Research
Security News
Malicious npm Package Targets Solana Developers and Hijacks Funds
A malicious npm package targets Solana developers, rerouting funds in 2% of transactions to a hardcoded address.
mapbox-vector-tile is compatible with Python 3.9 or newer. It is listed on PyPi as mapbox-vector-tile
. The
recommended way to install is via pip
:
pip install mapbox-vector-tile
An extra dependency has been defined to install pyproj
. This is useful
when changing the Coordinate Reference System when encoding or decoding tiles.
pip install mapbox-vector-tile[proj]
Encode method expects an array of layers or at least a single valid layer. A valid layer is a dictionary with the following keys
name
: layer name
features
: an array of features. A feature is a dictionary with the following keys:
geometry
: representation of the feature geometry in WKT, WKB, or a shapely geometry. Coordinates are relative to the tile, scaled in the range [0, 4096)
. See below for example code to perform the necessary transformation. Note that GeometryCollection
types are not supported, and will trigger a ValueError
.properties
: a dictionary with a few keys and their corresponding values.The encoding operation accepts options which can be defined per layer using the per_layer_options
argument. If
there is missing layer or missing options values in the per_layer_options
, the options of default_options
are
taken into account. Finally, global default values are used. See the docstring of the encode
method for more
details about the available options and their global default values.
>>> import mapbox_vector_tile
# Using WKT
>>> mapbox_vector_tile.encode([
{
"name": "water",
"features": [
{
"geometry":"POLYGON ((0 0, 0 1, 1 1, 1 0, 0 0))",
"properties":{
"uid":123,
"foo":"bar",
"cat":"flew"
}
}
]
},
{
"name": "air",
"features": [
{
"geometry":"LINESTRING(159 3877, -1570 3877)",
"properties":{
"uid":1234,
"foo":"bar",
"cat":"flew"
}
}
]
}
])
b'\x1aH\n\x05water\x12\x18\x12\x06\x00\x00\x01\x01\x02\x02\x18\x03"\x0c\t\x00\x80@\x1a\x00\x01\x02\x00\x00\x02\x0f\x1a\x03uid\x1a\x03foo\x1a\x03cat"\x02 {"\x05\n\x03bar"\x06\n\x04flew(\x80 x\x02\x1aD\n\x03air\x12\x15\x12\x06\x00\x00\x01\x01\x02\x02\x18\x02"\t\t\xbe\x02\xb6\x03\n\x81\x1b\x00\x1a\x03uid\x1a\x03foo\x1a\x03cat"\x03 \xd2\t"\x05\n\x03bar"\x06\n\x04flew(\x80 x\x02'
# Using WKB
>>> mapbox_vector_tile.encode([
{
"name": "water",
"features": [
{
"geometry":b"\x01\x03\x00\x00\x00\x01\x00\x00\x00\x05\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xf0?\x00\x00\x00\x00\x00\x00\xf0?\x00\x00\x00\x00\x00\x00\xf0?\x00\x00\x00\x00\x00\x00\xf0?\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00",
"properties":{
"uid":123,
"foo":"bar",
"cat":"flew"
}
}
]
},
{
"name": "air",
"features": [
{
"geometry":b"\x01\x03\x00\x00\x00\x01\x00\x00\x00\x05\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xf0?\x00\x00\x00\x00\x00\x00\xf0?\x00\x00\x00\x00\x00\x00\xf0?\x00\x00\x00\x00\x00\x00\xf0?\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00",
"properties":{
"uid":1234,
"foo":"bar",
"cat":"flew"
}
}
]
}
])
b'\x1aH\n\x05water\x12\x18\x12\x06\x00\x00\x01\x01\x02\x02\x18\x03"\x0c\t\x00\x80@\x1a\x00\x01\x02\x00\x00\x02\x0f\x1a\x03uid\x1a\x03foo\x1a\x03cat"\x02 {"\x05\n\x03bar"\x06\n\x04flew(\x80 x\x02\x1aG\n\x03air\x12\x18\x12\x06\x00\x00\x01\x01\x02\x02\x18\x03"\x0c\t\x00\x80@\x1a\x00\x01\x02\x00\x00\x02\x0f\x1a\x03uid\x1a\x03foo\x1a\x03cat"\x03 \xd2\t"\x05\n\x03bar"\x06\n\x04flew(\x80 x\x02'
The encoder expects geometries either:
POINT(0 0)
is the lower left corner of the tile and POINT(4096, 4096)
is the upper right corner of the tile. In this case, the library does no projection, and coordinates are encoded as-is.quantize_bounds
parameter. In this case, the library will scale coordinates so that the quantize_bounds
fit within the range (0, 4096) in both x
and y
directions. Aside than the affine transformation, the library does no other projection.It is possible to control whether the tile is in a "y down" coordinate system by setting the parameter y_coord_down=True
on the call to encode()
. The default is "y up".
It is possible to control the tile extents (by default, 4096 as used in the examples above), by setting the extents
parameter on the call to encode()
. The default is 4096.
If you have geometries in longitude and latitude (EPSG:4326), you can convert to tile-based coordinates by first projecting to Spherical Mercator (EPSG:3857) and then computing the pixel location within the tile. This example code uses Django's included GEOS library to do the transformation for LineString
objects:
SRID_SPHERICAL_MERCATOR = 3857
def linestring_in_tile(tile_bounds, line):
# `mapbox-vector-tile` has a hardcoded tile extent of 4096 units.
MVT_EXTENT = 4096
from django.contrib.gis.geos import LineString
# We need tile bounds in spherical mercator
assert tile_bounds.srid == SRID_SPHERICAL_MERCATOR
# And we need the line to be in a known projection so we can re-project
assert line.srid is not None
line.transform(SRID_SPHERICAL_MERCATOR)
(x0, y0, x_max, y_max) = tile_bounds.extent
x_span = x_max - x0
y_span = y_max - y0
tile_based_coords = []
for x_merc, y_merc in line:
tile_based_coord = (int((x_merc - x0) * MVT_EXTENT / x_span),
int((y_merc - y0) * MVT_EXTENT / y_span))
tile_based_coords.append(tile_based_coord)
return LineString(*tile_based_coords)
The tile bounds can be found with mercantile
, so a complete usage example might look like this:
from django.contrib.gis.geos import LineString, Polygon
import mercantile
import mapbox_vector_tile
SRID_LNGLAT = 4326
SRID_SPHERICAL_MERCATOR = 3857
tile_xyz = (2452, 3422, 18)
tile_bounds = Polygon.from_bbox(mercantile.bounds(*tile_xyz))
tile_bounds.srid = SRID_LNGLAT
tile_bounds.transform(SRID_SPHERICAL_MERCATOR)
lnglat_line = LineString(((-122.1, 45.1), (-122.2, 45.2)), srid=SRID_LNGLAT)
tile_line = linestring_in_tile(tile_bounds, lnglat_line)
tile_pbf = mapbox_vector_tile.encode({
"name": "my-layer",
"features": [ {
"geometry": tile_line.wkt,
"properties": { "stuff": "things" },
} ]
})
Note that this example may not have anything visible within the tile when rendered. It's up to you to make sure you put the right data in the tile!
Also note that the spec allows the extents to be modified, even though they are often set to 4096 by convention. mapbox-vector-tile
assumes an extent of 4096.
import mapbox_vector_tile
from pyproj import Transformer
from shapely.geometry import LineString
SRID_LNGLAT = 4326
SRID_SPHERICAL_MERCATOR = 3857
direct_transformer = Transformer.from_crs(crs_from=SRID_LNGLAT, crs_to=SRID_SPHERICAL_MERCATOR, always_xy=True)
lnglat_line = LineString(((-122.1, 45.1), (-122.2, 45.2)))
# Encode the tile
tile_pbf = mapbox_vector_tile.encode({
"name": "my-layer",
"features": [{
"geometry": lnglat_line.wkt,
"properties": {"stuff": "things"},
}]
},
default_options={"transformer": direct_transformer.transform})
# Decode the tile
reverse_transformer = Transformer.from_crs(crs_from=SRID_SPHERICAL_MERCATOR, crs_to=SRID_LNGLAT, always_xy=True)
mapbox_vector_tile.decode(tile=tile_pbf, default_options={"transformer": reverse_transformer.transform})
{
"my-layer": {
"extent": 4096,
"version": 1,
"features": [
{
"geometry": {
"type": "LineString",
"coordinates": [
[-122.10000156433787, 45.09999871982179],
[-122.20000202176608, 45.20000292038091]
]
},
"properties": {
"stuff": "things"
},
"id": 0,
"type": "Feature"
}
],
"type": "FeatureCollection"
}
}
The encoder also has options to quantize the data for you via the quantize_bounds
option. When encoding, pass in the bounds in the form (minx, miny, maxx, maxy) and the coordinates will be scaled appropriately during encoding.
mapbox_vector_tile.encode([
{
"name": "water",
"features": [
{
"geometry":"POINT(15 15)",
"properties":{
"foo":"bar",
}
}
]
}
], default_options={"quantize_bounds": (10.0, 10.0, 20.0, 20.0)})
In this example, the coordinate that would get encoded would be (2048, 2048)
Additionally, if the data is already in a coordinate system with y values going down, the encoder supports an
option, y_coord_down
, that can be set to True. This will suppress flipping the y coordinate values during encoding.
The encoder also supports passing in custom extents. These will be passed through to the layer in the pbf, and honored during any quantization or y coordinate flipping.
mapbox_vector_tile.encode([
{
"name": "water",
"features": [
{
"geometry":"POINT(15 15)",
"properties":{
"foo":"bar",
}
}
]
}
], default_options={"quantize_bounds": (0.0, 0.0, 10.0, 10.0), "extents":50})
Decode method takes in a valid google.protobuf.message Tile and returns decoded string in the following format:
{
layername: {
'extent': 'integer layer extent'
'version': 'integer'
'features': [{
'geometry': 'list of points',
'properties': 'dictionary of key/value pairs',
'id': 'unique id for the given feature within the layer '
}, ...
]
},
layername2: {
# ...
}
}
The decoding operation accepts options which can be defined per layer using the per_layer_options
argument. If
there is missing layer or missing options values in the per_layer_options
, the options of default_options
are
taken into account. Finally, global default values are used. See the docstring of the decode
method for more
details about the available options and their global default values.
>>> import mapbox_vector_tile
>>> mapbox_vector_tile.decode(b'\x1aJ\n\x05water\x12\x1a\x08\x01\x12\x06\x00\x00\x01\x01\x02\x02\x18\x03"\x0c\t\x00\x80@\x1a\x00\x01\x02\x00\x00\x02\x0f\x1a\x03foo\x1a\x03uid\x1a\x03cat"\x05\n\x03bar"\x02 {"\x06\n\x04flew(\x80 x\x02\x1aY\n\x03air\x12\x1c\x08\x01\x12\x08\x00\x00\x01\x01\x02\x02\x03\x03\x18\x03"\x0c\t\x00\x80@\x1a\x00\x01\x02\x00\x00\x02\x0f\x1a\x03foo\x1a\x03uid\x1a\x05balls\x1a\x03cat"\x05\n\x03bar"\x03 \xd2\t"\x05\n\x03foo"\x06\n\x04flew(\x80 x\x02')
{
"water": {
"extent": 4096,
"version": 2,
"features": [
{
"geometry": {
"type": "Polygon",
"coordinates": [[[0,0],[0,1],[1,1],[1,0],[0,0]]]
},
"properties": {
"foo": "bar",
"uid": 123,
"cat": "flew"
},
"id": 1,
"type": "Feature"
}
],
"type": "FeatureCollection"
},
"air": {
"extent": 4096,
"version": 2,
"features": [
{
"geometry": {
"type": "Polygon",
"coordinates": [[[0,0],[0,1],[1,1],[1,0],[0,0]]]
},
"properties": {
"foo": "bar",
"uid": 1234,
"balls": "foo",
"cat": "flew"
},
"id": 1,
"type": "Feature"
}
],
"type": "FeatureCollection"
}
}
Here's how you might decode a tile from a file.
>>> import mapbox_vector_tile
>>> with open('tile.mvt', 'rb') as f:
>>> data = f.read()
>>> decoded_data = mapbox_vector_tile.decode(data)
>>> with open('out.txt', 'w') as f:
>>> f.write(repr(decoded_data))
The decode
function has a geojson
option which enforces a GeoJson RFC7946 compatible result. Its default value
is True
. To enforce the behaviour of versions <2.0.0, please use geojson=False
.
The c++ implementation of the underlying protobuf library is more performant than the pure python one. Depending on your operating system, you might need to compile the C++ library or install it.
Since May 6, 2022, the Python profobuf
library is based on the udp library and thus, the generated Python code
requires protoc
3.19.0 or newer. Cf. here. On
debian Bullseye, the version of protoc
available in the package registry is too old. Please install it from protobuf
+GitHub repository.
To compile the proto
file, you have to enable two environnement variables BEFORE running your python program :
$ sudo apt-get install libprotoc9 libprotobuf9 protobuf-compiler python-protobuf
Then, you'll have to enable two environnement variable BEFORE runing your python program :
$ export PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=cpp
$ export PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION_VERSION=2
and then:
$ protoc -I=mapbox_vector_tile/Mapbox/ --python_out=mapbox_vector_tile/Mapbox/ mapbox_vector_tile/Mapbox/vector_tile.proto
Click here to see what changed over time in various versions.
FAQs
Mapbox Vector Tile encoding and decoding.
We found that mapbox-vector-tile demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago. It has 5 open source maintainers collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Research
Security News
A malicious npm package targets Solana developers, rerouting funds in 2% of transactions to a hardcoded address.
Security News
Research
Socket researchers have discovered malicious npm packages targeting crypto developers, stealing credentials and wallet data using spyware delivered through typosquats of popular cryptographic libraries.
Security News
Socket's package search now displays weekly downloads for npm packages, helping developers quickly assess popularity and make more informed decisions.