
Security News
Bun 1.2.19 Adds Isolated Installs for Better Monorepo Support
Bun 1.2.19 introduces isolated installs for smoother monorepo workflows, along with performance boosts, new tooling, and key compatibility fixes.
.. _start-intro:
What is formulas?
formulas implements an interpreter for Excel formulas, which parses and compile Excel formulas expressions.
Moreover, it compiles Excel workbooks to python and executes without using the Excel COM server. Hence, Excel is not needed.
Installation
To install it use (with root privileges):
.. code:: console
$ pip install formulas
Or download the last git version and use (with root privileges):
.. code:: console
$ python setup.py install
Some additional functionality is enabled installing the following extras:
excel: enables to compile Excel workbooks to python and execute
using: ExcelModel
.
plot: enables to plot the formula ast and the Excel model.
To install formulas and all extras, do:
.. code:: console
$ pip install formulas[all]
To help with the testing and the development of formulas, you can install the development version:
.. code:: console
$ pip install https://github.com/vinci1it2000/formulas/archive/dev.zip
.. _end-quick:
Basic Examples
The following sections will show how to:
parse a Excel formulas;
load, compile, and execute a Excel workbook;
extract a sub-model from a Excel workbook;
add a custom function.
An example how to parse and execute an Excel formula is the following:
import formulas func = formulas.Parser().ast('=(1 + 1) + B3 / A2')[1].compile()
To visualize formula model and get the input order you can do the following:
list(func.inputs) ['A2', 'B3'] func.plot(view=False) # Set view=True to plot in the default browser. SiteMap({=((1 + 1) + (B3 / A2)): SiteMap({})})
[graph]
Finally to execute the formula and plot the workflow:
func(1, 5) Array(7.0, dtype=object) func.plot(workflow=True, view=False) # Set view=True to plot in the default browser. SiteMap({=((1 + 1) + (B3 / A2)): SiteMap({})})
[graph]
An example how to load, calculate, and write an Excel workbook is the following:
::
import formulas fpath, dir_output = 'excel.xlsx', 'output' xl_model = formulas.ExcelModel().loads(fpath).finish() xl_model.calculate() Solution(...) xl_model.write(dirpath=dir_output) {'EXCEL.XLSX': {Book: <openpyxl.workbook.workbook.Workbook ...>}}
Tip: If you have or could have circular references, add circular=True to finish method.
To plot the dependency graph that depict relationships between Excel cells:
dsp = xl_model.dsp dsp.plot(view=False) # Set view=True to plot in the default browser. SiteMap({ExcelModel: SiteMap(...)})
[graph]
To overwrite the default inputs that are defined by the excel file or to impose some value to a specific cell:
xl_model.calculate( ... inputs={ ... "'[excel.xlsx]'!INPUT_A": 3, # To overwrite the default value. ... "'[excel.xlsx]DATA'!B3": 1 # To impose a value to B3 cell. ... }, ... outputs=[ ... "'[excel.xlsx]DATA'!C2", "'[excel.xlsx]DATA'!C4" ... ] # To define the outputs that you want to calculate. ... ) Solution({"'[excel.xlsx]'!INPUT_A": ('[excel.xlsx]DATA'!A2)=[[3]], "'[excel.xlsx]DATA'!B3": ('[excel.xlsx]DATA'!B3)=[[1]], "'[excel.xlsx]DATA'!A2": ('[excel.xlsx]DATA'!A2)=[[3]], "'[excel.xlsx]DATA'!A3": ('[excel.xlsx]DATA'!A3)=[[6]], "'[excel.xlsx]DATA'!A4": ('[excel.xlsx]DATA'!A4)=[[5]], "'[excel.xlsx]DATA'!D2": ('[excel.xlsx]DATA'!D2)=[[1]], "'[excel.xlsx]'!INPUT_B": ('[excel.xlsx]DATA'!A3)=[[6]], "'[excel.xlsx]'!INPUT_C": ('[excel.xlsx]DATA'!A4)=[[5]], "'[excel.xlsx]DATA'!A3:A4": ('[excel.xlsx]DATA'!A3:A4)=[[6] [5]], "'[excel.xlsx]DATA'!B2": ('[excel.xlsx]DATA'!B2)=[[9.0]], "'[excel.xlsx]DATA'!D3": ('[excel.xlsx]DATA'!D3)=[[2.0]], "'[excel.xlsx]DATA'!C2": ('[excel.xlsx]DATA'!C2)=[[10.0]], "'[excel.xlsx]DATA'!D4": ('[excel.xlsx]DATA'!D4)=[[3.0]], "'[excel.xlsx]DATA'!C4": ('[excel.xlsx]DATA'!C4)=[[4.0]]})
To build a single function out of an excel model with fixed inputs and
outputs, you can use the compile method of the ExcelModel that
returns a DispatchPipe <https://schedula.readthedocs.io/en/master/_build/schedula/utils/dsp/schedula.utils.dsp.DispatchPipe.html#schedula.utils.dsp.DispatchPipe>
_.
