.publicKey.n | ||
} | ||
/** | ||
* Recover the random factor used for encrypting a message with the complementary public key. | ||
* The recovery function only works if the public key generator g was using the simple variant | ||
* g = 1 + n | ||
* | ||
* @param {bigint} c - the encryption using the public of message m with random factor r | ||
* | ||
* @returns {bigint} - the random factor (mod n) | ||
* | ||
* @throws {RangeError} - Cannot recover the random factor if publicKey.g != publicKey.n + 1. You should generate yout keys using the simple variant, e.g. generateRandomKeys(3072, true) ) | ||
*/ | ||
getRandomFactor (c) { | ||
if (this.publicKey.g !== this.n + 1n) throw RangeError('Cannot recover the random factor if publicKey.g != publicKey.n + 1. You should generate yout keys using the simple variant, e.g. generateRandomKeys(3072, true) )') | ||
const m = this.decrypt(c) | ||
const phi = (this._p - 1n) * (this._q - 1n) | ||
const nInvModPhi = modInv(this.n, phi) | ||
const c1 = c * (1n - m * this.n) % this.publicKey._n2 | ||
return modPow(c1, nInvModPhi, this.n) | ||
} | ||
} | ||
@@ -127,3 +147,3 @@ | ||
* @param {number} [bitlength = 3072] - the bit length of the public modulo | ||
* @param {boolean} [simplevariant = false] - use the simple variant to compute the generator (g=n+1) | ||
* @param {boolean} [simplevariant = false] - use the simple variant to compute the generator (g=n+1). This is REQUIRED if you want to be able to recover the random integer factor used when encrypting with the public key | ||
* | ||
@@ -130,0 +150,0 @@ * @returns {Promise<KeyPair>} - a promise that resolves to a {@link KeyPair} of public, private keys |
@@ -34,7 +34,7 @@ 'use strict' | ||
* @param {bigint} m - a bigint representation of a cleartext message | ||
* @param {bigint} [r] - the random integer factor for encryption. By default is a random in (1,n) | ||
* | ||
* @returns {bigint} - the encryption of m with this public key | ||
*/ | ||
encrypt (m) { | ||
const r = bcu.randBetween(this.n) | ||
encrypt (m, r = bcu.randBetween(this.n)) { | ||
return (bcu.modPow(this.g, m, this._n2) * bcu.modPow(r, this.n, this._n2)) % this._n2 | ||
@@ -105,11 +105,31 @@ } | ||
/** | ||
* Paillier private-key decryption | ||
* | ||
* @param {bigint} c - a bigint encrypted with the public key | ||
* | ||
* @returns {bigint} - the decryption of c with this private key | ||
*/ | ||
* Paillier private-key decryption | ||
* | ||
* @param {bigint} c - a bigint encrypted with the public key | ||
* | ||
* @returns {bigint} - the decryption of c with this private key | ||
*/ | ||
decrypt (c) { | ||
return (L(bcu.modPow(c, this.lambda, this.publicKey._n2), this.publicKey.n) * this.mu) % this.publicKey.n | ||
} | ||
/** | ||
* Recover the random factor used for encrypting a message with the complementary public key. | ||
* The recovery function only works if the public key generator g was using the simple variant | ||
* g = 1 + n | ||
* | ||
* @param {bigint} c - the encryption using the public of message m with random factor r | ||
* | ||
* @returns {bigint} - the random factor (mod n) | ||
* | ||
* @throws {RangeError} - Cannot recover the random factor if publicKey.g != publicKey.n + 1. You should generate yout keys using the simple variant, e.g. generateRandomKeys(3072, true) ) | ||
*/ | ||
getRandomFactor (c) { | ||
if (this.publicKey.g !== this.n + 1n) throw RangeError('Cannot recover the random factor if publicKey.g != publicKey.n + 1. You should generate yout keys using the simple variant, e.g. generateRandomKeys(3072, true) )') | ||
const m = this.decrypt(c) | ||
const phi = (this._p - 1n) * (this._q - 1n) | ||
const nInvModPhi = bcu.modInv(this.n, phi) | ||
const c1 = c * (1n - m * this.n) % this.publicKey._n2 | ||
return bcu.modPow(c1, nInvModPhi, this.n) | ||
} | ||
} | ||
@@ -131,3 +151,3 @@ | ||
* @param {number} [bitlength = 3072] - the bit length of the public modulo | ||
* @param {boolean} [simplevariant = false] - use the simple variant to compute the generator (g=n+1) | ||
* @param {boolean} [simplevariant = false] - use the simple variant to compute the generator (g=n+1). This is REQUIRED if you want to be able to recover the random integer factor used when encrypting with the public key | ||
* | ||
@@ -134,0 +154,0 @@ * @returns {Promise<KeyPair>} - a promise that resolves to a {@link KeyPair} of public, private keys |
{ | ||
"name": "paillier-bigint", | ||
"version": "3.0.5", | ||
"version": "3.0.6", | ||
"description": "An implementation of the Paillier cryptosystem using native JS (ECMA 2020) implementation of BigInt", | ||
@@ -5,0 +5,0 @@ "keywords": [ |
@@ -181,3 +181,3 @@ [![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT) | ||
* [.bitLength](#PublicKey+bitLength) ⇒ <code>number</code> | ||
* [.encrypt(m)](#PublicKey+encrypt) ⇒ <code>bigint</code> | ||
* [.encrypt(m, [r])](#PublicKey+encrypt) ⇒ <code>bigint</code> | ||
* [.addition(...ciphertexts)](#PublicKey+addition) ⇒ <code>bigint</code> | ||
@@ -206,3 +206,3 @@ * [.multiply(c, k)](#PublicKey+multiply) ⇒ <code>bigint</code> | ||
#### publicKey.encrypt(m) ⇒ <code>bigint</code> | ||
#### publicKey.encrypt(m, [r]) ⇒ <code>bigint</code> | ||
Paillier public-key encryption | ||
@@ -216,2 +216,3 @@ | ||
| m | <code>bigint</code> | a bigint representation of a cleartext message | | ||
| [r] | <code>bigint</code> | the random integer factor for encryption. By default is a random in (1,n) | | ||
@@ -255,2 +256,3 @@ <a name="PublicKey+addition"></a> | ||
* [.decrypt(c)](#PrivateKey+decrypt) ⇒ <code>bigint</code> | ||
* [.getRandomFactor(c)](#PrivateKey+getRandomFactor) ⇒ <code>bigint</code> | ||
@@ -297,2 +299,20 @@ <a name="new_PrivateKey_new"></a> | ||
<a name="PrivateKey+getRandomFactor"></a> | ||
#### privateKey.getRandomFactor(c) ⇒ <code>bigint</code> | ||
Recover the random factor used for encrypting a message with the complementary public key. | ||
The recovery function only works if the public key generator g was using the simple variant | ||
g = 1 + n | ||
**Kind**: instance method of [<code>PrivateKey</code>](#PrivateKey) | ||
**Returns**: <code>bigint</code> - - the random factor (mod n) | ||
**Throws**: | ||
- <code>RangeError</code> - Cannot recover the random factor if publicKey.g != publicKey.n + 1. You should generate yout keys using the simple variant, e.g. generateRandomKeys(3072, true) ) | ||
| Param | Type | Description | | ||
| --- | --- | --- | | ||
| c | <code>bigint</code> | the encryption using the public of message m with random factor r | | ||
<a name="generateRandomKeys"></a> | ||
@@ -309,3 +329,3 @@ | ||
| [bitlength] | <code>number</code> | <code>3072</code> | the bit length of the public modulo | | ||
| [simplevariant] | <code>boolean</code> | <code>false</code> | use the simple variant to compute the generator (g=n+1) | | ||
| [simplevariant] | <code>boolean</code> | <code>false</code> | use the simple variant to compute the generator (g=n+1). This is REQUIRED if you want to be able to recover the random integer factor used when encrypting with the public key | | ||
@@ -312,0 +332,0 @@ <a name="generateRandomKeysSync"></a> |
@@ -41,9 +41,21 @@ export type KeyPair = { | ||
/** | ||
* Paillier private-key decryption | ||
* | ||
* @param {bigint} c - a bigint encrypted with the public key | ||
* | ||
* @returns {bigint} - the decryption of c with this private key | ||
*/ | ||
* Paillier private-key decryption | ||
* | ||
* @param {bigint} c - a bigint encrypted with the public key | ||
* | ||
* @returns {bigint} - the decryption of c with this private key | ||
*/ | ||
decrypt(c: bigint): bigint; | ||
/** | ||
* Recover the random factor used for encrypting a message with the complementary public key. | ||
* The recovery function only works if the public key generator g was using the simple variant | ||
* g = 1 + n | ||
* | ||
* @param {bigint} c - the encryption using the public of message m with random factor r | ||
* | ||
* @returns {bigint} - the random factor (mod n) | ||
* | ||
* @throws {RangeError} - Cannot recover the random factor if publicKey.g != publicKey.n + 1. You should generate yout keys using the simple variant, e.g. generateRandomKeys(3072, true) ) | ||
*/ | ||
getRandomFactor(c: bigint): bigint; | ||
} | ||
@@ -72,6 +84,7 @@ /** | ||
* @param {bigint} m - a bigint representation of a cleartext message | ||
* @param {bigint} [r] - the random integer factor for encryption. By default is a random in (1,n) | ||
* | ||
* @returns {bigint} - the encryption of m with this public key | ||
*/ | ||
encrypt(m: bigint): bigint; | ||
encrypt(m: bigint, r?: bigint): bigint; | ||
/** | ||
@@ -104,3 +117,3 @@ * Homomorphic addition | ||
* @param {number} [bitlength = 3072] - the bit length of the public modulo | ||
* @param {boolean} [simplevariant = false] - use the simple variant to compute the generator (g=n+1) | ||
* @param {boolean} [simplevariant = false] - use the simple variant to compute the generator (g=n+1). This is REQUIRED if you want to be able to recover the random integer factor used when encrypting with the public key | ||
* | ||
@@ -107,0 +120,0 @@ * @returns {Promise<KeyPair>} - a promise that resolves to a {@link KeyPair} of public, private keys |
License Policy Violation
LicenseThis package is not allowed per your license policy. Review the package's license to ensure compliance.
Found 1 instance in 1 package
License Policy Violation
LicenseThis package is not allowed per your license policy. Review the package's license to ensure compliance.
Found 1 instance in 1 package
51216
607
351