 
  
  
  
 
Funcy with pipeline-based operators
If Funcy and Pipe had a baby. Deal with data transformation in python in a sane way.
I love Ruby. It's a great language and one of the things they got right was pipelined data transformation. Elixir got this
even more right with the explicit pipeline operator |>.
However, Python is the way of the future. As I worked more with Python, it was driving me nuts that the
data transformation options were not chainable.
This project fixes this pet peeve.
Installation
pip install funcy-pipe
Or, if you are using poetry:
poetry add funcy-pipe
Examples
Extract a couple key values from a sql alchemy model:
import funcy_pipe as fp
entities_from_sql_alchemy
  | fp.lmap(lambda r: r.to_dict())
  | fp.lmap(lambda r: r | fp.omit(["id", "created_at", "updated_at"]))
  | fp.to_list
Or, you can be more fancy and use whatever and pmap:
import funcy_pipe as f
import whatever as _
entities_from_sql_alchemy
  | fp.lmap(_.to_dict)
  | fp.pmap(fp.omit(["id", "created_at", "updated_at"]))
  | fp.to_list
Create a map from an array of objects, ensuring the key is always an int:
section_map = api.get_sections() | fp.group_by(f.compose(int, that.id))
Grab the ID of a specific user:
filter_user_id = (
  collaborator_map().values()
  | fp.where(email=target_user)
  | fp.pluck("id")
  | fp.first()
)
Get distinct values from a list (in this case, github events):
events = [
  {
    "type": "PushEvent"
  },
  {
    "type": "CommentEvent"
  }
]
result = events | fp.pluck("type") | fp.distinct() | fp.to_list()
assert ["PushEvent", "CommentEvent"] == result
What if the objects are not dicts?
filter_user_id = (
  collaborator_map().values()
  | fp.where_attr(email=target_user)
  | fp.pluck_attr("id")
  | fp.first()
)
How about creating a dict where each value is sorted:
data
  
  | fp.group_by(itemgetter("state_name"))
  
  | fp.walk_values(
    f.partial(sorted, reverse=True, key=lambda c: int(c["population"])),
  )
A more complicated example (lifted from this project):
comments = (
    
    tasks
    
    | fp.lmap(lambda task: api.get_comments(task_id=task.id))
    
    | fp.flatten()
    
    | fp.lmap(enrich_date)
    
    | fp.lfilter(lambda comment: comment["posted_at_date"] > last_synced_date)
    
    | fp.lmap(enrich_comment)
    
    | fp.lfilter(lambda comment: comment["posted_by_user_id"] == filter_user_id)
    
    | fp.sort(key="posted_at_date")
    
    | fp.group_by(lambda comment: comment["task_id"])
)
Want to grab the values of a list of dict keys?
def add_field_name(input: dict, keys: list[str]) -> dict:
    return input | {
        "field_name": (
            keys
            
            
            | fp.map(input.get)
            | fp.compact
            | fp.join_str("_")
        )
    }
result = [{ "category": "python", "header": "functional"}] | fp.map(fp.rpartial(add_field_name, ["category", "header"])) | fp.to_list
assert result == [{'category': 'python', 'header': 'functional', 'field_name': 'python_functional'}]
You can also easily test multiple conditions across API data (extracted from this project)
all_checks_successful = (
    last_commit.get_check_runs()
    | fp.pluck_attr("conclusion")
    
    
    | fp.all({"success", "skipped"})
)
Want to grab the values of a list of dict keys?
def add_field_name(input: dict, keys: list[str]) -> dict:
    return input | {
        "field_name": (
            keys
            
            
            | fp.map(input.get)
            | fp.compact
            | fp.join_str("_")
        )
    }
result = [{ "category": "python", "header": "functional"}] | fp.map(fp.rpartial(add_field_name, ["category", "header"])) | fp.to_list
assert result == [{'category': 'python', 'header': 'functional', 'field_name': 'python_functional'}]
You can also easily group dictionaries by a key (or arbitrary function):
import operator
result = [{"age": 10, "name": "Alice"}, {"age": 12, "name": "Bob"}] | fp.group_by(operator.itemgetter("age"))
assert result == {10: [{'age': 10, 'name': 'Alice'}], 12: [{'age': 12, 'name': 'Bob'}]}
- to_list
- log
- bp. run breakpoint()on the input value
- sort
- exactly_one. Throw an error if the input is not exactly one element
- reduce
- pmap. Pass each element of a sequence into a pipe'd function
Extensions
There are some functions which are not yet merged upstream into funcy, and may never be. You can patch funcy to add them using:
import funcy_pipe
funcy_pipe.patch()
Find the first element matching a condition (detect):
users = [
    {"name": "Alice", "age": 25, "city": "NYC"},
    {"name": "Bob", "age": 30, "city": "SF"},
    {"name": "Charlie", "age": 25, "city": "LA"}
]
first_young_user = users | fp.detect(age=25)
assert first_young_user == {"name": "Alice", "age": 25, "city": "NYC"}
Coming From Ruby?
- uniq => distinct
- detect => detect or where(some="Condition") | firstorwhere_attr(some="Condition") | first
- inverse => complement
- times => repeatedly
Module Alias
Create a module alias for funcy-pipe to make things clean (import * always irks me):
from funcy_pipe import *
import fp
Inspiration
Related Projects
TODO