Sentida
The new state-of-the-art Danish sentiment analysis tool further developed from the previous state-of-the-art Sentida and shows significant improvement in classifying sentiment in text compared to Sentida (p < 0.01) in three different validation datasets (TP, TP2, Emma).
Implementation of the previous state-of-the-art Danish SA in R, Sentida, for python along with Sentida and programmed loosely from the VADER sentiment analysis python implementation.
Authors and Citation
Created by Søren Orm and Esben Kran.
Emma: Danish Computational Analysis of Emotion in Text
(by S. Orm and E. Kran)
For questions and commercial use, please contact:
- Esben Kran C.
- Søren Orm H.
Installation
You can install Sentida through pip with the following command:
pip install sentida
Documentation and examples
The function:
from sentida import Sentida
Sentida().sentida(
text,
output = ["mean", "total", "by_sentence_mean", "by_sentence_total"],
normal = True,
speed = ["normal", "fast"]
)
# Speed parameter does not have an effect in version <0.2.1
WARNING: Setting speed to fast drastically reduces sentiment precision in complex sentences but speeds up the process by 180% (10,000 iteration test).
Usage examples:
# Define the class:
SV = Sentida()
_____________________________
SV.sentida(
text = 'Lad der blive fred.',
output = 'mean',
normal = False)
Example of usage:
Lad der bliver fred
Sentiment = 2.0
_____________________________
SV.sentida(
text = 'Lad der blive fred!',
output = 'mean',
normal = False)
With exclamation mark:
Lad der blive fred!
Sentiment = 3.13713
_____________________________
SV.sentida(
text = 'Lad der blive fred!!!',
output = 'mean',
normal = False)
With several exclamation mark:
Lad der blive fred!!!
Sentiment = 3.7896530399999997
_____________________________
SV.sentida(
text = 'Lad der BLIVE FRED',
output = 'mean',
normal = False)
Uppercase:
lad der BLIVE FRED
Sentiment = 3.466
_____________________________
SV.sentida(
text = 'Det går dårligt.',
output = 'mean',
normal = False)
Negative sentence:
Det går dårligt
Sentiment = -1.8333333333333335
_____________________________
SV.sentida(
text = 'Det går ikke dårligt.',
output = 'mean',
normal = False)
Negation in sentence:
Det går ikke dårligt
Sentiment = 1.8333333333333335
_____________________________
SV.sentida(
text = 'Lad der blive fred, men det går dårligt.',
output = 'mean',
normal = False)
'Men' ('but'):
Lad der blive fred, men det går dårligt
Sentiment = -1.5
_____________________________
SV.sentida(
text = 'Lad der blive fred.',
output = 'mean',
normal = True)
Normalized:
Lad der blive fred
Sentiment = 0.4
_____________________________
SV.sentida(
text = 'Lad der bliver fred. Det går dårligt!',
output = 'by_sentence_mean',
normal = False)
Multiple sentences mean:
Lad der bliver fred. Det går dårligt!
Sentiments = [2.0, -2.8757025]
_____________________________
SV.sentida(
text = 'Lad der bliver fred. Det går dårligt!',
output = 'by_sentence_total',
normal = False)
Multiple sentences total:
Lad der bliver fred. Det går dårligt!
Sentiments = [2.0, -5.751405]
_____________________________
Acknowledgements and Context
Thanks to CINeMa (https://inema.webflow.io),
the Sentida team, jry, VADER, AFINN, and last
but not least Formula T., for inspiration and encouragement.
For license information, see LICENSE.TXT
The Sentida sentiment analysis tool is freely available for
research purposes (please cite Lauridsen et al., 2019). If you want to use the tool
for commercial purposes, please contact:
- contact@esbenkc.com
- sorenorm@live.dk
Or the Sentida team:
- gustavaarup0111@gmail.com
- jacdals@hotmail.com
- larskjartanbachersvendsen@gmail.com
SENTIDA
Aarhus University, Cognitive Science.
2019 - Cognition & Communication.
@authors: sorenorm & esbenkc.
This script was developed along with other tools in an attempt to improve
danish sentiment analysis. The tool will be updated as more data is collected
and new methods for more optimally accessing sentiment is developed.
Notes
VADER BASIS VALUES
Multiplication values:
0.291, 0.215, and 0.208 for !, !!, and !!! respectively
empirically tested by one sentence compared to the three conditions
0.733 for uppercase
empirically tested from single control sentence to uppercase version
0.293 for degree modifications from adverbs
empirically tested with "extremely"
SENTIDA BASIS VALUES
Currently using VADER basis values
Question mark is: XXX
Degree modifications for other words are implemented in intensitifer list
- Need implementation of larger intensifier list based on sentences
FUTURE IMPROVEMENTS
Still missing: common phrases, adjusted values for exclamation marks,
Adjusted values for men-sentences, adjusted values for uppercase,
More rated words, more intensifiers/mitigators, better solution than snowball stemmer,
Synonym/antonym dictionary.
Social media orientated: emoticons, using multiple letters - i.e. suuuuuper.
Normalization with respect to sub-(-1) and super-(1) output values
References
Lauridsen, G. A., Dalsgaard, J. A., & Svendsen, L. K. B. (2019). SENTIDA: A New Tool for Sentiment Analysis in Danish. Journal of Language Works - Sprogvidenskabeligt Studentertidsskrift, 4(1), 38–53.
Hutto, C. J., & Gilbert, E. (2014, May 16). VADER: A Parsimonious Rule-Based Model for Sentiment Analysis of Social Media Text. Eighth International AAAI Conference on Weblogs and Social Media. Eighth International AAAI Conference on Weblogs and Social Media. https://www.aaai.org/ocs/index.php/ICWSM/ICWSM14/paper/view/8109