This is a function where the inputs and outputs are defined by the
data node ids (i.e., cell references).
func = xl_model.compile( ... inputs=[ ... "'[excel.xlsx]'!INPUT_A", # First argument of the function. ... "'[excel.xlsx]DATA'!B3" # Second argument of the function. ... ], # To define function inputs. ... outputs=[ ... "'[excel.xlsx]DATA'!C2", "'[excel.xlsx]DATA'!C4" ... ] # To define function outputs. ... ) func <schedula.utils.dsp.DispatchPipe object at ...> [v.value[0, 0] for v in func(3, 1)] # To retrieve the data. [10.0, 4.0] func.plot(view=False) # Set view=True to plot in the default browser. SiteMap({ExcelModel: SiteMap(...)})
[graph]
Alternatively, to load a partial excel model from the output cells, you can use the from_ranges method of the ExcelModel:
xl = formulas.ExcelModel().from_ranges( ... "'[%s]DATA'!C2:D2" % fpath, # Output range. ... "'[%s]DATA'!B4" % fpath, # Output cell. ... ) dsp = xl.dsp sorted(dsp.data_nodes) ["'[excel.xlsx]'!INPUT_A", "'[excel.xlsx]'!INPUT_B", "'[excel.xlsx]'!INPUT_C", "'[excel.xlsx]DATA'!A2", "'[excel.xlsx]DATA'!A3", "'[excel.xlsx]DATA'!A3:A4", "'[excel.xlsx]DATA'!A4", "'[excel.xlsx]DATA'!B2", "'[excel.xlsx]DATA'!B3", "'[excel.xlsx]DATA'!B4", "'[excel.xlsx]DATA'!C2", "'[excel.xlsx]DATA'!D2"]
[graph]
The ExcelModel can be exported/imported to/from a readable JSON format. The reason of this functionality is to have format that can be easily maintained (e.g. using version control programs like git). Follows an example on how to export/import to/from JSON an ExcelModel:
::
import json xl_dict = xl_model.to_dict() # To JSON-able dict. xl_dict # Exported format. { "'[excel.xlsx]DATA'!A1": "inputs", "'[excel.xlsx]DATA'!B1": "Intermediate", "'[excel.xlsx]DATA'!C1": "outputs", "'[excel.xlsx]DATA'!D1": "defaults", "'[excel.xlsx]DATA'!A2": 2, "'[excel.xlsx]DATA'!D2": 1, "'[excel.xlsx]DATA'!A3": 6, "'[excel.xlsx]DATA'!A4": 5, "'[excel.xlsx]DATA'!B2": "=('[excel.xlsx]DATA'!A2 + '[excel.xlsx]DATA'!A3)", "'[excel.xlsx]DATA'!C2": "=(('[excel.xlsx]DATA'!B2 / '[excel.xlsx]DATA'!B3) + '[excel.xlsx]DATA'!D2)", "'[excel.xlsx]DATA'!B3": "=('[excel.xlsx]DATA'!B2 - '[excel.xlsx]DATA'!A3)", "'[excel.xlsx]DATA'!C3": "=(('[excel.xlsx]DATA'!C2 * '[excel.xlsx]DATA'!A2) + '[excel.xlsx]DATA'!D3)", "'[excel.xlsx]DATA'!D3": "=(1 + '[excel.xlsx]DATA'!D2)", "'[excel.xlsx]DATA'!B4": "=MAX('[excel.xlsx]DATA'!A3:A4, '[excel.xlsx]DATA'!B2)", "'[excel.xlsx]DATA'!C4": "=(('[excel.xlsx]DATA'!B3 ^ '[excel.xlsx]DATA'!C2) + '[excel.xlsx]DATA'!D4)", "'[excel.xlsx]DATA'!D4": "=(1 + '[excel.xlsx]DATA'!D3)" } xl_json = json.dumps(xl_dict, indent=True) # To JSON. xl_model = formulas.ExcelModel().from_dict(json.loads(xl_json)) # From JSON.
An example how to add a custom function to the formula parser is the following:
import formulas FUNCTIONS = formulas.get_functions() FUNCTIONS['MYFUNC'] = lambda x, y: 1 + y + x func = formulas.Parser().ast('=MYFUNC(1, 2)')[1].compile() func() 4
FAQs
Parse and compile Excel formulas and workbooks in python code.
We found that formulas demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago. It has 1 open source maintainer collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Security News
Bun 1.2.19 introduces isolated installs for smoother monorepo workflows, along with performance boosts, new tooling, and key compatibility fixes.
Security News
Popular npm packages like eslint-config-prettier were compromised after a phishing attack stole a maintainer’s token, spreading malicious updates.
Security News
/Research
A phishing attack targeted developers using a typosquatted npm domain (npnjs.com) to steal credentials via fake login pages - watch out for similar scams.