Nextmv Python SDK
This is the Python SDK for the Nextmv Platform.
Installation
Requires Python >=3.9
. Install using pip
:
pip install nextmv
Install all optional dependencies:
pip install "nextmv[all]"
Usage
The Nextmv Python SDK is used to interact with various parts of the Nextmv
Platform:
- Working with a Decision Model: Get to know
the functionality for running decision models. These API functions work
the same way in any machine (local or hosted).
- Cloud: Interact with the Nextmv Cloud API.
Working with a Decision Model
To run a model, you can use the various helper functionality provided by the
SDK. Note that when you create an app that runs locally in your machine, it
will run in the same way in a Nextmv Cloud-hosted machine.
Options
Use options to capture parameters (i.e.: configurations) for the run:
import nextmv
options = nextmv.Options(
nextmv.Parameter("str_option", str, "default value", "A string option", required=True),
nextmv.Parameter("int_option", int, 1, "An int option", required=False),
nextmv.Parameter("float_option", float, 1.0, "A float option", required=False),
nextmv.Parameter("bool_option", bool, True, "A bool option", required=True),
)
print(options.str_option)
print(options.int_option)
print(options.float_option)
print(options.bool_option)
print(options.to_dict())
By using options, you are able to pass in the values of the parameters with CLI
arguments or environment variables.
$ python main.py --help
usage: main.py [options]
Options for main.py. Use command-line arguments (highest precedence) or environment variables.
optiTo exclude the `markdownlint` rule start and end block, you can use the
following syntax in your markdown file:STR_OPTION
[env var: STR_OPTION] (required) (default: default value) (type: str): A string option
-int_optRemember to replace `Your markdown content here` with your actual markdown
content.(type: int): An int option
-float_option FLOAT_OPTION, --float_option FLOAT_OPTION
[env var: FLOAT_OPTION] (default: 1.0) (type: float): A float option
-bool_option BOOL_OPTION, --bool_option BOOL_OPTION
[env var: BOOL_OPTION] (required) (default: True) (type: bool): A bool option
Input
Capture the input data for the run.
-
Work with JSON
inputs.
import nextmv
json_input_1 = nextmv.load_local()
print(json_input_1.data)
json_input_2 = nextmv.load_local(input_format=nextmv.InputFormat.JSON, path="input.json")
print(json_input_2.data)
-
Work with plain, utf-8
encoded, text inputs.
import nextmv
text_input_1 = nextmv.load_local(input_format=nextmv.InputFormat.TEXT)
print(text_input_1.data)
text_input_2 = nextmv.load_local(input_format=nextmv.InputFormat.TEXT, path="input.txt")
print(text_input_2.data)
-
Work with multiple CSV
files.
import nextmv
csv_archive_input_1 = nextmv.load_local(input_format=nextmv.InputFormat.CSV_ARCHIVE)
print(csv_archive_input_1.data)
csv_archive_input_2 = nextmv.load_local(input_format=nextmv.InputFormat.CSV_ARCHIVE, path="custom_dir")
print(csv_archive_input_2.data)
Logging
The Nextmv platform captures logs via stderr
. Use the provided functionality
to record logs.
import sys
import nextmv
print("0. I do nothing")
nextmv.redirect_stdout()
nextmv.log("1. I log a message to stderr")
print("2. I print a message to stdout")
nextmv.reset_stdout()
print("3. I print another message to stdout")
print("4. I print yet another message to stderr without the logger", file=sys.stderr)
nextmv.log("5. I log a message to stderr using the nextmv module directly")
print("6. I print a message to stdout, again")
After executing it, here are the messages printed to the different streams.
-
stdout
1. I do nothing
2. I print another message to stdout
3. I print a message to stdout, again
-
stderr
1. I log a message to stderr
2. I print a message to stdout
3. I print yet another message to stderr without the logger
4. I log a message to stderr using the nextmv module directly
Output
Write the output data after a run is completed.
-
Work with JSON
outputs.
import nextmv
output = nextmv.Output(
solution={"foo": "bar"},
statistics=nextmv.Statistics(
result=nextmv.ResultStatistics(
duration=1.0,
value=2.0,
custom={"custom": "result_value"},
),
run=nextmv.RunStatistics(
duration=3.0,
iterations=4,
custom={"custom": "run_value"},
),
),
)
nextmv.write_local(output)
nextmv.write_local(output, path="output.json")
-
Work with multple CSV
files.
import nextmv
output = nextmv.Output(
output_format=nextmv.OutputFormat.CSV_ARCHIVE,
solution={
"output": [
{"name": "Alice", "age": 30},
{"name": "Bob", "age": 40},
],
},
statistics=nextmv.Statistics(
result=nextmv.ResultStatistics(
duration=1.0,
value=2.0,
custom={"custom": "result_value"},
),
run=nextmv.RunStatistics(
duration=3.0,
iterations=4,
custom={"custom": "run_value"},
),
),
)
nextmv.write_local(output)
nextmv.write_local(output, "custom_dir")
Model
A decision model is a program that makes decisions, i.e.: solves decision
problems. The model takes in an input (representing the problem data and
options) and returns an output, which is the solution to the decision problem.
The nextmv.Model
class is the base class for all models. It holds the
necessary logic to handle all decisions.
When creating your own decision model, you must create a class that inherits
from nextmv.Model
and implement the solve
method.
import nextmv
class YourCustomModel(nextmv.Model):
def solve(self, input: nextmv.Input) -> nextmv.Output:
"""Implement the logic to solve the decision problem here."""
pass
Here is an example of a simple knapsack problem, using highspy
(HiGHS
open-source solver).
Consider the following input and options to configure the solver:
import nextmv
sample_input = {
"items": [
{"id": "cat","value": 100,"weight": 20},
{"id": "dog","value": 20,"weight": 45},
{"id": "water","value": 40,"weight": 2},
{"id": "phone","value": 6,"weight": 1},
{"id": "book","value": 63,"weight": 10},
{"id": "rx","value": 81,"weight": 1},
{"id": "tablet","value": 28,"weight": 8},
{"id": "coat","value": 44,"weight": 9},
{"id": "laptop","value": 51,"weight": 13},
{"id": "keys","value": 92,"weight": 1},
{"id": "nuts","value": 18,"weight": 4}
],
"weight_capacity": 50
}
options = nextmv.Options(
nextmv.Parameter("duration", int, 30, "Max runtime duration (in seconds).", False),
)
You can define a DecisionModel
that packs the knapsack with the most valuable
items without exceeding the weight capacity.
import time
from importlib.metadata import version
import highspy
import nextmv
class DecisionModel(nextmv.Model):
def solve(self, input: nextmv.Input) -> nextmv.Output:
"""Solves the given problem and returns the solution."""
start_time = time.time()
solver = highspy.Highs()
solver.silent()
solver.setOptionValue("time_limit", input.options.duration)
weights = 0.0
values = 0.0
items = []
for item in input.data["items"]:
item_variable = solver.addVariable(0.0, 1.0, item["value"])
items.append({"item": item, "variable": item_variable})
weights += item_variable * item["weight"]
values += item_variable * item["value"]
solver.addConstr(weights <= input.data["weight_capacity"])
status = solver.maximize(values)
chosen_items = [
item["item"] for item in items if solver.val(item["variable"]) > 0.9
]
input.options.version = version("highspy")
statistics = nextmv.Statistics(
run=nextmv.RunStatistics(duration=time.time() - start_time),
result=nextmv.ResultStatistics(
value=sum(item["value"] for item in chosen_items),
custom={
"status": str(status),
"variables": solver.numVariables,
"constraints": solver.numConstrs,
},
),
)
return nextmv.Output(
options=input.options,
solution={"items": chosen_items},
statistics=statistics,
)
To solve the problem, you can run the model with the input and options:
import json
import nextmv
model = DecisionModel()
input = nextmv.Input(data=sample_input, options=options)
output = model.solve(input)
print(json.dumps(output.solution, indent=2))
If you want to run the model as a Nextmv Cloud app, you need two components:
- A model configuration. This configuration tells Nextmv Cloud how to load
the model.
- An app manifest. Every Nextmv Cloud app must have a manifest that establishes
how to run the app. It holds information such as the runtime, and files
that the app needs.
Continuing with the knapsack problem, you can define the model configuration
for it. From the config, there is a convenience function to create the manifest.
import nextmv
import nextmv.cloud
model_configuration = nextmv.ModelConfiguration(
name="highs_model",
requirements=[
"highspy==1.8.1",
"nextmv==0.14.0"
],
options=options,
)
manifest = nextmv.cloud.Manifest.from_model_configuration(model_configuration)
Once the model, options, model configuration, and manifest are defined, you can
push the app to Nextmv Cloud and run
it.
Cloud
Before starting:
- Sign up for a Nextmv account.
- Get your API key. Go to Team > API Key.
Visit the docs for more information. Make sure that you have your API
key set as an environment variable:
export NEXTMV_API_KEY="<YOUR-API-KEY>"
Additionally, you must have a valid app in Nextmv Cloud.
Push an application
There are two strategies to push an application to the Nextmv Cloud:
-
Specifying app_dir
, which is the path to an app’s root directory. This
acts as an external strategy, where the app is composed of files in a
directory and those apps are packaged and pushed to Nextmv Cloud. This is
language-agnostic and can work for an app written in any language.
Place the following script in the root of your app directory and run it to
push your app to the Nextmv Cloud. This is equivalent to using the Nextmv
CLI and running nextmv app push
.
import os
from nextmv import cloud
client = cloud.Client(api_key=os.getenv("NEXTMV_API_KEY"))
app = cloud.Application(client=client, id="<YOUR-APP-ID>")
app.push()
-
Specifying a model
and model_configuration
. This acts as an internal (or
Python-native) strategy called "Apps from Models", where an app is created
from a nextmv.Model
. The model is encoded, some dependencies and
accompanying files are packaged, and the app is pushed to Nextmv Cloud.
To push a nextmv.Model
to Nextmv Cloud, you need optional dependencies.
You can install them by running:
pip install "nextmv[all]"
Once all the optional dependencies are installed, you can push the app to
Nextmv Cloud.
import os
from nextmv import cloud
class CustomDecisionModel(nextmv.Model):
def solve(self, input: nextmv.Input) -> nextmv.Output:
"""Implement the logic to solve the decision problem here."""
pass
client = cloud.Client(api_key=os.getenv("NEXTMV_API_KEY"))
app = cloud.Application(client=client, id="<YOUR-APP-ID>")
model = CustomDecisionModel()
options = nextmv.Options()
model_configuration = nextmv.ModelConfiguration(
name="custom_decision_model",
requirements=[
"nextmv==0.14.0",
],
options=options,
)
manifest = nextmv.cloud.Manifest.from_model_configuration(model_configuration)
app.push(
manifest=manifest,
model=model,
model_configuration=model_configuration,
)
Run an application
Make a run and get the results.
import os
from nextmv import cloud
input = {
"defaults": {"vehicles": {"speed": 20}},
"stops": [
{
"id": "Nijō Castle",
"location": {"lon": 135.748134, "lat": 35.014239},
"quantity": -1,
},
{
"id": "Kyoto Imperial Palace",
"location": {"lon": 135.762057, "lat": 35.025431},
"quantity": -1,
},
],
"vehicles": [
{
"id": "v2",
"capacity": 2,
"start_location": {"lon": 135.728898, "lat": 35.039705},
},
],
}
client = cloud.Client(api_key=os.getenv("NEXTMV_API_KEY"))
app = cloud.Application(client=client, id="<YOUR-APP-ID>")
result = app.new_run_with_result(
input=input,
instance_id="latest",
run_options={"solve.duration": "1s"},
polling_options=cloud.PollingOptions(),
)
print(result.to_dict())