🚀 Big News: Socket Acquires Coana to Bring Reachability Analysis to Every Appsec Team.Learn more
Socket
DemoInstallSign in
Socket

koboldapi

Package Overview
Dependencies
Maintainers
1
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

koboldapi

Python library for interacting with KoboldCPP API

0.5.4
PyPI
Maintainers
1

KoboldAPI

A Python library for interacting with KoboldCPP APIs, providing high-level abstractions for text processing, image handling, and generation tasks.

Features

  • Text Processing

    • Intelligent text chunking
    • Streaming generation capabilities
    • Token counting and management
  • Image Processing

    • Support for multiple image formats (JPEG, PNG, GIF, TIFF, WEBP, HEIF, RAW)
    • Automatic image resizing and optimization
    • RAW image processing with thumbnail extraction
    • Base64 encoding for API transmission
  • Template Management

    • Flexible template system for different LLM models
    • Custom template directory support
    • Built-in default templates
    • Jinja2 templating integration
  • API Integration

    • Robust error handling
    • Connection management
    • Streaming support
    • Comprehensive API endpoint coverage

Installation

pip install koboldapi

Quick Start

Text Processing Example

from koboldapi import KoboldAPICore, ChunkingProcessor

# Initialize the API client
core = KoboldAPICore(api_url="http://localhost:5001")

# Create a chunking processor
chunker = ChunkingProcessor(core.api_client, max_chunk_length=2048)

# Process text
chunks, metadata = chunker.chunk_file("document.txt")
for chunk, token_count in chunks:
    response = core.wrap_and_generate(
        instruction="Summarize this text:",
        content=chunk
    )
    print(response)

Image Processing Example

from koboldapi import KoboldAPICore, ImageProcessor

# Initialize processors
core = KoboldAPICore(api_url="http://localhost:5001")
processor = ImageProcessor(max_dimension=1024)

# Process image
encoded_image, img_path = processor.process_image("image.jpg")
response = core.wrap_and_generate(
    instruction="Describe this image:",
    images=[encoded_image]
)
print(response)

Streaming Generation Example

from koboldapi import KoboldAPICore
import asyncio

async def stream_example():
    core = KoboldAPICore(api_url="http://localhost:5001")
    
    # Stream tokens as they're generated
    async for token in core.api_client.stream_generate(
        prompt="Write a story about a robot:",
        max_length=200
    ):
        print(token, end='', flush=True)
    
    # Or collect all tokens into final result
    result = await core.api_client.generate_sync(
        prompt="Write a story about a robot:",
        max_length=200
    )
    print(result)

if __name__ == "__main__":
    asyncio.run(stream_example())
	

Detailed Documentation

KoboldAPICore

The main interface for interacting with KoboldCPP APIs.

core = KoboldAPICore(
    api_url="http://localhost:5001",
    api_password=None,  # Optional API password
    generation_params={  # Optional generation parameters
        'temp': 0.7,
        'top_k': 40,
        'top_p': 0.9
    },
    templates_directory="path/to/templates"  # Optional custom templates
)

Text Processing

The ChunkingProcessor class handles text segmentation and processing:

chunker = ChunkingProcessor(
    api_client,  # KoboldAPI instance
    max_chunk_length=2048,  # Maximum tokens per chunk
    max_total_chunks=1000  # Maximum number of chunks
)

# Process a file
chunks, metadata = chunker.chunk_file("document.txt")

# Process raw text
chunks = chunker.chunk_text("Your text content here")

Image Processing

The ImageProcessor class handles image preparation and optimization:

processor = ImageProcessor(
    max_dimension=1024,  # Maximum image dimension
    patch_sizes=[8, 14, 16, 32],  # Patch size options
    max_file_size=50 * 1024 * 1024  # Maximum file size in bytes
)

# Process an image
encoded_image, path = processor.process_image("image.jpg")

Template Management

Custom templates can be provided in JSON format:

{
    "template_name": {
        "name": ["model_name_pattern"],
        "system_start": "\nSystem: ",
        "system_end": "\n",
        "user_start": "User: ",
        "user_end": "\n",
        "assistant_start": "Assistant: "
    }
}

Command Line Tools

The package includes example scripts for common tasks:

Text Processing Script

python text-example.py input.txt \
    --task translate \
    --api-url http://localhost:5001 \
    --language French \
    --max-chunk-size 8192

Available tasks:

  • translate: Translate text to specified language
  • summary: Generate text summary
  • correct: Fix grammar and spelling
  • distill: Create concise version

Image Processing Script

python image-example.py image.jpg \
    --api-url http://localhost:5001 \
    --instruction "Describe the image in detail."

Error Handling

The library provides custom exceptions for error handling:

try:
    result = core.wrap_and_generate(instruction="Your instruction")
except KoboldAPIError as e:
    print(f"API Error: {e}")

Contributing

Contributions are welcome! Please feel free to submit a Pull Request.

License

This project is licensed under the GPLv3 License - see the LICENSE file for details.

FAQs

Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts