
Research
5 Malicious Chrome Extensions Enable Session Hijacking in Enterprise HR and ERP Systems
Five coordinated Chrome extensions enable session hijacking and block security controls across enterprise HR and ERP platforms.
agon-python
Advanced tools
Adaptive Guarded Object Notation - A schema-driven, token-efficient data interchange format for LLMs
Adaptive Guarded Object Notation - a self-describing, multi-format JSON encoding optimized for LLM prompts with one guarantee: never worse than JSON.
π Full Documentation | π Quick Start | β‘ Benchmarks
The Problem: Fixed-format encoders can actually make token counts worse. When your data doesn't match the encoder's assumptions (e.g., deeply nested objects, sparse arrays, irregular structures), you pay the overhead of the format without the benefits.
AGON's Solution: Adaptive encoding with multiple guard rails.
result = AGON.encode(data, format="auto")
# Auto tries: rows, columns, struct
# Returns: whichever saves the most tokens
# Falls back: to compact JSON if none are better
| Aspect | TOON | AGON |
|---|---|---|
| Approach | Single unified format | Multiple adaptive formats + JSON fallback |
| Risk | Can be worse than JSON on irregular data | Never worse than JSON (guaranteed) |
| Format Selection | Always applies TOON encoding | Auto-selects best format or falls back to JSON |
| Best For | Uniform arrays, consistent pipelines | Variable data shapes, risk-averse optimization |
| Philosophy | "One format for all JSON" | "Best format for each data shape, or JSON" |
pip install agon-python
Or with uv:
uv add agon-python
from agon import AGON
# Sample data - list of objects with repeated structure
data = [
{"id": 1, "name": "Alice", "role": "admin"},
{"id": 2, "name": "Bob", "role": "user"},
{"id": 3, "name": "Charlie", "role": "user"},
]
# Encode with auto-selection (tries rows/columns/struct, picks best or falls back to JSON)
result = AGON.encode(data, format="auto")
print(f"Selected format: {result.format}") # β "rows"
print(f"Encoded output:\n{result}")
# Outputs clean format WITHOUT @AGON header:
# [3]{id name role}
# 1 Alice admin
# 2 Bob user
# 3 Charlie user
# Verify lossless round-trip
decoded = AGON.decode(result)
assert decoded == data # β
Perfect reconstruction
# Use directly in LLM prompts - no header needed for sending data to LLMs
prompt = f"""Analyze this user data:
{result}
What percentage are admins?"""
# LLM can easily parse the structured format and respond with: "33.3% (1 out of 3 users)"
β οΈ Note: LLMs have NOT been trained on AGON format, so accuracy cannot be guaranteed. This is an experimental feature. For production use, prefer sending AGON to LLMs (reliable) over asking LLMs to generate AGON (experimental, requires validation).
from agon import AGON
# Same data as before
data = [
{"id": 1, "name": "Alice", "role": "admin"},
{"id": 2, "name": "Bob", "role": "user"},
{"id": 3, "name": "Charlie", "role": "user"},
]
result = AGON.encode(data, format="auto")
# To ask an LLM to respond in AGON format, provide both:
# 1. Generation instructions via result.hint()
# 2. An example with header via result.with_header()
prompt = f"""Analyze this user data and return enriched data in AGON format.
Instructions: {result.hint()}
Example output:
{result.with_header()}
Task: Add an is_admin boolean field and return in the same format."""
# Example LLM response (hypothetical - accuracy not guaranteed)
llm_response = """@AGON rows
[3]{name role is_admin}
Alice admin true
Bob user false
Charlie user false"""
# Decode LLM response using header to auto-detect format
parsed = AGON.decode(llm_response)
# β [{"name": "Alice", "role": "admin", "is_admin": True},
# {"name": "Bob", "role": "user", "is_admin": False},
# {"name": "Charlie", "role": "user", "is_admin": False}]
admin_count = sum(1 for user in parsed if user.get("is_admin"))
print(f"Admin percentage: {admin_count / len(parsed) * 100:.1f}%") # β 33.3%
AGON provides three specialized repetition-aware encoding formats that are friendly to LLMs, powered by a high-performance Rust core for minimal latency:
AGONRows: Row-based tabular encoding for arrays of uniform objects
AGONColumns: Columnar encoding with type clustering
AGONStruct: Template-based encoding for repeated nested patterns
{fmt, raw} or {value, timestamp} patternsAGON's core encoding/decoding is implemented in Rust with PyO3 bindings, delivering:
AGONRows, AGONColumns, AGONStruct) exposed as Python objects via PyO3result = AGON.encode(data, format="auto")
How auto works:
The guarantee: Auto mode never returns a format with more tokens than compact JSON. If all specialized formats are worse or marginally better, it returns JSON.
Example decision tree:
Data shape analysis:
β Rows: 96 tokens (30.9% better than JSON) β
Winner
β Columns: 108 tokens (22.3% better than JSON) β Not optimal
β Struct: 130 tokens (6.5% better than JSON) β Not optimal
β JSON: 139 tokens (baseline) β Fallback
Decision: Use rows (best savings, exceeds 10% threshold)
All non-JSON encodings start with an @AGON ... header so they can be decoded later.
Let's compare formats on the same data with real token counts (using o200k_base tokenizer).
This example demonstrates encoding a list of hiking records with nested context and uniform arraysβa common LLM use case.
JSON (pretty, 229 tokens - baseline):
{
"context": {"task": "Our favorite hikes together", "location": "Boulder", "season": "spring_2025"},
"friends": ["ana", "luis", "sam"],
"hikes": [
{"id": 1, "name": "Blue Lake Trail", "distanceKm": 7.5, "elevationGain": 320, "companion": "ana", "wasSunny": true},
{"id": 2, "name": "Ridge Overlook", "distanceKm": 9.2, "elevationGain": 540, "companion": "luis", "wasSunny": false},
{"id": 3, "name": "Wildflower Loop", "distanceKm": 5.1, "elevationGain": 180, "companion": "sam", "wasSunny": true}
]
}
JSON (compact, 139 tokens):
{"context":{"task":"Our favorite hikes together","location":"Boulder","season":"spring_2025"},"friends":["ana","luis","sam"],"hikes":[{"id":1,"name":"Blue Lake Trail","distanceKm":7.5,"elevationGain":320,"companion":"ana","wasSunny":true},{"id":2,"name":"Ridge Overlook","distanceKm":9.2,"elevationGain":540,"companion":"luis","wasSunny":false},{"id":3,"name":"Wildflower Loop","distanceKm":5.1,"elevationGain":180,"companion":"sam","wasSunny":true}]}
| Format | Tokens | Savings vs Pretty | Savings vs Compact | Winner |
|---|---|---|---|---|
| JSON (pretty) | 229 | β (baseline) | -64.7% π | |
| JSON (compact) | 139 | +39.3% β | β (baseline) | |
| TOON | 96 | +58.1% β | +30.9% β | |
| AGON rows | 96 | +58.1% β | +30.9% β | Tied with TOON |
| AGON columns | 108 | +52.8% β | +22.3% β | |
| AGON struct | 130 | +43.2% β | +6.5% β | |
| AGON auto | 96 | +58.1% β | +30.9% β | Winner (selected rows) |
TOON (96 tokens, +58.1% savings):
context:
task: Our favorite hikes together
location: Boulder
season: spring_2025
friends[3]: ana,luis,sam
hikes[3]{id,name,distanceKm,elevationGain,companion,wasSunny}:
1,Blue Lake Trail,7.5,320,ana,true
2,Ridge Overlook,9.2,540,luis,false
3,Wildflower Loop,5.1,180,sam,true
How it works: TOON uses YAML-like indentation for nested objects and comma-delimited rows for arrays. The [3] declares array length and {fields} lists column headersβgiving LLMs explicit structure to validate against.
AGON rows (96 tokens, +58.1% savings - nearly identical to TOON!):
context:
task: Our favorite hikes together
location: Boulder
season: spring_2025
friends[3]: ana luis sam
hikes[3]{id name distanceKm elevationGain companion wasSunny}
1 Blue Lake Trail 7.5 320 ana true
2 Ridge Overlook 9.2 540 luis false
3 Wildflower Loop 5.1 180 sam true
How it works: AGON rows uses the same structure as TOON but with tab-delimited rows instead of commas. Both achieve identical token counts (96 tokens) because the delimiter choice doesn't significantly affect tokenization. Auto mode chose rows because it had the lowest token count (96 vs 108 for columns vs 130 for struct).
AGON columns (108 tokens, +52.8% savings):
context:
task: Our favorite hikes together
location: Boulder
season: spring_2025
friends[3]: ana luis sam
hikes[3]
β id: 1 2 3
β name: Blue Lake Trail Ridge Overlook Wildflower Loop
β distanceKm: 7.5 9.2 5.1
β elevationGain: 320 540 180
β companion: ana luis sam
β wasSunny: true false true
How it works: Columnar format transposes the data, grouping same-type values together. This can be more token-efficient for wide tables (20+ columns) or numeric-heavy data where type clustering improves compression. Not selected here because rows format is better for this data shape.
AGON struct (144 tokens, +37.1% savings):
@CDEI: companion, distanceKm, elevationGain, id, name, wasSunny
context:
task: Our favorite hikes together
location: Boulder
season: spring_2025
friends
[3]:
- ana
- luis
- sam
hikes
[3]:
- CDEI(ana, 7.5, 320, 1, Blue Lake Trail, true)
- CDEI(luis, 9.2, 540, 2, Ridge Overlook, false)
- CDEI(sam, 5.1, 180, 3, Wildflower Loop, true)
How it works: Struct format declares reusable templates (@CDEI: fields) once at the top, then instantiates them with just values CDEI(...). The struct name is generated from the first letter of each field (Companion, DistanceKm, ElevationGain, Id β CDEI).
But what about data where specialized formats don't provide enough benefit? Let's look at gainers.json (100 complex quote objects with deeply nested structures):
| Format | Tokens | Savings vs Pretty JSON | Decision |
|---|---|---|---|
| JSON (pretty) | 142,791 | β (baseline) | |
| JSON (compact) | 91,634 | +35.8% β | |
| AGON rows | 113,132 | +20.8% β | |
| AGON columns | 113,132 | +20.8% β | |
| AGON struct | 89,011 | +37.7% β (best format!) | |
| AGON auto | 91,634 | +35.8% (returned compact JSON) | β Safe choice |
AGON's safety net in action: Even though struct format achieved the best savings (37.7%), when compared against compact JSON (the real alternative), struct only saved 2.9%βbelow the minimum threshold (default 10%). Rather than risk the encoding overhead for marginal gains, auto returned compact JSON, guaranteeing excellent performance with zero complexity.
Key insight: Rows/columns formats actually hurt compared to compact JSON (113K vs 91K tokens), but auto intelligently avoided them. And while struct was marginally better, the gains weren't worth the format overhead.
With AGON: You get compact JSON back (35.8% better than pretty), paying zero format complexity, with zero risk.
AGON excels in scenarios where data structure varies and intelligent format selection provides value:
AGON.project_data)When AGON helps most:
When AGON helps least:
from agon import AGON, Encoding
# Auto (recommended) - uses fast byte-length estimation
result = AGON.encode(data)
# Auto with accurate token counting (slower but precise)
result = AGON.encode(data, encoding="o200k_base") # or "cl100k_base", "p50k_base", etc.
# Choose a specific format
result = AGON.encode(data, format="rows")
result = AGON.encode(data, format="columns")
result = AGON.encode(data, format="struct")
result = AGON.encode(data, format="json")
# Auto-mode controls
result = AGON.encode(data, format="auto", force=True) # never pick JSON
result = AGON.encode(data, format="auto", min_savings=0.10) # require 10% savings vs JSON
# Decode AGONEncoding directly
result = AGON.encode(data, format="rows")
decoded = AGON.decode(result)
# Decode string with auto-detection by header
decoded = AGON.decode(payload_with_header)
# Decode string with explicit format (header not required)
decoded = AGON.decode(payload_without_header, format="rows")
result = AGON.encode(data, format="auto")
# Get the encoded text (for use in LLM prompts)
text = str(result) # or just use result directly in f-strings
text = result.text # explicit access
# Get character count
length = len(result)
# Get format that was selected
format_used = result.format # "rows", "columns", "struct", or "json"
# Get format header
header = result.header # "@AGON rows", "@AGON columns", etc.
# Get text with header prepended (for auto-detect decoding)
with_header = result.with_header()
# Get generation instructions for LLMs
hint = result.hint()
# Keep only specific fields (supports dotted paths like "user.profile.name" or "quotes.symbol")
projected = AGON.project_data(data, ["id", "name"])
# Token counting helper (uses Rust tiktoken implementation)
tokens = AGON.count_tokens("hello world") # default: o200k_base
tokens = AGON.count_tokens("hello world", encoding="cl100k_base") # GPT-4/3.5-turbo
This project uses uv for dependency management.
# Clone the repository
git clone https://github.com/Verdenroz/agon-python.git
cd agon
# Install dependencies (including dev)
uv sync --dev
# Run tests
uv run pytest
# Run tests with coverage
uv run pytest --cov=agon --cov-report=html
# Run linting
uv run ruff check src tests
uv run ruff format src tests
# Run type checking
uv run basedpyright src
# Install pre-commit hooks
uv run pre-commit install
Full documentation is available at https://Verdenroz.github.io/agon-python/
This repo includes an MkDocs site under docs/.
# Serve locally
make docs
AGON's adaptive approach yields variable results depending on data structure and format used. Benchmarks on actual test fixtures from tests/data/.
Encoding and decoding times for all formats across all datasets:
| Dataset | Size | Records | JSON | Rows | Columns | Struct | Auto (selected) |
|---|---|---|---|---|---|---|---|
| toon.json | 0.6 KB | 1 | 0.00 / 0.01 ms | 0.10 / 0.30 ms | 0.09 / 0.12 ms | 0.14 / 0.29 ms | 0.40 / 0.48 ms (rows) |
| scars.json | 9.8 KB | 1 | 0.01 / 0.05 ms | 0.56 / 3.26 ms | 0.51 / 0.76 ms | 0.64 / 3.20 ms | 1.65 / 0.11 ms (json) |
| 128KB.json | 249 KB | 788 | 0.16 / 0.91 ms | 16.82 / 22.68 ms | 14.10 / 17.28 ms | 19.49 / 60.26 ms | 27.94 / 19.91 ms (rows) |
| historical.json | 127 KB | 1 | 1.05 / 2.50 ms | 20.72 / 131.49 ms | 21.09 / 30.78 ms | 31.90 / 68.84 ms | 36.22 / 68.35 ms (struct) |
| chart.json | 196 KB | 1,256 | 0.50 / 1.30 ms | 26.46 / 33.20 ms | 25.27 / 31.50 ms | 35.97 / 57.79 ms | 36.55 / 33.39 ms (rows) |
| quote.json | 283 KB | 1 | 0.62 / 1.91 ms | 47.15 / 92.92 ms | 42.86 / 52.45 ms | 67.44 / 102.22 ms | 63.21 / 45.21 ms (columns) |
| gainers.json | 257 KB | 100 | 0.72 / 2.06 ms | 47.46 / 241.39 ms | 42.46 / 68.67 ms | 62.38 / 139.56 ms | 71.10 / 141.88 ms (struct) |
| Dataset | Type | JSON Pretty | JSON Compact | Rows | Columns | Struct | Auto | Selected |
|---|---|---|---|---|---|---|---|---|
| toon.json | Hiking records (nested) | 229 | 139 (+39.3%) | 96 (+58.1%) | 108 (+52.8%) | 144 (+37.1%) | 96 | rows |
| scars.json | Error records | 2,600 | 2,144 (+17.5%) | 2,225 (+14.4%) | 2,230 (+14.2%) | 2,448 (+5.8%) | 2,144 | json β οΈ |
| 128KB.json | 788 employee records | 77,346 | 62,378 (+19.4%) | 54,622 (+29.4%) | 54,292 (+29.8%) | 59,926 (+22.5%) | 54,622 | rows |
| historical.json | Historical OHLCV data | 84,094 | 55,228 (+34.3%) | 70,286 (+16.4%) | 70,286 (+16.4%) | 48,969 (+41.8%) | 48,969 | struct |
| chart.json | 1,256 candles | 101,767 | 71,623 (+29.6%) | 51,541 (+49.4%) | 51,558 (+49.3%) | 65,364 (+35.8%) | 51,541 | rows |
| quote.json | Single quote (nested) | 128,981 | 85,956 (+33.4%) | 67,251 (+47.9%) | 65,586 (+49.2%) | 69,053 (+46.5%) | 65,586 | columns |
| gainers.json | 100 complex quotes | 142,791 | 91,634 (+35.8%) | 113,132 (+20.8%) | 113,132 (+20.8%) | 89,012 (+37.7%) | 89,012 | struct |
Key insights:
min_savings threshold using compact JSON as its baseline.# Run performance benchmarks (token counts + encode/decode times)
make benchmarks
# Or directly with pytest
uv run pytest tests/test_benchmarks.py -s --no-cov -o addopts=""
The documentation site also includes a Benchmarks page with recent results and methodology.
Contributions welcome! AGON is in active development. Areas of interest:
Please open issues or PRs on GitHub.
MIT License - see LICENSE for details.
AGON - Adaptive Guarded Object Notation
FAQs
Adaptive Guarded Object Notation - A schema-driven, token-efficient data interchange format for LLMs
We found that agon-python demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago.Β It has 1 open source maintainer collaborating on the project.
Did you know?

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Research
Five coordinated Chrome extensions enable session hijacking and block security controls across enterprise HR and ERP platforms.

Research
Node.js patched a crash bug where AsyncLocalStorage could cause stack overflows to bypass error handlers and terminate production servers.

Research
/Security News
A malicious Chrome extension steals newly created MEXC API keys, exfiltrates them to Telegram, and enables full account takeover with trading and withdrawal rights.