🚀 Big News: Socket Acquires Coana to Bring Reachability Analysis to Every Appsec Team.Learn more

mathslib

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install
m

mathslib

Library of Mathematical functions and Algorithms

3.3.0
100

Supply Chain Security

100

Vulnerability

100

Quality

100

Maintenance

100

License

Maintainers
1
Issues
0

======== Overview

.. image:: https://img.shields.io/pypi/v/mathslib.svg :target: https://pypi.python.org/pypi/mathslib

.. image:: https://readthedocs.org/projects/mathslib/badge/?version=latest :target: https://mathslib.readthedocs.io/en/latest/?badge=latest :alt: Documentation Status

mathslib__ is a compilation of Mathematical Functions and Algorithms. Unless credit was given all of the functions were written by me. Relevant articles are also linked where the implementation is complex.

I have used most of these for Project Euler_.

See my website ivl-projecteuler.com_ for their implementation

See the full documentation here_

Breakdown

+----------------+------------------------------------------------------------+ |numtheory.py | * phi(x) | | | * phi_sieve(x) | | | * phi_sum(x) | | | * mobius(x) | | | * mobius_k_sieve(limit, k) | | | * count_k_free(n, k) | | | * pythagorean_triples(limit, non_primitive) | | | * count_primitive_pythagorean_triples(n) | | | * k_smooth_numbers(max_prime, limit) | | | * k_powerful(k, limit, count) | | | * legendre_factorial(x) | | | * tonelli_shanks(a, p) | | | * chinese_remainder_theorem(a1, a2, n1, n2) | | | * generalised_CRT(a1, a2, n1, n2) | | | * frobenius_number(*integers) | | | * continued_fraction(x) | | | * overall_fraction(x) | | | * partition(x, L, show) | +----------------+------------------------------------------------------------+ |primes.py | * prime_sieve(limit, block_size, segment, values) | | | * prime_sieve_in_range(low_limit, upp_limit, values) | | | * is_prime(x) | | | * prime_factors(x) | | | * spf_sieve(x) | | | * primepi(x) | | | * primepi_sieve(x) | | | * sum_of_primes(x) | | | * fermat_primality_test(x) | | | * miller_primality_test(n, millerrabin, numoftests) | +----------------+------------------------------------------------------------+ |divisors.py | * divisors(x, proper) | | | * divisor(x, n) | | | * divisor_sieve(x, n) | +----------------+------------------------------------------------------------+ |linalg.py | * gauss_jordan_elimination(matrix, augmentedpart) | | | * solve(M, b) | | | * inverse(matrix) | | | * determinant(matrix) | | | * matrix_addition(A, B, subtract) | | | * identity(l, val) | | | * concatenate(A, B) | | | * argmax(alist) | | | * fillmatrix(size, val) | | | * matrix_mul(A, B) | | | * matrix_pow(A, n) | +----------------+------------------------------------------------------------+ |fib.py | * fibonacci(n, m) | | | * fib_till(limit) | | | * zeckendorf_representation(x) | +----------------+------------------------------------------------------------+ |algorithms.py | * prims_algorithm(matrix) | | | * dijkstras_algorithm(graph, start_node, INFINITY) | | | * floyd_warshall_algorithm(graph, INFINITY) | | | * knap_sack(values, weights, n, W, no_values) | | | * knap_sack_values(values, weights, n, W, no_values) | | | * BFS(g, start_node, end_node) | | | * DFS(g, start_node, end_node) | | | * convex_hull_gift_wrapping(pts) | | | * convex_hull_DC(pts) | +----------------+------------------------------------------------------------+ |gaussianint.py | * GI | | | * conj(self) | | | * norm_sq(self) | | | * prime_fac(self) | | | * rem(x, y) | | | * gcd(x, y) | +----------------+------------------------------------------------------------+ |simple.py | * bin_exp(a, b, c, n, m) | | | * number_to_base(n, b) | | | * extended_euclidean_algorithm(n, b) | | | * lcm(a_list) | | | * mod_division(a, b, m) | | | * binom(n, k, p) | | | * bisect(alist, goal) | | | * is_clockwise(a, b, c) | +----------------+------------------------------------------------------------+

.. _Project Euler: https://projecteuler.net .. _ivl-projecteuler.com: https://ivl-projecteuler.com .. _mathslib1: https://pypi.python.org/pypi/mathslib .. here: https://mathslib.readthedocs.io/en/latest/index.html __ mathslib1

FAQs

Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts