Huge News!Announcing our $40M Series B led by Abstract Ventures.Learn More
Socket
Sign inDemoInstall
Socket

quick-crawler

Package Overview
Dependencies
Maintainers
1
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

quick-crawler

A toolkit for quickly performing crawler functions

  • 0.0.8
  • Source
  • PyPI
  • Socket score

Maintainers
1

Quick Crawler

A toolkit for quickly performing crawler functions

Installation

pip install quick-crawler

Functions

  1. get a html page and can save the file if the file path is assigned.
  2. get a json object from html string
  3. get or download a series of url with similar format, like a page list
  4. remove unicode str
  5. get json object online
  6. read a series of obj from a json list online
  7. quick save csv file from a list of json objects
  8. quick read csv file to a list of fields
  9. quick download a file
  10. quick crawler of a series of multi-lang websites

Let Codes Speak

Example 1:

from quick_crawler.page import *

if __name__=="__main__":
    # get a html page and can save the file if the file path is assigned.
    url="https://learnersdictionary.com/3000-words/alpha/a"
    html_str=quick_html_page(url)
    print(html_str)

    # get a json object from html string
    html_obj=quick_html_object(html_str)
    word_list=html_obj.find("ul",{"class":"a_words"}).findAll("li")
    print("word list: ")
    for word in word_list:
        print(word.find("a").text.replace("  ","").strip())

    # get or download a series of url with similar format, like a page list
    url_range="https://learnersdictionary.com/3000-words/alpha/a/{pi}"
    list_html_str=quick_html_page_range(url_range,min_page=1,max_page=10)
    for idx,html in enumerate(list_html_str):
        html_obj = quick_html_object(html)
        word_list = html_obj.find("ul", {"class": "a_words"}).findAll("li")
        list_w=[]
        for word in word_list:
            list_w.append(word.find("a").text.replace("  ", "").strip())
        print(f"Page {idx+1}: ", ','.join(list_w))



Example 2:

from quick_crawler.page import *

if __name__=="__main__":
    # remove unicode str
    u_str = 'aà\xb9'
    u_str_removed = quick_remove_unicode(u_str)
    print("Removed str: ", u_str_removed)

    # get json object online
    json_url="http://soundcloud.com/oembed?url=http%3A//soundcloud.com/forss/flickermood&format=json"
    json_obj=quick_json_obj(json_url)
    print(json_obj)
    for k in json_obj:
        print(k,json_obj[k])

    # read a series of obj from a json list online
    json_list_url = "https://jsonplaceholder.typicode.com/posts"
    json_list = quick_json_obj(json_list_url)
    print(json_list)
    for obj in json_list:
        userId = obj["userId"]
        title = obj["title"]
        body = obj["body"]
        print(obj)

    # quick save csv file from a list of json objects
    quick_save_csv("news_list.csv",['userId','id','title','body'],json_list)

    # quick read csv file to a list of fields
    list_result=quick_read_csv("news_list.csv",fields=['userId','title'])
    print(list_result)

    # quick download a file
    quick_download_file("https://www.englishclub.com/images/english-club-C90.png",save_file_path="logo.png")


Example 3: obtain html text from the Browser

from quick_crawler import browser
import os
if __name__=="__main__":
    html_str=browser.get_html_str_with_browser("https://pypi.org/project/quick-crawler/0.0.2/",driver_path='../../examples/browsers/chromedriver.exe')
    print(html_str)

Example 4: Crawl a series of web pages from a group of websites

from quick_crawler import browser
import os
list_item=[
        ['CNN','https://edition.cnn.com/'],
        ['AP','https://apnews.com/']
    ]
current_path = os.path.dirname(os.path.realpath(__file__))
browser.fetch_meta_info_from_sites(list_item,current_path+"/data",is_save_fulltext=True,use_plain_text=True)

Example 5: Crawl a series of websites with advanced settings

from quick_crawler import page,browser
import os
import pickle
list_item=pickle.load(open("list_news_site.pickle","rb"))[20:]
current_path = os.path.dirname(os.path.realpath(__file__))
browser.fetch_meta_info_from_sites(list_item,current_path+"/news_data1",
                                   is_save_fulltext=True,
                                   use_plain_text=False,
                                   max_num_urls=100,
                                   use_keywords=True
                                   )
list_model=browser.summarize_downloaded_data("news_data1",
                                     # save_path="news_data_list.csv"
                                     )

Example 6: Multi-lang crawler

import os
from quick_crawler.multilang import get_sites_with_multi_lang_keywords
keywords="digital economy"
init_urls=[
    ["en-cnn","https://edition.cnn.com/"],
    ['jp-asahi', 'https://www.asahi.com/'],
    ['ru-mk', 'https://www.mk.ru/'],
    ['zh-xinhuanet', 'http://xinhuanet.com/'],
]
current_path = os.path.dirname(os.path.realpath(__file__))
list_item=get_sites_with_multi_lang_keywords(
    init_urls=init_urls,
    src_term=keywords,
    src_language="en",
    target_langs=["ja","zh","es","ru"],
    save_data_folder=f"{current_path}/news_data3"
    )

Example 7: get multiple translations based on a keyword

import pickle
from quick_crawler.language import *
terms = 'digital economy'
dict_lang=get_lang_dict_by_translation("en",terms)
pickle.dump(dict_lang,open(f"multi-lang-{terms}.pickle",'wb'))

Example 8: Pipeline for web page list processing

from quick_crawler.pipline.page_list import run_web_list_analysis_shell
if __name__=="__main__":
    def find_list(html_obj):
        return html_obj.find("div", {"class": "bd"}).findAll("li")

    def get_item(item):
        datetime = item.find("span").text
        title = item.find("a").text
        url = item.find("a")["href"]
        return title, url, datetime

    run_web_list_analysis_shell(
        url_pattern="https://www.abc.com/index_{p}.html",
        working_folder='test',
        min_page=1,
        max_page=2,
        fn_find_list=find_list,
        fn_get_item=get_item,
        tag='xxxx'
    )

License

The quick-crawler project is provided by Donghua Chen.

Keywords

FAQs


Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc