Research
Security News
Malicious npm Package Targets Solana Developers and Hijacks Funds
A malicious npm package targets Solana developers, rerouting funds in 2% of transactions to a hardcoded address.
MegaDetector is an AI model that helps conservation folks spend less time doing boring things with camera trap images.
This package is a pip-installable version of the support/inference code for MegaDetector, an object detection model that helps conservation biologists spend less time doing boring things with camera trap images. Complete documentation for this Python package is available at megadetector.readthedocs.io.
If you aren't looking for the Python package specifically, and you just want to learn more about what MegaDetector is all about, head over to the MegaDetector repo.
If you are an ecologist looking to use MegaDetector to help you get through your camera trap images, you probably don't want this package, or at least you probably don't want to start at this page. We recommend starting with our "Getting started with MegaDetector" page, then digging in to the MegaDetector User Guide, which will walk you through the process of using MegaDetector.
If you are a computer-vision-y person looking to run or fine-tune MegaDetector programmatically, you probably don't want this package. MegaDetector is just a fine-tuned version of YOLOv5, and the ultralytics package (from the developers of YOLOv5) has a zillion bells and whistles for both inference and fine-tuning that this package doesn't.
If you want to programmatically interact with the postprocessing tools from the MegaDetector repo, or programmatically run MegaDetector in a way that produces Timelapse-friendly output (i.e., output in the standard MegaDetector output format), this package might be for you.
To install:
pip install megadetector
MegaDetector model weights aren't downloaded at pip-install time, but they will be (optionally) automatically downloaded the first time you run the model.
See megadetector.readthedocs.io.
from megadetector.utils import url_utils
from megadetector.visualization import visualization_utils as vis_utils
from megadetector.detection import run_detector
# This is the image at the bottom of this page, it has one animal in it
image_url = 'https://github.com/agentmorris/MegaDetector/raw/main/images/orinoquia-thumb-web.jpg'
temporary_filename = url_utils.download_url(image_url)
image = vis_utils.load_image(temporary_filename)
# This will automatically download MDv5a; you can also specify a filename.
model = run_detector.load_detector('MDV5A')
result = model.generate_detections_one_image(image)
detections_above_threshold = [d for d in result['detections'] if d['conf'] > 0.2]
print('Found {} detections above threshold'.format(len(detections_above_threshold)))
from megadetector.detection.run_detector_batch import \
load_and_run_detector_batch, write_results_to_file
from megadetector.utils import path_utils
import os
# Pick a folder to run MD on recursively, and an output file
image_folder = os.path.expanduser('~/megadetector_test_images')
output_file = os.path.expanduser('~/megadetector_output_test.json')
# Recursively find images
image_file_names = path_utils.find_images(image_folder,recursive=True)
# This will automatically download MDv5a; you can also specify a filename.
results = load_and_run_detector_batch('MDV5A', image_file_names)
# Write results to a format that Timelapse and other downstream tools like.
write_results_to_file(results,
output_file,
relative_path_base=image_folder,
detector_file=detector_filename)
Contact cameratraps@lila.science with questions.
Image credit University of Minnesota, from the Orinoquía Camera Traps data set.
FAQs
MegaDetector is an AI model that helps conservation folks spend less time doing boring things with camera trap images.
We found that megadetector demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago. It has 1 open source maintainer collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Research
Security News
A malicious npm package targets Solana developers, rerouting funds in 2% of transactions to a hardcoded address.
Security News
Research
Socket researchers have discovered malicious npm packages targeting crypto developers, stealing credentials and wallet data using spyware delivered through typosquats of popular cryptographic libraries.
Security News
Socket's package search now displays weekly downloads for npm packages, helping developers quickly assess popularity and make more informed decisions.