Huge News!Announcing our $40M Series B led by Abstract Ventures.Learn More
Socket
Sign inDemoInstall
Socket

rdt

Package Overview
Dependencies
Maintainers
9
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

rdt

Reversible Data Transforms

  • 1.13.0
  • PyPI
  • Socket score

Maintainers
9

This repository is part of The Synthetic Data Vault Project, a project from DataCebo.

Development Status PyPi Shield Unit Tests Downloads Coverage Status Slack

Overview

RDT (Reversible Data Transforms) is a Python library that transforms raw data into fully numerical data, ready for data science. The transforms are reversible, allowing you to convert from numerical data back into your original format.

Install

Install RDT using pip or conda. We recommend using a virtual environment to avoid conflicts with other software on your device.

pip install rdt
conda install -c conda-forge rdt

For more information about using reversible data transformations, visit the RDT Documentation.

Quickstart

In this short series of tutorials we will guide you through a series of steps that will help you getting started using RDT to transform columns, tables and datasets.

Load the demo data

After you have installed RDT, you can get started using the demo dataset.

from rdt import get_demo

customers = get_demo()

This dataset contains some randomly generated values that describe the customers of an online marketplace.

  last_login email_optin credit_card  age  dollars_spent
0 2021-06-26       False        VISA   29          99.99
1 2021-02-10       False        VISA   18            NaN
2        NaT       False        AMEX   21           2.50
3 2020-09-26        True         NaN   45          25.00
4 2020-12-22         NaN    DISCOVER   32          19.99

Let's transform this data so that each column is converted to full, numerical data ready for data science.

Creating the HyperTransformer & config

The HyperTransformer is capable of transforming multi-column datasets.

from rdt import HyperTransformer

ht = HyperTransformer()

The HyperTransformer needs to know about the columns in your dataset and which transformers to apply to each. These are described by a config. We can ask the HyperTransformer to automatically detect it based on the data we plan to use.

ht.detect_initial_config(data=customers)

This will create and set the config.

Config:
{
    "sdtypes": {
        "last_login": "datetime",
        "email_optin": "boolean",
        "credit_card": "categorical",
        "age": "numerical",
        "dollars_spent": "numerical"
    },
    "transformers": {
        "last_login": "UnixTimestampEncoder()",
        "email_optin": "BinaryEncoder()",
        "credit_card": "FrequencyEncoder()",
        "age": "FloatFormatter()",
        "dollars_spent": "FloatFormatter()"
    }
}

The sdtypes dictionary describes the semantic data types of each of your columns and the transformers dictionary describes which transformer to use for each column. You can customize the transformers and their settings. (See the Transformers Glossary for more information).

Fitting & using the HyperTransformer

The HyperTransformer references the config while learning the data during the fit stage.

ht.fit(customers)

Once the transformer is fit, it's ready to use. Use the transform method to transform all columns of your dataset at once.

transformed_data = ht.transform(customers)
   last_login.value  email_optin.value  credit_card.value  age.value  dollars_spent.value
0      1.624666e+18                0.0                0.2         29                99.99
1      1.612915e+18                0.0                0.2         18                36.87
2      1.611814e+18                0.0                0.5         21                 2.50
3      1.601078e+18                1.0                0.7         45                25.00
4      1.608595e+18                0.0                0.9         32                19.99

The HyperTransformer applied the assigned transformer to each individual column. Each column now contains fully numerical data that you can use for your project!

When you're done with your project, you can also transform the data back to the original format using the reverse_transform method.

original_format_data = ht.reverse_transform(transformed_data)
  last_login email_optin credit_card  age  dollars_spent
0        NaT       False        VISA   29          99.99
1 2021-02-10       False        VISA   18            NaN
2        NaT       False        AMEX   21            NaN
3 2020-09-26        True         NaN   45          25.00
4 2020-12-22       False    DISCOVER   32          19.99

What's Next?

To learn more about reversible data transformations, visit the RDT Documentation.




The Synthetic Data Vault Project was first created at MIT's Data to AI Lab in 2016. After 4 years of research and traction with enterprise, we created DataCebo in 2020 with the goal of growing the project. Today, DataCebo is the proud developer of SDV, the largest ecosystem for synthetic data generation & evaluation. It is home to multiple libraries that support synthetic data, including:

  • 🔄 Data discovery & transformation. Reverse the transforms to reproduce realistic data.
  • 🧠 Multiple machine learning models -- ranging from Copulas to Deep Learning -- to create tabular, multi table and time series data.
  • 📊 Measuring quality and privacy of synthetic data, and comparing different synthetic data generation models.

Get started using the SDV package -- a fully integrated solution and your one-stop shop for synthetic data. Or, use the standalone libraries for specific needs.

Keywords

FAQs


Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc