dlprog
Deep Learning Progress
A Python library for progress bars with the function of aggregating each iteration's value.
It helps manage the loss of each epoch in deep learning or machine learning training.
Installation
pip install dlprog
General Usage
Setup
from dlprog import Progress
prog = Progress()
Example
import random
import time
n_epochs = 3
n_iter = 10
prog.start(n_epochs=n_epochs, n_iter=n_iter, label='value')
for _ in range(n_epochs):
for _ in range(n_iter):
time.sleep(0.1)
value = random.random()
prog.update(value)
1/3: ######################################## 100% [00:00:01.06] value: 0.64755
2/3: ######################################## 100% [00:00:01.05] value: 0.41097
3/3: ######################################## 100% [00:00:01.06] value: 0.26648
Get each epoch's value
>>> prog.values
[0.6475490908029968, 0.4109736504929395, 0.26648041702649705]
Call get_all_values()
method to get all values of each iteration.
And get_all_times()
method to get all times of each iteration.
In machine learning training
Setup.
train_progress
function is a shortcut for Progress
class.
Return a progress bar that is suited for machine learning training.
from dlprog import train_progress
prog = train_progress()
Example. Case of training a deep learning model with PyTorch.
n_epochs = 3
n_iter = len(dataloader)
prog.start(n_epochs=n_epochs, n_iter=n_iter)
for _ in range(n_epochs):
for x, label in dataloader:
optimizer.zero_grad()
y = model(x)
loss = criterion(y, label)
loss.backward()
optimizer.step()
prog.update(loss.item())
Output
1/3: ######################################## 100% [00:00:03.08] loss: 0.34099
2/3: ######################################## 100% [00:00:03.12] loss: 0.15259
3/3: ######################################## 100% [00:00:03.14] loss: 0.10684
If you want to obtain weighted exact values considering batch size:
prog.update(loss.item(), weight=len(x))
Advanced usage
Advanced arguments, functions, etc.
Also, see API Reference if you want to know more.
leave_freq
Argument that controls the frequency of leaving the progress bar.
n_epochs = 12
n_iter = 10
prog.start(n_epochs=n_epochs, n_iter=n_iter, leave_freq=4)
for _ in range(n_epochs):
for _ in range(n_iter):
time.sleep(0.1)
value = random.random()
prog.update(value)
Output
4/12: ######################################## 100% [00:00:01.06] loss: 0.34203
8/12: ######################################## 100% [00:00:01.05] loss: 0.47886
12/12: ######################################## 100% [00:00:01.05] loss: 0.40241
unit
Argument that multiple epochs as a unit.
n_epochs = 12
n_iter = 10
prog.start(n_epochs=n_epochs, n_iter=n_iter, unit=4)
for _ in range(n_epochs):
for _ in range(n_iter):
time.sleep(0.1)
value = random.random()
prog.update(value)
Output
1-4/12: ######################################## 100% [00:00:04.21] value: 0.49179
5-8/12: ######################################## 100% [00:00:04.20] value: 0.51518
9-12/12: ######################################## 100% [00:00:04.18] value: 0.54546
Add note
You can add a note to the progress bar.
n_iter = 10
prog.start(n_iter=n_iter, note='This is a note')
for _ in range(n_iter):
time.sleep(0.1)
value = random.random()
prog.update(value)
Output
1: ######################################## 100% [00:00:01.05] 0.58703, This is a note
You can also add a note when update()
as note
argument.
Also, you can add a note when end of epoch usin memo() if defer=True
.
n_epochs = 3
prog.start(
n_epochs=n_epochs,
n_iter=len(trainloader),
label='train_loss',
defer=True,
width=20,
)
for _ in range(n_epochs):
for x, label in trainloader:
optimizer.zero_grad()
y = model(x)
loss = criterion(y, label)
loss.backward()
optimizer.step()
prog.update(loss.item())
test_loss = eval_model(model)
prog.memo(f'test_loss: {test_loss:.5f}')
Output
1/3: #################### 100% [00:00:02.83] train_loss: 0.34094, test_loss: 0.18194
2/3: #################### 100% [00:00:02.70] train_loss: 0.15433, test_loss: 0.12987
3/3: #################### 100% [00:00:02.79] train_loss: 0.10651, test_loss: 0.09783
Multiple values
If you want to aggregate multiple values, set n_values
and input values as a list.
n_epochs = 3
n_iter = 10
prog.start(n_epochs=n_epochs, n_iter=n_iter, n_values=2)
for _ in range(n_epochs):
for _ in range(n_iter):
time.sleep(0.1)
value1 = random.random()
value2 = random.random() * 10
prog.update([value1, value2])
Output
1/3: ######################################## 100% [00:00:01.05] 0.47956, 4.96049
2/3: ######################################## 100% [00:00:01.05] 0.30275, 4.86003
3/3: ######################################## 100% [00:00:01.05] 0.43296, 3.31025
You can input multiple labels as a list instead of n_values
.
prog.start(n_iter=n_iter, label=['value1', 'value2'])
Default attributes
Progress
object keeps constructor arguments as default attributes.
These attributes are used when not specified in start()
.
Attributes specified in start()
is used preferentially while this running (until next start()
or reset()
).
If a required attribute (n_iter
) has already been specified, start()
can be skipped.
momentum
Update values by exponential moving average.
now_values = []
prog.start(n_iter=10, momentum=0.9, defer=True)
for i in range(10):
prog.update(i)
now_values.append(prog.now_values())
now_values
Output
1: ######################################## 100% [00:00:00.01] 3.48678
[0.0,
0.09999999999999998,
0.2899999999999999,
0.5609999999999999,
0.9048999999999999,
1.3144099999999999,
1.7829689999999998,
2.3046721,
2.8742048899999997,
3.4867844009999995]
Version History
1.0.0 (2023-07-13)
- Add
Progress
class. - Add
train_progress
function.
1.1.0 (2023-07-13)
- Add
values
attribute. - Add
leave_freq
argument. - Add
unit
argument.
1.2.0 (2023-09-24)
- Add
note
argument, memo()
method, and defer
argument. - Support multiple values.
- Add
round
argument. - Support changing separator strings.
- Support skipping
start()
. - Write API Reference.
- Other minor adjustments.
1.2.1 (2023-09-25)
- Support
note=None
in memo()
. - Change timing of note reset from epoch_reset to bar_reset.
1.2.2 (2023-09-25)
- Fix bug that not set
note=None
defaultly in memo()
.
1.2.3 (2023-11-28)
- Fix bug that argument
label
is not available when with_test=True
in train_progress()
.
1.2.4 (2023-11-29)
- Fix bug that argument
width
is not available when with_test=True
in train_progress()
.
1.2.5 (2024-01-17)
- Add
get_all_values()
method. - Add
get_all_times()
method.
1.2.6 (2024-01-18)
- Fix bug that the time (minutes) is not displayed correctly.
1.2.7 (2024-05-10)
- Add
store_all_values
and store_all_times
arguments.
1.2.8 (2024-06-23, Latest)
- Add
momentum
argument. - Add
now_values()
method.