
Security News
Open Source CAI Framework Handles Pen Testing Tasks up to 3,600× Faster Than Humans
CAI is a new open source AI framework that automates penetration testing tasks like scanning and exploitation up to 3,600× faster than humans.
.. contents:: sqliteschema :backlinks: top :depth: 2
sqliteschema <https://github.com/thombashi/sqliteschema>
__ is a Python library to dump table schema of a SQLite database file.
.. image:: https://badge.fury.io/py/sqliteschema.svg :target: https://badge.fury.io/py/sqliteschema :alt: PyPI package version
.. image:: https://img.shields.io/pypi/pyversions/sqliteschema.svg :target: https://pypi.org/project/sqliteschema :alt: Supported Python versions
.. image:: https://img.shields.io/pypi/implementation/sqliteschema.svg :target: https://pypi.org/project/sqliteschema :alt: Supported Python implementations
.. image:: https://github.com/thombashi/sqliteschema/actions/workflows/ci.yml/badge.svg :target: https://github.com/thombashi/sqliteschema/actions/workflows/ci.yml :alt: CI status of Linux/macOS/Windows
.. image:: https://coveralls.io/repos/github/thombashi/sqliteschema/badge.svg?branch=master :target: https://coveralls.io/github/thombashi/sqliteschema?branch=master :alt: Test coverage
.. image:: https://github.com/thombashi/sqliteschema/actions/workflows/github-code-scanning/codeql/badge.svg :target: https://github.com/thombashi/sqliteschema/actions/workflows/github-code-scanning/codeql :alt: CodeQL
::
pip install sqliteschema
Install optional dependencies
::
pip install sqliteschema[cli] # to use CLI
pip install sqliteschema[dumps] # to use dumps method
pip install sqliteschema[logging] # to use logging
Install from PPA (for Ubuntu)
------------------------------
::
sudo add-apt-repository ppa:thombashi/ppa
sudo apt update
sudo apt install python3-sqliteschema
Usage
=====
Full example source code can be found at `examples/get_table_schema.py <https://github.com/thombashi/sqliteschema/blob/master/examples/get_table_schema.py>`__
Extract SQLite Schemas as dict
----------------------------------
:Sample Code:
.. code:: python
import json
import sqliteschema
extractor = sqliteschema.SQLiteSchemaExtractor(sqlite_db_path)
print(
"--- dump all of the table schemas into a dictionary ---\n{}\n".format(
json.dumps(extractor.fetch_database_schema_as_dict(), indent=4)
)
)
print(
"--- dump a specific table schema into a dictionary ---\n{}\n".format(
json.dumps(extractor.fetch_table_schema("sampletable1").as_dict(), indent=4)
)
)
:Output:
.. code::
--- dump all of the table schemas into a dictionary ---
{
"sampletable0": [
{
"Field": "attr_a",
"Index": false,
"Type": "INTEGER",
"Nullable": "YES",
"Key": "",
"Default": "NULL",
"Extra": ""
},
{
"Field": "attr_b",
"Index": false,
"Type": "INTEGER",
"Nullable": "YES",
"Key": "",
"Default": "NULL",
"Extra": ""
}
],
"sampletable1": [
{
"Field": "foo",
"Index": true,
"Type": "INTEGER",
"Nullable": "YES",
"Key": "",
"Default": "NULL",
"Extra": ""
},
{
"Field": "bar",
"Index": false,
"Type": "REAL",
"Nullable": "YES",
"Key": "",
"Default": "NULL",
"Extra": ""
},
{
"Field": "hoge",
"Index": true,
"Type": "TEXT",
"Nullable": "YES",
"Key": "",
"Default": "NULL",
"Extra": ""
}
],
"constraints": [
{
"Field": "primarykey_id",
"Index": true,
"Type": "INTEGER",
"Nullable": "YES",
"Key": "PRI",
"Default": "NULL",
"Extra": ""
},
{
"Field": "notnull_value",
"Index": false,
"Type": "REAL",
"Nullable": "NO",
"Key": "",
"Default": "",
"Extra": ""
},
{
"Field": "unique_value",
"Index": true,
"Type": "INTEGER",
"Nullable": "YES",
"Key": "UNI",
"Default": "NULL",
"Extra": ""
}
]
}
--- dump a specific table schema into a dictionary ---
{
"sampletable1": [
{
"Field": "foo",
"Index": true,
"Type": "INTEGER",
"Nullable": "YES",
"Key": "",
"Default": "NULL",
"Extra": ""
},
{
"Field": "bar",
"Index": false,
"Type": "REAL",
"Nullable": "YES",
"Key": "",
"Default": "NULL",
"Extra": ""
},
{
"Field": "hoge",
"Index": true,
"Type": "TEXT",
"Nullable": "YES",
"Key": "",
"Default": "NULL",
"Extra": ""
}
]
}
Extract SQLite Schemas as Tabular Text
--------------------------------------------------------------------
Table schemas can be output with the ``dumps`` method.
The ``dumps`` method requires an additional package that can be installed as follows:
::
pip install sqliteschema[dumps]
Usage is as follows:
:Sample Code:
.. code:: python
import sqliteschema
extractor = sqliteschema.SQLiteSchemaExtractor(sqlite_db_path)
for verbosity_level in range(2):
print("--- dump all of the table schemas with a tabular format: verbosity_level={} ---".format(
verbosity_level))
print(extractor.dumps(output_format="markdown", verbosity_level=verbosity_level))
for verbosity_level in range(2):
print("--- dump a specific table schema with a tabular format: verbosity_level={} ---".format(
verbosity_level))
print(extractor.fetch_table_schema("sampletable1").dumps(
output_format="markdown", verbosity_level=verbosity_level))
:Output:
.. code::
--- dump all of the table schemas with a tabular format: verbosity_level=0 ---
# sampletable0
| Field | Type |
| ------ | ------- |
| attr_a | INTEGER |
| attr_b | INTEGER |
# sampletable1
| Field | Type |
| ----- | ------- |
| foo | INTEGER |
| bar | REAL |
| hoge | TEXT |
# constraints
| Field | Type |
| ------------- | ------- |
| primarykey_id | INTEGER |
| notnull_value | REAL |
| unique_value | INTEGER |
--- dump all of the table schemas with a tabular format: verbosity_level=1 ---
# sampletable0
| Field | Type | Nullable | Key | Default | Index | Extra |
| ------ | ------- | -------- | --- | ------- | :---: | ----- |
| attr_a | INTEGER | YES | | NULL | | |
| attr_b | INTEGER | YES | | NULL | | |
# sampletable1
| Field | Type | Nullable | Key | Default | Index | Extra |
| ----- | ------- | -------- | --- | ------- | :---: | ----- |
| foo | INTEGER | YES | | NULL | X | |
| bar | REAL | YES | | NULL | | |
| hoge | TEXT | YES | | NULL | X | |
# constraints
| Field | Type | Nullable | Key | Default | Index | Extra |
| ------------- | ------- | -------- | --- | ------- | :---: | ----- |
| primarykey_id | INTEGER | YES | PRI | NULL | X | |
| notnull_value | REAL | NO | | | | |
| unique_value | INTEGER | YES | UNI | NULL | X | |
--- dump a specific table schema with a tabular format: verbosity_level=0 ---
# sampletable1
| Field | Type |
| ----- | ------- |
| foo | INTEGER |
| bar | REAL |
| hoge | TEXT |
--- dump a specific table schema with a tabular format: verbosity_level=1 ---
# sampletable1
| Field | Type | Nullable | Key | Default | Index | Extra |
| ----- | ------- | -------- | --- | ------- | :---: | ----- |
| foo | INTEGER | YES | | NULL | X | |
| bar | REAL | YES | | NULL | | |
| hoge | TEXT | YES | | NULL | X | |
CLI Usage
----------------------------------
:Sample Code:
.. code:: console
pip install --upgrade sqliteschema[cli]
python3 -m sqliteschema <PATH/TO/SQLITE_FILE>
Dependencies
============
- Python 3.9+
- `Python package dependencies (automatically installed) <https://github.com/thombashi/sqliteschema/network/dependencies>`__
Optional dependencies
----------------------------------
- `loguru <https://github.com/Delgan/loguru>`__
- Used for logging if the package installed
- `pytablewriter <https://github.com/thombashi/pytablewriter>`__
- Required when getting table schemas with tabular text by ``dumps`` method
FAQs
A Python library to dump table schema of a SQLite database file.
We found that sqliteschema demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago. It has 1 open source maintainer collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Security News
CAI is a new open source AI framework that automates penetration testing tasks like scanning and exploitation up to 3,600× faster than humans.
Security News
Deno 2.4 brings back bundling, improves dependency updates and telemetry, and makes the runtime more practical for real-world JavaScript projects.
Security News
CVEForecast.org uses machine learning to project a record-breaking surge in vulnerability disclosures in 2025.