You're Invited:Meet the Socket Team at BlackHat and DEF CON in Las Vegas, Aug 4-6.RSVP
Socket
Book a DemoInstallSign in
Socket

peopledatalabs

Package Overview
Dependencies
Maintainers
1
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

peopledatalabs

Official Python client for the People Data Labs API

6.4.1
pipPyPI
Maintainers
1

People Data Labs Logo

People Data Labs Python Client

Official Python client for the People Data Labs API.

Repo Status   People Data Labs on PyPI   People Data Labs on PyPI   Tests Status

Table of Contents

🔧 Installation

  • Install from PyPi using pip, a package manager for Python.

    pip install peopledatalabs
    
  • Sign up for a free PDL API key.

🚀 Usage

First, create the PDLPY client:

from peopledatalabs import PDLPY


# specify your API key
client = PDLPY(
    api_key="YOUR API KEY",
)

Then, send requests to any PDL API Endpoint.

Getting Person Data

By Enrichment

result = client.person.enrichment(
    phone="4155688415",
    pretty=True,
)
if result.ok:
    print(result.text)
else:
    print(
        f"Status: {result.status_code};"
        f"\nReason: {result.reason};"
        f"\nMessage: {result.json()['error']['message']};"
    )

By Bulk Enrichment

result = client.person.bulk(
    required="emails AND profiles",
    requests=[
        {
            "metadata": {
                "user_id": "123"
            },
            "params": {
                "profile": ["linkedin.com/in/seanthorne"],
                "location": ["SF Bay Area"],
                "name": ["Sean F. Thorne"],
            }
        },
        {
            "metadata": {
                "user_id": "345"
            },
            "params": {
                "profile": ["https://www.linkedin.com/in/haydenconrad/"],
                "first_name": "Hayden",
                "last_name": "Conrad",
            }
        }
    ]
)
if result.ok:
    print(result.text)
else:
    print(
        f"Status: {result.status_code}"
        f"\nReason: {result.reason}"
        f"\nMessage: {result.json()['error']['message']}"
    )

By Search (Elasticsearch)

es_query = {
    "query": {
        "bool": {
            "must": [
                {"term": {"location_country": "mexico"}},
                {"term": {"job_title_role": "health"}},
            ]
        }
    }
}
data = {
    "query": es_query,
    "size": 10,
    "pretty": True,
    "dataset": "phone, mobile_phone",
}
result = client.person.search(**data)
if result.ok:
    print(result.text)
else:
    print(
        f"Status: {result.status_code}"
        f"\nReason: {result.reason}"
        f"\nMessage: {result.json()['error']['message']}"
    )

By Search (SQL)

sql_query = (
    "SELECT * FROM person"
    " WHERE location_country='mexico'"
    " AND job_title_role='health'"
    " AND phone_numbers IS NOT NULL;"
)
data = {
    "sql": sql_query,
    "size": 10,
    "pretty": True,
    "dataset": "phone, mobile_phone",
}
result = client.person.search(**data)
if result.ok:
    print(result.text)
else:
    print(
        f"Status: {result.status_code}"
        f"\nReason: {result.reason}"
        f"\nMessage: {result.json()['error']['message']}"
    )

By PDL_ID (Retrieve API)

result = client.person.retrieve(
    person_id="qEnOZ5Oh0poWnQ1luFBfVw_0000",
)
if result.ok:
    print(result.text)
else:
    print(
        f"Status: {result.status_code}"
        f"\nReason: {result.reason}"
        f"\nMessage: {result.json()['error']['message']}"
    )

By Fuzzy Enrichment (Identify API)

result = client.person.enrichment(
    name="varun villait",
    pretty=True,
)
if result.ok:
    print(result.text)
else:
    print(
        f"Status: {result.status_code}"
        f"\nReason: {result.reason}"
        f"\nMessage: {result.json()['error']['message']}"
    )

By Changelog

result = client.person.changelog(
    origin_version="30.2",
    target_version="31.0",
    type="updated",
)
if result.ok:
    print(result.text)
else:
    print(
        f"Status: {result.status_code}"
        f"\nReason: {result.reason}"
        f"\nMessage: {result.json()['error']['message']}"
    )

Getting Company Data

By Enrichment

result = client.company.enrichment(
    website="peopledatalabs.com",
    pretty=True,
)
if result.ok:
    print(result.text)
else:
    print(
        f"Status: {result.status_code}"
        f"\nReason: {result.reason}"
        f"\nMessage: {result.json()['error']['message']}"
    )

By Bulk Enrichment

result = client.company.bulk(
    requests=[
        {
            "metadata": {
                "company_id": "123"
            },
            "params": {
                "profile": "linkedin.com/company/peopledatalabs",
            }
        },
        {
            "metadata": {
                "company_id": "345"
            },
            "params": {
                "profile": "https://www.linkedin.com/company/apple/",
            }
        }
    ]
)
if result.ok:
    print(result.text)
else:
    print(
        f"Status: {result.status_code}"
        f"\nReason: {result.reason}"
        f"\nMessage: {result.json()['error']['message']}"
    )

