You're Invited:Meet the Socket Team at BlackHat and DEF CON in Las Vegas, Aug 4-6.RSVP
Socket
Book a DemoInstallSign in
Socket

redis-toolkit

Package Overview
Dependencies
Maintainers
1
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

redis-toolkit

Enhanced Redis wrapper with multi-type data support and pub/sub automation

0.1.3
pipPyPI
Maintainers
1

Redis Toolkit

Redis Toolkit Logo

PyPI version Python versions License Ask DeepWiki

🚀 Enhanced Redis wrapper with intelligent serialization and media processing

A powerful Redis toolkit that simplifies multi-type data operations, pub/sub messaging, and media file processing with automatic encoding/decoding capabilities.

✨ Features

  • 🎯 Smart Serialization: Automatic handling of dict, list, bool, bytes, int, float, and numpy arrays
  • 🎵 Media Processing: Built-in converters for images, audio, and video files
  • 📡 Pub/Sub Made Easy: Simplified publish/subscribe with automatic JSON serialization
  • 🔧 Flexible Configuration: Support for custom Redis clients and connection settings
  • 🛡️ Resilient Operations: Built-in retry mechanisms and health checks
  • 📦 Batch Operations: Efficient batch_set and batch_get for bulk operations

📦 Installation

Basic Installation

pip install redis-toolkit

With Media Processing

# For image processing
pip install redis-toolkit[cv2]

# For audio processing (basic)
pip install redis-toolkit[audio]

# For audio processing (with MP3 support)
pip install redis-toolkit[audio-full]

# For complete media support
pip install redis-toolkit[all]

🚀 Quick Start

Basic Usage

from redis_toolkit import RedisToolkit

# Initialize toolkit
toolkit = RedisToolkit()

# Store different data types
toolkit.setter("user", {"name": "Alice", "age": 25, "active": True})
toolkit.setter("scores", [95, 87, 92, 88])
toolkit.setter("flag", True)
toolkit.setter("binary_data", b"Hello, World!")

# Automatic deserialization
user = toolkit.getter("user")      # {'name': 'Alice', 'age': 25, 'active': True}
scores = toolkit.getter("scores")  # [95, 87, 92, 88]
flag = toolkit.getter("flag")      # True (bool, not string)

Media Processing with Converters

from redis_toolkit import RedisToolkit
from redis_toolkit.converters import encode_image, decode_image
from redis_toolkit.converters import encode_audio, decode_audio
import cv2
import numpy as np

toolkit = RedisToolkit()

# Image processing
img = cv2.imread('photo.jpg')
img_bytes = encode_image(img, format='jpg', quality=90)
toolkit.setter('my_image', img_bytes)

# Retrieve and decode
retrieved_bytes = toolkit.getter('my_image')
decoded_img = decode_image(retrieved_bytes)

# Audio processing
sample_rate = 44100
audio_data = np.sin(2 * np.pi * 440 * np.linspace(0, 1, sample_rate))
audio_bytes = encode_audio(audio_data, sample_rate=sample_rate)
toolkit.setter('my_audio', audio_bytes)

# Retrieve and decode
retrieved_audio = toolkit.getter('my_audio')
decoded_rate, decoded_audio = decode_audio(retrieved_audio)

Pub/Sub with Media Sharing

from redis_toolkit import RedisToolkit
from redis_toolkit.converters import encode_image
import base64

# Setup subscriber
def message_handler(channel, data):
    if data.get('type') == 'image':
        # Decode base64 image data
        img_bytes = base64.b64decode(data['image_data'])
        img = decode_image(img_bytes)
        print(f"Received image: {img.shape}")

subscriber = RedisToolkit(
    channels=["media_channel"],
    message_handler=message_handler
)

# Setup publisher
publisher = RedisToolkit()

# Send image through pub/sub
img_bytes = encode_image(your_image_array, format='jpg', quality=80)
img_base64 = base64.b64encode(img_bytes).decode('utf-8')

message = {
    'type': 'image',
    'user': 'Alice',
    'image_data': img_base64,
    'timestamp': time.time()
}

publisher.publisher("media_channel", message)

Advanced Configuration

from redis_toolkit import RedisToolkit, RedisOptions, RedisConnectionConfig

# Custom Redis connection
config = RedisConnectionConfig(
    host="localhost",
    port=6379,
    db=1,
    password="your_password"
)

# Custom options
options = RedisOptions(
    is_logger_info=True,
    max_log_size=512,
    subscriber_retry_delay=10
)

toolkit = RedisToolkit(config=config, options=options)

Batch Operations

# Batch set
data = {
    "user:1": {"name": "Alice", "score": 95},
    "user:2": {"name": "Bob", "score": 87},
    "user:3": {"name": "Charlie", "score": 92}
}
toolkit.batch_set(data)

# Batch get
keys = ["user:1", "user:2", "user:3"]
results = toolkit.batch_get(keys)

Context Manager

with RedisToolkit() as toolkit:
    toolkit.setter("temp_data", {"session": "12345"})
    data = toolkit.getter("temp_data")
    # Automatic cleanup on exit

🎨 Media Converters

Image Converter

from redis_toolkit.converters import get_converter

# Create image converter with custom settings
img_converter = get_converter('image', format='png', quality=95)

# Encode image
encoded = img_converter.encode(image_array)

# Decode image
decoded = img_converter.decode(encoded)

# Resize image
resized = img_converter.resize(image_array, width=800, height=600)

# Get image info
info = img_converter.get_info(encoded_bytes)

Audio Converter

from redis_toolkit.converters import get_converter

# Create audio converter
audio_converter = get_converter('audio', sample_rate=44100, format='wav')

# Encode from file
encoded = audio_converter.encode_from_file('song.mp3')

# Encode from array
encoded = audio_converter.encode((sample_rate, audio_array))

# Decode audio
sample_rate, audio_array = audio_converter.decode(encoded)

# Normalize audio
normalized = audio_converter.normalize(audio_array, target_level=0.8)

# Get file info
info = audio_converter.get_file_info('song.mp3')

Video Converter

from redis_toolkit.converters import get_converter

# Create video converter
video_converter = get_converter('video')

# Encode video file
encoded = video_converter.encode('movie.mp4')

# Save video bytes to file
video_converter.save_video_bytes(encoded, 'output.mp4')

# Get video info
info = video_converter.get_video_info('movie.mp4')

# Extract frames
frames = video_converter.extract_frames('movie.mp4', max_frames=10)

🎯 Use Cases

Real-time Image Sharing

Perfect for applications that need to share images instantly across different services or users.

Audio/Video Streaming

Handle audio and video buffers efficiently with automatic encoding/decoding.

Multi-media Chat Applications

Build chat applications that support text, images, audio, and video messages.

Data Analytics Dashboards

Share real-time charts and visualizations between different components.

IoT Data Processing

Handle sensor data, images from cameras, and audio from microphones.

⚙️ Configuration Options

Redis Connection Config

RedisConnectionConfig(
    host='localhost',
    port=6379,
    db=0,
    password=None,
    username=None,
    encoding='utf-8',
    decode_responses=False,
    socket_keepalive=True
)

Redis Options

RedisOptions(
    is_logger_info=True,           # Enable logging
    max_log_size=256,              # Max log entry size
    subscriber_retry_delay=5,      # Subscriber reconnection delay
    subscriber_stop_timeout=5      # Subscriber stop timeout
)

📋 Requirements

  • Python >= 3.7
  • Redis >= 4.0
  • redis-py >= 4.0

Optional Dependencies

  • OpenCV: For image and video processing (pip install opencv-python)
  • NumPy: For array operations (pip install numpy)
  • SciPy: For audio processing (pip install scipy)
  • SoundFile: For advanced audio formats (pip install soundfile)
  • Pillow: For additional image formats (pip install Pillow)

🧪 Testing

# Install development dependencies
pip install redis-toolkit[dev]

# Run tests
pytest

# Run with coverage
pytest --cov=redis_toolkit

# Run specific test categories
pytest -m "not slow"  # Skip slow tests
pytest -m integration  # Run integration tests only

🤝 Contributing

We welcome contributions! Please see our Contributing Guide for details.

  • Fork the repository
  • Create a feature branch (git checkout -b feature/amazing-feature)
  • Commit your changes (git commit -m 'Add amazing feature')
  • Push to the branch (git push origin feature/amazing-feature)
  • Open a Pull Request

📄 License

This project is licensed under the MIT License - see the LICENSE file for details.

📞 Contact & Support

🌟 Showcase

Used by these awesome projects:

  • Add your project here by opening a PR!

Made with ❤️ by the Redis Toolkit Team

Keywords

redis

FAQs

Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts