DVCLive


DVCLive is a Python library for logging machine learning metrics and other
metadata in simple file formats, which is fully compatible with DVC.
Quickstart
Python API Overview | PyTorch Lightning | Scikit-learn | Ultralytics YOLO v8 |
---|
 |  |  |  |
Install dvclive
$ pip install dvclive
Initialize DVC Repository
$ git init
$ dvc init
$ git commit -m "DVC init"
Example code
Copy the snippet below into train.py
for a basic API usage example:
import time
import random
from dvclive import Live
params = {"learning_rate": 0.002, "optimizer": "Adam", "epochs": 20}
with Live() as live:
for param in params:
live.log_param(param, params[param])
offset = random.uniform(0.2, 0.1)
for epoch in range(1, params["epochs"]):
fuzz = random.uniform(0.01, 0.1)
accuracy = 1 - (2 ** - epoch) - fuzz - offset
loss = (2 ** - epoch) + fuzz + offset
live.log_metric("accuracy", accuracy)
live.log_metric("loss", loss)
live.next_step()
time.sleep(0.2)
See Integrations for examples using
DVCLive alongside different ML Frameworks.
Running
Run this a couple of times to simulate multiple experiments:
$ python train.py
$ python train.py
$ python train.py
...
Comparing
DVCLive outputs can be rendered in different ways:
DVC CLI
You can use dvc exp show and
dvc plots to compare and
visualize metrics, parameters and plots across experiments:
$ dvc exp show
─────────────────────────────────────────────────────────────────────────────────────────────────────────────
Experiment Created train.accuracy train.loss val.accuracy val.loss step epochs
─────────────────────────────────────────────────────────────────────────────────────────────────────────────
workspace - 6.0109 0.23311 6.062 0.24321 6 7
master 08:50 PM - - - - - -
├── 4475845 [aulic-chiv] 08:56 PM 6.0109 0.23311 6.062 0.24321 6 7
├── 7d4cef7 [yarer-tods] 08:56 PM 4.8551 0.82012 4.5555 0.033533 4 5
└── d503f8e [curst-chad] 08:56 PM 4.9768 0.070585 4.0773 0.46639 4 5
─────────────────────────────────────────────────────────────────────────────────────────────────────────────
$ dvc plots diff $(dvc exp list --names-only) --open

DVC Extension for VS Code
Inside the
DVC Extension for VS Code,
you can compare and visualize results using the
Experiments
and
Plots
views:


While experiments are running, live updates will be displayed in both views.
DVC Studio
If you push the results to DVC Studio, you can
compare experiments against the entire repo history:

You can enable
Studio Live Experiments
to see live updates while experiments are running.
Comparison to related technologies
DVCLive is an ML Logger, similar to:
The main differences with those ML Loggers are:
- DVCLive does not require any additional services or servers to run.
- DVCLive metrics, parameters, and plots are
stored as plain text files
that can be versioned by tools like Git or tracked as pointers to files in DVC
storage.
- DVCLive can save experiments or runs as
hidden Git commits.
You can then use different options to visualize the metrics,
parameters, and plots across experiments.
Contributing
Contributions are very welcome. To learn more, see the
Contributor Guide.
License
Distributed under the terms of the
Apache 2.0 license, dvclive is
free and open source software.