Research
Security News
Malicious npm Packages Inject SSH Backdoors via Typosquatted Libraries
Socket’s threat research team has detected six malicious npm packages typosquatting popular libraries to insert SSH backdoors.
Python library for asynchronous interactions with the OpenAI API, enabling concurrent request handling. It simplifies building scalable, AI-powered applications by offering efficient, rate-limited access to OpenAI services. Perfect for developers seeking to integrate OpenAI's capabilities with minimal overhead.
The Concurrent OpenAI Manager is a pure Python library meticulously designed for developers seeking an optimal integration with OpenAI's APIs. This library is engineered to handle API requests with efficiency, ensuring compliance with rate limits and managing system resources effectively, all while providing transparent cost estimations for OpenAI services.
Central to the library is a carefully crafted rate limiter, capable of managing the number of requests and tokens per minute. This ensures your application stays within OpenAI's usage policies, avoiding rate limit violations and potential service disruptions.
The throttling mechanism is designed to prevent sudden surges of requests, spreading them evenly over time. This ensures a steady and predictable load on OpenAI's endpoints, contributing to a responsible utilization of API resources and avoiding the 429 errors that might occur if we simply do all the requests at once.
To manage local system resources or limit parallelism, the library incorporates a semaphore mechanism. This allows developers to specify the maximum number of concurrent operations, ensuring balanced resource utilization and a responsive application performance. Useful when you want tot manage local resources (such as database connections or memory usage) or wish to limit parallelism to ensure a responsive user experience. By fine-tuning the semaphore value, you have control on the amount of coroutines that are on the Event Loop.
A notable feature of the Concurrent OpenAI Manager is its built-in cost estimation. This functionality provides users with detailed insights into the cost implications of their API requests, including a breakdown of prompt and completion tokens used. Such transparency empowers users to manage their budget effectively and optimize their use of OpenAI's APIs.
Integrating the Concurrent OpenAI Manager into your project is straightforward:
$ pip install concurrent-openai
.env
file in your project directory.OPENAI_API_KEY
.from concurrent_openai import process_completion_requests
results = await process_completion_requests(
prompts=[{"role": "user", "content": "Knock, knock!"}],
model="gpt-4-0613",
temperature=0.7,
max_tokens=150,
max_concurrent_requests=5,
token_safety_margin=10,
)
for result in results:
if result:
print(result)
else:
print("Error processing request.")
FAQs
Python library for asynchronous interactions with the OpenAI API, enabling concurrent request handling. It simplifies building scalable, AI-powered applications by offering efficient, rate-limited access to OpenAI services. Perfect for developers seeking to integrate OpenAI's capabilities with minimal overhead.
We found that concurrent-openai demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago. It has 1 open source maintainer collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Research
Security News
Socket’s threat research team has detected six malicious npm packages typosquatting popular libraries to insert SSH backdoors.
Security News
MITRE's 2024 CWE Top 25 highlights critical software vulnerabilities like XSS, SQL Injection, and CSRF, reflecting shifts due to a refined ranking methodology.
Security News
In this segment of the Risky Business podcast, Feross Aboukhadijeh and Patrick Gray discuss the challenges of tracking malware discovered in open source softare.