Huge News!Announcing our $40M Series B led by Abstract Ventures.Learn More
Socket
Sign inDemoInstall
Socket

razdel

Package Overview
Dependencies
Maintainers
1
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

razdel

Splits russian text into tokens, sentences, section. Rule-based

  • 0.5.0
  • PyPI
  • Socket score

Maintainers
1

CI codecov

razdel — rule-based system for Russian sentence and word tokenization..

Usage

>>> from razdel import tokenize

>>> tokens = list(tokenize('Кружка-термос на 0.5л (50/64 см³, 516;...)'))
>>> tokens
[Substring(0, 13, 'Кружка-термос'),
 Substring(14, 16, 'на'),
 Substring(17, 20, '0.5'),
 Substring(20, 21, 'л'),
 Substring(22, 23, '(')
 ...]

>>> [_.text for _ in tokens]
['Кружка-термос', 'на', '0.5', 'л', '(', '50/64', 'см³', ',', '516', ';', '...', ')']
>>> from razdel import sentenize

>>> text = '''
... - "Так в чем же дело?" - "Не ра-ду-ют".
... И т. д. и т. п. В общем, вся газета
... '''

>>> list(sentenize(text))
[Substring(1, 23, '- "Так в чем же дело?"'),
 Substring(24, 40, '- "Не ра-ду-ют".'),
 Substring(41, 56, 'И т. д. и т. п.'),
 Substring(57, 76, 'В общем, вся газета')]

Installation

razdel supports Python 3.5+ and PyPy 3.

$ pip install razdel

Quality, performance

Unfortunately, there is no single correct way to split text into sentences and tokens. For example, one may split «Как же так?! Захар...» — воскликнут Пронин. into three sentences ["«Как же так?!", "Захар...»", "— воскликнут Пронин."] while razdel splits it into two ["«Как же так?!", "Захар...» — воскликнут Пронин."]. What would be the correct way to tokenizer т.е.? One may split in into т.|е., razdel splits into т|.|е|..

razdel tries to mimic segmentation of these 4 datasets : SynTagRus, OpenCorpora, GICRYA and RNC. These datasets mainly consist of news and fiction. razdel rules are optimized for these kinds of texts. Library may perform worse on other domains like social media, scientific articles, legal documents.

We measure absolute number of errors. There are a lot of trivial cases in the tokenization task. For example, text чуть-чуть?! is not non-trivial, one may split it into чуть|-|чуть|?|! while the correct tokenization is чуть-чуть|?!, such examples are rare. Vast majority of cases are trivial, for example text в 5 часов ... is correctly tokenized even via Python native str.split into в| |5| |часов| |.... Due to the large number of trivial case overall quality of all segmenators is high, it is hard to compare differentiate between for examlpe 99.33%, 99.95% and 99.88%, so we report the absolute number of errors.

errors — number of errors. For example, consider etalon segmentation is что-то|?, prediction is что|-|то?, then the number of errors is 3: 1 for missing split то? + 2 for extra splits что|-|то.

time — total seconds taken.

spacy_tokenize, aatimofeev and others a defined in naeval/segment/models.py. Tables are computed in segment/main.ipynb.

Tokens

corporasyntaggicryarnc
errorstimeerrorstimeerrorstimeerrorstime
re.findall(\w+|\d+|\p+)41610.526600.522770.476060.4
spacy43886.221035.817404.140573.9
nltk.word_tokenize142453.4608933.3134962.7414852.9
mystem45145.031534.724973.720283.9
mosestokenizer18862.113301.917961.621231.7
segtok.word_tokenize27722.312882.317591.812291.8
aatimofeev/spacy_russian_tokenizer293048.771951.167839.5268152.2
koziev/rutokenizer26271.113861.028930.894110.9
razdel.tokenize15102.914832.83222.021242.2

Sentencies

corporasyntaggicryarnc
errorstimeerrorstimeerrorstimeerrorstime
re.split([.?!…])204560.965760.6100840.7233561.0
segtok.split_single1900817.8442213.41597381.11642182.8
mosestokenizer416668.9220825.7126636.4505607.4
nltk.sent_tokenize1642010.143505.370745.6325348.9
deeppavlov/rusenttokenize1019210.912107.989106.8214107.0
razdel.sentenize92746.18243.9114144.5105947.5

Support

Development

Test:

pip install -e .
pip install -r requirements/ci.txt
make test
make int  # 2000 integration tests

Package:

make version
git push
git push --tags

make clean wheel upload

mystem errors on syntag:

# see naeval/data
cat syntag_tokens.txt | razdel-ctl sample 1000 | razdel-ctl gen | razdel-ctl diff --show moses_tokenize | less

Non-trivial token tests:

pv data/*_tokens.txt | razdel-ctl gen --recall | razdel-ctl diff space_tokenize > tests.txt
pv data/*_tokens.txt | razdel-ctl gen --precision | razdel-ctl diff re_tokenize >> tests.txt

Update integration tests:

cd razdel/tests/data/
pv sents.txt | razdel-ctl up sentenize > t; mv t sents.txt

razdel and moses diff:

cat data/*_tokens.txt | razdel-ctl sample 1000 | razdel-ctl gen | razdel-ctl up tokenize | razdel-ctl diff moses_tokenize | less

razdel performance:

cat data/*_tokens.txt | razdel-ctl sample 10000 | pv -l | razdel-ctl gen | razdel-ctl diff tokenize | wc -l

Keywords

FAQs


Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc