Intelli
A framework for creating chatbots and AI agent workflows. It enables seamless integration with multiple AI models, including OpenAI, LLaMA, deepseek, Stable Diffusion, and Mistral, through a unified access layer.
pip install intelli
Latest changes
- Improved multi-model collaboration doc.
- Support llama.cpp & GGUF models for fast inference.
- Add deepseek and Llama3 integration doc.
- Add offline speech2text Whisper doc.
- Add Anthropic claude 3.7 as a chatbot provider.
- Add KerasAgent to load open source models offline.
For detailed instructions, refer to intelli documentation.
Code Examples
Create Chatbot
Switch between multiple chatbot providers without changing your code.
from intelli.function.chatbot import Chatbot, ChatProvider
from intelli.model.input.chatbot_input import ChatModelInput
def call_chatbot(provider, model=None, api_key=None, options=None):
input = ChatModelInput("You are a helpful assistant.", model)
input.add_user_message("What is the capital of France?")
chatbot = Chatbot(api_key, provider, options=options)
response = chatbot.chat(input)
return response
call_chatbot(ChatProvider.OPENAI, "gpt-4o")
call_chatbot(ChatProvider.ANTHROPIC, "claude-3-7-sonnet-20250219")
call_chatbot(ChatProvider.GEMINI)
call_chatbot(ChatProvider.NVIDIA, "deepseek-ai/deepseek-r1")
call_chatbot(ChatProvider.VLLM, "meta-llama/Llama-3.1-8B-Instruct", options={"baseUrl": "http://localhost:8000"})
Chat With Docs
Chat with your docs using multiple LLMs. To connect your data, visit the IntelliNode App, start a project using the Document option, upload your documents or images, and copy the generated One Key. This key will be used to connect the chatbot to your uploaded data.
bot = Chatbot(YOUR_OPENAI_API_KEY, "openai", {"one_key": YOUR_ONE_KEY})
input = ChatModelInput("You are a helpful assistant.", "gpt-4o")
input.add_user_message("What is the procedure for requesting a refund according to the user manual?")
response = bot.chat(input)
Generate Images
Use the image controller to generate arts from multiple models with minimum code change:
from intelli.controller.remote_image_model import RemoteImageModel
from intelli.model.input.image_input import ImageModelInput
provider = "openai"
model_name = "dall-e-3"
prompts = "cartoonishly-styled solitary snake logo, looping elegantly to form both the body of the python and an abstract play on data nodes."
image_input = ImageModelInput(prompt=prompt, width=1024, height=1024, model=model_name)
wrapper = RemoteImageModel(your_api_key, provider)
results = wrapper.generate_images(image_input)
Create AI Flows
You can create a flow of tasks executed by different AI models. Here's an example of creating a blog post flow:
- ChatGPT agent to write a post.
- Google gemini agent to write image description.
- Stable diffusion to generate images.
from intelli.flow.agents.agent import Agent
from intelli.flow.tasks.task import Task
from intelli.flow.sequence_flow import SequenceFlow
from intelli.flow.input.task_input import TextTaskInput
from intelli.flow.processors.basic_processor import TextProcessor
blog_agent = Agent(agent_type='text', provider='openai', mission='write blog posts', model_params={'key': YOUR_OPENAI_API_KEY, 'model': 'gpt-4'})
copy_agent = Agent(agent_type='text', provider='gemini', mission='generate description', model_params={'key': YOUR_GEMINI_API_KEY, 'model': 'gemini'})
artist_agent = Agent(agent_type='image', provider='stability', mission='generate image', model_params={'key': YOUR_STABILITY_API_KEY})
task1 = Task(TextTaskInput('blog post about electric cars'), blog_agent, log=True)
task2 = Task(TextTaskInput('Generate short image description for image model'), copy_agent, pre_process=TextProcessor.text_head, log=True)
task3 = Task(TextTaskInput('Generate cartoon style image'), artist_agent, log=True)
flow = SequenceFlow([task1, task2, task3], log=True)
final_result = flow.start()
To build async AI flows with multiple paths, refer to the flow tutorial.
Pillars
- The wrapper layer provides low-level access to the latest AI models.
- The controller layer offers a unified input to any AI model by handling the differences.
- The function layer provides abstract functionality that extends based on the app's use cases.
- Flows: create a flow of ai agents working toward user tasks.