Huge News!Announcing our $40M Series B led by Abstract Ventures.Learn More
Socket
Sign inDemoInstall
Socket

wink-naive-bayes-text-classifier

Package Overview
Dependencies
Maintainers
3
Versions
13
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

wink-naive-bayes-text-classifier - npm Package Compare versions

Comparing version 2.0.1 to 2.1.0

.nyc_output/849141e9-ccfa-43f3-8915-e6670c872061.json

4

CONTRIBUTING.md

@@ -40,6 +40,6 @@ # Contributing to Wink

### Documenting
We believe that the documentation must not only explain the API but also narrate the story of logic, algorithms and references used. Wink uses the [JSDoc](http://usejsdoc.org/) standard for API documentation and [Literate-Programming Standards](https://en.wikipedia.org/wiki/Literate_programming) for documenting the logic using [docker](http://jbt.github.io/docker/src/docker.js.html). The API documentation quality is measured using [Inch CI](https://inch-ci.org/) and we expect that your contribution will improve or maintain the current levels.
We believe that the documentation must not only explain the API but also narrate the story of logic, algorithms and references used. Wink uses the [JSDoc](https://jsdoc.app/) standard for API documentation and [Literate-Programming Standards](https://en.wikipedia.org/wiki/Literate_programming) for documenting the logic using [docker](http://jbt.github.io/docker/src/docker.js.html). The API documentation quality is measured using [Inch CI](https://inch-ci.org/) and we expect that your contribution will improve or maintain the current levels.
### Testing
Wink requires a test coverage of **atleast > 99.5%** and aims for 100%. Any new contribution must maintain the existing test coverage level. We use [Chai](http://chaijs.com/), [Mocha](https://mochajs.org/) and [Istanbul](https://inch-ci.org/), [Coveralls](https://coveralls.io/) to run tests and determine coverage.
Wink requires a test coverage of **atleast > 99.5%** and aims for 100%. Any new contribution must maintain the existing test coverage level. We use [Chai](http://chaijs.com/), [Mocha](https://mochajs.org/) and [Istanbul](https://istanbul.js.org/), [Coveralls](https://coveralls.io/) to run tests and determine coverage.

@@ -46,0 +46,0 @@ ### Committing

{
"name": "wink-naive-bayes-text-classifier",
"version": "2.0.1",
"version": "2.1.0",
"description": "Configurable Naive Bayes Classifier for text with cross-validation support",

@@ -18,7 +18,7 @@ "keywords": [

"pretest": "npm run lint && npm run docs",
"test": "istanbul cover _mocha ./test/",
"coveralls": "istanbul cover _mocha --report lcovonly -- -R spec && cat ./coverage/lcov.info | coveralls && rm -rf ./coverage",
"test": "nyc --reporter=html --reporter=text mocha ./test/",
"coverage": "nyc report --reporter=text-lcov | coveralls",
"sourcedocs": "docker -i src -o ./sourcedocs --sidebar no",
"docs": "jsdoc src/*.js -c .jsdoc.json",
"lint": "eslint ./src/*.js ./test/*.js"
"lint": "eslint ./src/*.js ./test/*.js ./runkit/*.js"
},

@@ -36,17 +36,17 @@ "repository": {

"devDependencies": {
"chai": "^4.2.0",
"coveralls": "^3.0.3",
"docdash": "winkjs/docdash",
"docker": "^1.0.0",
"eslint": "^5.16.0",
"istanbul": "^1.1.0-alpha.1",
"jsdoc": "^3.5.5",
"mocha": "^6.0.2",
"mocha-lcov-reporter": "^1.3.0"
"chai": "^4.3.6",
"coveralls": "^3.1.1",
"docdash": "github:winkjs/docdash",
"docker": "^0.2.14",
"eslint": "^8.26.0",
"jsdoc": "^3.6.11",
"mocha": "^10.1.0",
"nyc": "^15.1.0"
},
"dependencies": {
"wink-eng-lite-web-model": "^1.4.3",
"wink-helpers": "^2.0.0",
"wink-nlp-utils": "^2.0.4"
"wink-nlp": "^1.12.2"
},
"runkitExampleFilename": "./runkit/example.js"
}

@@ -6,10 +6,10 @@

### [![Build Status](https://api.travis-ci.org/winkjs/wink-naive-bayes-text-classifier.svg?branch=master)](https://travis-ci.org/winkjs/wink-naive-bayes-text-classifier) [![Coverage Status](https://coveralls.io/repos/github/winkjs/wink-naive-bayes-text-classifier/badge.svg?branch=master)](https://coveralls.io/github/winkjs/wink-naive-bayes-text-classifier?branch=master) [![Inline docs](http://inch-ci.org/github/winkjs/wink-naive-bayes-text-classifier.svg?branch=master)](http://inch-ci.org/github/winkjs/wink-naive-bayes-text-classifier) [![dependencies Status](https://david-dm.org/winkjs/wink-naive-bayes-text-classifier/status.svg)](https://david-dm.org/winkjs/wink-naive-bayes-text-classifier) [![devDependencies Status](https://david-dm.org/winkjs/wink-naive-bayes-text-classifier/dev-status.svg)](https://david-dm.org/winkjs/wink-naive-bayes-text-classifier?type=dev) [![Gitter](https://img.shields.io/gitter/room/nwjs/nw.js.svg)](https://gitter.im/winkjs/Lobby)
### [![Build Status](https://app.travis-ci.com/winkjs/wink-naive-bayes-text-classifier.svg?branch=master)](https://app.travis-ci.com/winkjs/wink-naive-bayes-text-classifier) [![Coverage Status](https://coveralls.io/repos/github/winkjs/wink-naive-bayes-text-classifier/badge.svg?branch=master)](https://coveralls.io/github/winkjs/wink-naive-bayes-text-classifier?branch=master) [![Gitter](https://img.shields.io/gitter/room/nwjs/nw.js.svg)](https://gitter.im/winkjs/Lobby)
<img align="right" src="https://decisively.github.io/wink-logos/logo-title.png" width="100px" >
Classify text, analyse sentiments, recognize user intents for chatbot using **`wink-naive-bayes-text-classifier`**. It's [API](http://winkjs.org/wink-naive-bayes-text-classifier/NaiveBayesTextClassifier.html) offers a rich set of features:
Classify text, analyse sentiments, recognize user intents for chatbot using **`wink-naive-bayes-text-classifier`**. Its [API](http://winkjs.org/wink-naive-bayes-text-classifier/NaiveBayesTextClassifier.html) offers a rich set of features:
1. Configure text preparation task such as **amplify negation**, **tokenize**, **stem**, **remove stop words**, and **propagate negation** using [wink-nlp-utils](https://www.npmjs.com/package/wink-nlp-utils) or any other package of your choice.
2. Configure **Lidstone** or **Lapalce** additive smoothing.
1. Preprocess text using [wink-nlp](https://www.npmjs.com/package/wink-nlp) — tokenize, stem, remove stop words, and handle negation. It also supports [Named Entity Recognition](https://winkjs.org/wink-nlp/getting-started.html) to further enhance preprocessing. A single winkNLP based helper function for preparing text is available that (a) tokenizes, (b) removes punctuations, symbols, numerals, URLs, stop words and (c) stems. It can be required from `wink-naive-bayes-text-classifier/src/prep-text.js`.
2. Configure **Lidstone** or **Laplace** additive smoothing.
3. Configure **Multinomial** or **Binarized Multinomial** Naive Bayes model.

@@ -34,13 +34,21 @@ 4. Export and import learnings in JSON format that can be easily saved on hard-disk.

var nbc = Classifier();
// Load NLP utilities
var nlp = require( 'wink-nlp-utils' );
// Configure preparation tasks
nbc.definePrepTasks( [
// Simple tokenizer
nlp.string.tokenize0,
// Common Stop Words Remover
nlp.tokens.removeWords,
// Stemmer to obtain base word
nlp.tokens.stem
] );
// Load wink nlp and its model
const winkNLP = require( 'wink-nlp' );
// Load language model
const model = require( 'wink-eng-lite-web-model' );
const nlp = winkNLP( model );
const its = nlp.its;
const prepTask = function ( text ) {
const tokens = [];
nlp.readDoc(text)
.tokens()
// Use only words ignoring punctuations etc and from them remove stop words
.filter( (t) => ( t.out(its.type) === 'word' && !t.out(its.stopWordFlag) ) )
// Handle negation and extract stem of the word
.each( (t) => tokens.push( (t.out(its.negationFlag)) ? '!' + t.out(its.stem) : t.out(its.stem) ) );
return tokens;
};
nbc.definePrepTasks( [ prepTask ] );
// Configure behavior

@@ -66,3 +74,2 @@ nbc.defineConfig( { considerOnlyPresence: true, smoothingFactor: 0.5 } );

// -> prepay
```

@@ -79,8 +86,8 @@

### About wink
[Wink](http://winkjs.org/) is a family of open source packages for **Statistical Analysis**, **Natural Language Processing** and **Machine Learning** in NodeJS. The code is **thoroughly documented** for easy human comprehension and has a **test coverage of ~100%** for reliability to build production grade solutions.
[Wink](http://winkjs.org/) is a family of open source packages for **Natural Language Processing**, **Statistical Analysis** and **Machine Learning** in NodeJS. The code is **thoroughly documented** for easy human comprehension and has a **test coverage of ~100%** for reliability to build production grade solutions.
### Copyright & License
**wink-naive-bayes-text-classifier** is copyright 2017-19 [GRAYPE Systems Private Limited](http://graype.in/).
**wink-naive-bayes-text-classifier** is copyright 2017-22 [GRAYPE Systems Private Limited](http://graype.in/).
It is licensed under the terms of the MIT License.
// Load Naive Bayes Text Classifier
var Classifier = require( 'wink-naive-bayes-text-classifier' );
// Instantiate
var nbc = Classifier();
// Load NLP utilities
var nlp = require( 'wink-nlp-utils' );
// Configure preparation tasks
nbc.definePrepTasks( [
// Simple tokenizer
nlp.string.tokenize0,
// Common Stop Words Remover
nlp.tokens.removeWords,
// Stemmer to obtain base word
nlp.tokens.stem
] );
var nbc = Classifier(); // eslint-disable-line new-cap
// Load wink nlp and its model
const winkNLP = require( 'wink-nlp' );
// Load language model
const model = require( 'wink-eng-lite-web-model' );
const nlp = winkNLP( model );
const its = nlp.its;
const prepTask = function ( text ) {
const tokens = [];
nlp.readDoc(text)
.tokens()
// Use only words ignoring punctuations etc and from them remove stop words
.filter( (t) => ( t.out(its.type) === 'word' && !t.out(its.stopWordFlag) ) )
// Handle negation and extract stem of the word
.each( (t) => tokens.push( (t.out(its.negationFlag)) ? '!' + t.out(its.stem) : t.out(its.stem) ) );
return tokens;
};
nbc.definePrepTasks( [ prepTask ] );
// Configure behavior

@@ -17,0 +25,0 @@ nbc.defineConfig( { considerOnlyPresence: true, smoothingFactor: 0.5 } );

@@ -5,3 +5,3 @@ // wink-naive-bayes-text-classifier

//
// Copyright (C) 2017-19 GRAYPE Systems Private Limited
// Copyright (C) GRAYPE Systems Private Limited
//

@@ -289,3 +289,3 @@ // This file is part of “wink-naive-bayes-text-classifier”.

// If smoothing factor is undefined set it to lapalce add+1 smoothing.
// If smoothing factor is undefined set it to laplace add+1 smoothing.
var sf = ( cfg.smoothingFactor === undefined ) ? 1 : parseFloat( cfg.smoothingFactor );

@@ -310,3 +310,4 @@ // Throw error for a value beyond 0-1 or NaN.

* using these function a simple pipeline is built to serially transform the
* input to the output.
* input to the output. A single helper function for preparing text is available that (a) tokenizes,
* (b) removes punctuations, symbols, numerals, URLs, stop words and (c) stems.
*

@@ -320,13 +321,6 @@ * @method NaiveBayesTextClassifier#definePrepTasks

* // Load wink NLP utilities
* var nlp = require( 'wink-nlp-utils' );
* var prepText = require( 'wink-naive-bayes-text-classifier/src/prep-text.js' );
* // Define the text preparation tasks.
* myClassifier.definePrepTasks( [
* // Simple tokenizer to convert input text in to tokens
* nlp.string.tokenize0,
* // Removes stop words from the input tokens
* nlp.tokens.removeWords,
* // Stems each token into its base form
* nlp.tokens.stem
* ] );
* // -> 3
* myClassifier.definePrepTasks( [ prepText ] );
* // -> 1
* @throws Error if `tasks` is not an array of functions.

@@ -333,0 +327,0 @@ */

Sorry, the diff of this file is not supported yet

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc