
Product
Introducing Scala and Kotlin Support in Socket
Socket now supports Scala and Kotlin, bringing AI-powered threat detection to JVM projects with easy manifest generation and fast, accurate scans.
The new state-of-the-art Danish sentiment analysis tool further developed from the previous state-of-the-art Sentida and shows significant improvement in classifying sentiment in text compared to Sentida (p < 0.01) in three different validation datasets (TP, TP2, Emma).
Implementation of the previous state-of-the-art Danish SA in R, Sentida, for python along with Sentida and programmed loosely from the VADER sentiment analysis python implementation.
Created by Søren Orm and Esben Kran.
Emma: Danish Computational Analysis of Emotion in Text (by S. Orm and E. Kran)
For questions and commercial use, please contact:
You can install Sentida through pip with the following command:
pip install sentida
The function:
from sentida import Sentida
Sentida().sentida(
text,
output = ["mean", "total", "by_sentence_mean", "by_sentence_total"],
normal = True,
speed = ["normal", "fast"]
)
# Speed parameter does not have an effect in version <0.2.1
WARNING: Setting speed to fast drastically reduces sentiment precision in complex sentences but speeds up the process by 180% (10,000 iteration test).
Usage examples:
# Define the class:
SV = Sentida()
_____________________________
SV.sentida(
text = 'Lad der blive fred.',
output = 'mean',
normal = False)
Example of usage:
Lad der bliver fred
Sentiment = 2.0
_____________________________
SV.sentida(
text = 'Lad der blive fred!',
output = 'mean',
normal = False)
With exclamation mark:
Lad der blive fred!
Sentiment = 3.13713
_____________________________
SV.sentida(
text = 'Lad der blive fred!!!',
output = 'mean',
normal = False)
With several exclamation mark:
Lad der blive fred!!!
Sentiment = 3.7896530399999997
_____________________________
SV.sentida(
text = 'Lad der BLIVE FRED',
output = 'mean',
normal = False)
Uppercase:
lad der BLIVE FRED
Sentiment = 3.466
_____________________________
SV.sentida(
text = 'Det går dårligt.',
output = 'mean',
normal = False)
Negative sentence:
Det går dårligt
Sentiment = -1.8333333333333335
_____________________________
SV.sentida(
text = 'Det går ikke dårligt.',
output = 'mean',
normal = False)
Negation in sentence:
Det går ikke dårligt
Sentiment = 1.8333333333333335
_____________________________
SV.sentida(
text = 'Lad der blive fred, men det går dårligt.',
output = 'mean',
normal = False)
'Men' ('but'):
Lad der blive fred, men det går dårligt
Sentiment = -1.5
_____________________________
SV.sentida(
text = 'Lad der blive fred.',
output = 'mean',
normal = True)
Normalized:
Lad der blive fred
Sentiment = 0.4
_____________________________
SV.sentida(
text = 'Lad der bliver fred. Det går dårligt!',
output = 'by_sentence_mean',
normal = False)
Multiple sentences mean:
Lad der bliver fred. Det går dårligt!
Sentiments = [2.0, -2.8757025]
_____________________________
SV.sentida(
text = 'Lad der bliver fred. Det går dårligt!',
output = 'by_sentence_total',
normal = False)
Multiple sentences total:
Lad der bliver fred. Det går dårligt!
Sentiments = [2.0, -5.751405]
_____________________________
Thanks to CINeMa (https://inema.webflow.io), the Sentida team, jry, VADER, AFINN, and last but not least Formula T., for inspiration and encouragement. For license information, see LICENSE.TXT
The Sentida sentiment analysis tool is freely available for research purposes (please cite Lauridsen et al., 2019). If you want to use the tool for commercial purposes, please contact: - contact@esbenkc.com - sorenorm@live.dk Or the Sentida team: - gustavaarup0111@gmail.com - jacdals@hotmail.com - larskjartanbachersvendsen@gmail.com
SENTIDA Aarhus University, Cognitive Science. 2019 - Cognition & Communication. @authors: sorenorm & esbenkc.
This script was developed along with other tools in an attempt to improve danish sentiment analysis. The tool will be updated as more data is collected and new methods for more optimally accessing sentiment is developed.
VADER BASIS VALUES
Multiplication values: 0.291, 0.215, and 0.208 for !, !!, and !!! respectively empirically tested by one sentence compared to the three conditions 0.733 for uppercase empirically tested from single control sentence to uppercase version 0.293 for degree modifications from adverbs empirically tested with "extremely"
SENTIDA BASIS VALUES
Currently using VADER basis values Question mark is: XXX Degree modifications for other words are implemented in intensitifer list - Need implementation of larger intensifier list based on sentences
FUTURE IMPROVEMENTS
Still missing: common phrases, adjusted values for exclamation marks, Adjusted values for men-sentences, adjusted values for uppercase, More rated words, more intensifiers/mitigators, better solution than snowball stemmer, Synonym/antonym dictionary. Social media orientated: emoticons, using multiple letters - i.e. suuuuuper. Normalization with respect to sub-(-1) and super-(1) output values
Lauridsen, G. A., Dalsgaard, J. A., & Svendsen, L. K. B. (2019). SENTIDA: A New Tool for Sentiment Analysis in Danish. Journal of Language Works - Sprogvidenskabeligt Studentertidsskrift, 4(1), 38–53.
Hutto, C. J., & Gilbert, E. (2014, May 16). VADER: A Parsimonious Rule-Based Model for Sentiment Analysis of Social Media Text. Eighth International AAAI Conference on Weblogs and Social Media. Eighth International AAAI Conference on Weblogs and Social Media. https://www.aaai.org/ocs/index.php/ICWSM/ICWSM14/paper/view/8109
FAQs
The Sentida Danish sentiment analysis package
We found that sentida demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago. It has 1 open source maintainer collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Product
Socket now supports Scala and Kotlin, bringing AI-powered threat detection to JVM projects with easy manifest generation and fast, accurate scans.
Application Security
/Security News
Socket CEO Feross Aboukhadijeh and a16z partner Joel de la Garza discuss vibe coding, AI-driven software development, and how the rise of LLMs, despite their risks, still points toward a more secure and innovative future.
Research
/Security News
Threat actors hijacked Toptal’s GitHub org, publishing npm packages with malicious payloads that steal tokens and attempt to wipe victim systems.