By Search (Elasticsearch)

es_query = {
    "query": {
        "bool": {
            "must": [
                {"term": {"tags": "big data"}},
                {"term": {"industry": "financial services"}},
                {"term": {"location.country": "united states"}},
            ]
        }
    }
}
data = {
    "query": es_query,
    "size": 10,
    "pretty": True,
}
result = client.company.search(**data)
if result.ok:
    print(result.text)
else:
    print(
        f"Status: {result.status_code}"
        f"\nReason: {result.reason}"
        f"\nMessage: {result.json()['error']['message']}"
    )

By Search (SQL)

sql_query = (
    "SELECT * FROM company"
    " WHERE tags='big data'"
    " AND industry='financial services'"
    " AND location.country='united states';"
)
data = {
    "sql": sql_query,
    "size": 10,
    "pretty": True,
}
result = client.company.search(**data)
if result.ok:
    print(result.text)
else:
    print(
        f"Status: {result.status_code}"
        f"\nReason: {result.reason}"
        f"\nMessage: {result.json()['error']['message']}"
    )

Using supporting APIs

Get Autocomplete Suggestions

result = client.autocomplete(
    field="title",
    text="full",
    size=10,
)
if result.ok:
    print(result.text)
else:
    print(
        f"Status: {result.status_code}"
        f"\nReason: {result.reason}"
        f"\nMessage: {result.json()['error']['message']}"
    )

Clean Raw Company Strings

result = client.company.cleaner(
    name="peOple DaTa LabS",
)
if result.ok:
    print(result.text)
else:
    print(
        f"Status: {result.status_code}"
        f"\nReason: {result.reason}"
        f"\nMessage: {result.json()['error']['message']}"
    )

Clean Raw Location Strings

result = client.location.cleaner(
    location="455 Market Street, San Francisco, California 94105, US",
)
if result.ok:
    print(result.text)
else:
    print(
        f"Status: {result.status_code}"
        f"\nReason: {result.reason}"
        f"\nMessage: {result.json()['error']['message']}"
    )

Clean Raw School Strings

result = client.school.cleaner(
    name="university of oregon",
)
if result.ok:
    print(result.text)
else:
    print(
        f"Status: {result.status_code}"
        f"\nReason: {result.reason}"
        f"\nMessage: {result.json()['error']['message']}"
    )

Get Job Title Enrichment

result = client.job_title(
    job_title="data scientist",
)
if result.ok:
    print(result.text)
else:
    print(
        f"Status: {result.status_code}"
        f"\nReason: {result.reason}"
        f"\nMessage: {result.json()['error']['message']}"
    )

Get IP Enrichment

result = client.ip(
    ip="72.212.42.169",
)
if result.ok:
    print(result.text)
else:
    print(
        f"Status: {result.status_code};"
        f"\nReason: {result.reason};"
        f"\nMessage: {result.json()['error']['message']};"
    )

🏝 Sandbox Usage

To enable sandbox usage, use the sandbox flag on PDLPY

PDLPY(sandbox=True)

🌐 Endpoints

Person Endpoints

API EndpointPDLPY Function
Person Enrichment APIPDLPY.person.enrichment(**params)
Person Bulk Enrichment APIPDLPY.person.bulk(**params)
Person Search APIPDLPY.person.search(**params)
Person Retrieve APIPDLPY.person.retrieve(**params)
Person Identify APIPDLPY.person.identify(**params)
Person Changelog APIPDLPY.person.changelog(**params)

Company Endpoints

API EndpointPDLPY Function
Company Enrichment APIPDLPY.company.enrichment(**params)
Company Bulk Enrichment APIPDLPY.company.bulk(**params)
Company Search APIPDLPY.company.search(**params)

Supporting Endpoints

API EndpointPDLJS Function
Autocomplete APIPDLPY.autocomplete(**params)
Company Cleaner APIPDLPY.company.cleaner(**params)
Location Cleaner APIPDLPY.location.cleaner(**params)
School Cleaner APIPDLPY.school.cleaner(**params)
Job Title Enrichment APIPDLPY.job_title(**params)
IP Enrichment APIPDLPY.ip(**params)

📘 Documentation

All of our API endpoints are documented at: https://docs.peopledatalabs.com/

These docs describe the supported input parameters, output responses and also provide additional technical context.

As illustrated in the Endpoints section above, each of our API endpoints is mapped to a specific method in the PDLPY class. For each of these class methods, all function inputs are mapped as input parameters to the respective API endpoint, meaning that you can use the API documentation linked above to determine the input parameters for each endpoint.

As an example:

The following is valid because name is a supported input parameter to the Person Identify API:

PDLPY().person.identify({"name": "varun villait"})

Conversely, this would be invalid because fake_parameter is not an input parameter to the Person Identify API:

PDLPY().person.identify({"fake_parameter": "anything"})

Upgrading to v2.X.X

NOTE: When upgrading to v2.X.X from vX.X.X and below, the minimum required python version is now 3.8.

Upgrading to v3.X.X

NOTE: When upgrading to v3.X.X from vX.X.X and below, the minimum required pydantic version is now 2.

Upgrading to v4.X.X

NOTE: When upgrading to v4.X.X from vX.X.X and below, we no longer auto load the API key from the environment variable PDL_API_KEY. You must now pass the API key as a parameter to the PDLPY class.

Keywords

data enrichment

FAQs

Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts