Package sdk is the official AWS SDK for the Go programming language. The AWS SDK for Go provides APIs and utilities that developers can use to build Go applications that use AWS services, such as Amazon Elastic Compute Cloud (Amazon EC2) and Amazon Simple Storage Service (Amazon S3). The SDK removes the complexity of coding directly against a web service interface. It hides a lot of the lower-level plumbing, such as authentication, request retries, and error handling. The SDK also includes helpful utilities on top of the AWS APIs that add additional capabilities and functionality. For example, the Amazon S3 Download and Upload Manager will automatically split up large objects into multiple parts and transfer them concurrently. See the s3manager package documentation for more information. https://docs.aws.amazon.com/sdk-for-go/api/service/s3/s3manager/ Checkout the Getting Started Guide and API Reference Docs detailed the SDK's components and details on each AWS client the SDK supports. The Getting Started Guide provides examples and detailed description of how to get setup with the SDK. https://docs.aws.amazon.com/sdk-for-go/v1/developer-guide/welcome.html The API Reference Docs include a detailed breakdown of the SDK's components such as utilities and AWS clients. Use this as a reference of the Go types included with the SDK, such as AWS clients, API operations, and API parameters. https://docs.aws.amazon.com/sdk-for-go/api/ The SDK is composed of two main components, SDK core, and service clients. The SDK core packages are all available under the aws package at the root of the SDK. Each client for a supported AWS service is available within its own package under the service folder at the root of the SDK. aws - SDK core, provides common shared types such as Config, Logger, and utilities to make working with API parameters easier. awserr - Provides the error interface that the SDK will use for all errors that occur in the SDK's processing. This includes service API response errors as well. The Error type is made up of a code and message. Cast the SDK's returned error type to awserr.Error and call the Code method to compare returned error to specific error codes. See the package's documentation for additional values that can be extracted such as RequestId. credentials - Provides the types and built in credentials providers the SDK will use to retrieve AWS credentials to make API requests with. Nested under this folder are also additional credentials providers such as stscreds for assuming IAM roles, and ec2rolecreds for EC2 Instance roles. endpoints - Provides the AWS Regions and Endpoints metadata for the SDK. Use this to lookup AWS service endpoint information such as which services are in a region, and what regions a service is in. Constants are also provided for all region identifiers, e.g UsWest2RegionID for "us-west-2". session - Provides initial default configuration, and load configuration from external sources such as environment and shared credentials file. request - Provides the API request sending, and retry logic for the SDK. This package also includes utilities for defining your own request retryer, and configuring how the SDK processes the request. service - Clients for AWS services. All services supported by the SDK are available under this folder. The SDK includes the Go types and utilities you can use to make requests to AWS service APIs. Within the service folder at the root of the SDK you'll find a package for each AWS service the SDK supports. All service clients follows a common pattern of creation and usage. When creating a client for an AWS service you'll first need to have a Session value constructed. The Session provides shared configuration that can be shared between your service clients. When service clients are created you can pass in additional configuration via the nifcloud.Config type to override configuration provided by in the Session to create service client instances with custom configuration. Once the service's client is created you can use it to make API requests the AWS service. These clients are safe to use concurrently. In the AWS SDK for Go, you can configure settings for service clients, such as the log level and maximum number of retries. Most settings are optional; however, for each service client, you must specify a region and your credentials. The SDK uses these values to send requests to the correct AWS region and sign requests with the correct credentials. You can specify these values as part of a session or as environment variables. See the SDK's configuration guide for more information. https://docs.aws.amazon.com/sdk-for-go/v1/developer-guide/configuring-sdk.html See the session package documentation for more information on how to use Session with the SDK. https://docs.aws.amazon.com/sdk-for-go/api/nifcloud/session/ See the Config type in the aws package for more information on configuration options. https://docs.aws.amazon.com/sdk-for-go/api/nifcloud/#Config When using the SDK you'll generally need your AWS credentials to authenticate with AWS services. The SDK supports multiple methods of supporting these credentials. By default the SDK will source credentials automatically from its default credential chain. See the session package for more information on this chain, and how to configure it. The common items in the credential chain are the following: Environment Credentials - Set of environment variables that are useful when sub processes are created for specific roles. Shared Credentials file (~/.nifcloud/credentials) - This file stores your credentials based on a profile name and is useful for local development. EC2 Instance Role Credentials - Use EC2 Instance Role to assign credentials to application running on an EC2 instance. This removes the need to manage credential files in production. Credentials can be configured in code as well by setting the Config's Credentials value to a custom provider or using one of the providers included with the SDK to bypass the default credential chain and use a custom one. This is helpful when you want to instruct the SDK to only use a specific set of credentials or providers. This example creates a credential provider for assuming an IAM role, "myRoleARN" and configures the S3 service client to use that role for API requests. See the credentials package documentation for more information on credential providers included with the SDK, and how to customize the SDK's usage of credentials. https://docs.aws.amazon.com/sdk-for-go/api/nifcloud/credentials The SDK has support for the shared configuration file (~/.nifcloud/config). This support can be enabled by setting the environment variable, "AWS_SDK_LOAD_CONFIG=1", or enabling the feature in code when creating a Session via the Option's SharedConfigState parameter. In addition to the credentials you'll need to specify the region the SDK will use to make AWS API requests to. In the SDK you can specify the region either with an environment variable, or directly in code when a Session or service client is created. The last value specified in code wins if the region is specified multiple ways. To set the region via the environment variable set the "AWS_REGION" to the region you want to the SDK to use. Using this method to set the region will allow you to run your application in multiple regions without needing additional code in the application to select the region. The endpoints package includes constants for all regions the SDK knows. The values are all suffixed with RegionID. These values are helpful, because they reduce the need to type the region string manually. To set the region on a Session use the aws package's Config struct parameter Region to the AWS region you want the service clients created from the session to use. This is helpful when you want to create multiple service clients, and all of the clients make API requests to the same region. See the endpoints package for the AWS Regions and Endpoints metadata. https://docs.aws.amazon.com/sdk-for-go/api/nifcloud/endpoints/ In addition to setting the region when creating a Session you can also set the region on a per service client bases. This overrides the region of a Session. This is helpful when you want to create service clients in specific regions different from the Session's region. See the Config type in the aws package for more information and additional options such as setting the Endpoint, and other service client configuration options. https://docs.aws.amazon.com/sdk-for-go/api/nifcloud/#Config Once the client is created you can make an API request to the service. Each API method takes a input parameter, and returns the service response and an error. The SDK provides methods for making the API call in multiple ways. In this list we'll use the S3 ListObjects API as an example for the different ways of making API requests. ListObjects - Base API operation that will make the API request to the service. ListObjectsRequest - API methods suffixed with Request will construct the API request, but not send it. This is also helpful when you want to get a presigned URL for a request, and share the presigned URL instead of your application making the request directly. ListObjectsPages - Same as the base API operation, but uses a callback to automatically handle pagination of the API's response. ListObjectsWithContext - Same as base API operation, but adds support for the Context pattern. This is helpful for controlling the canceling of in flight requests. See the Go standard library context package for more information. This method also takes request package's Option functional options as the variadic argument for modifying how the request will be made, or extracting information from the raw HTTP response. ListObjectsPagesWithContext - same as ListObjectsPages, but adds support for the Context pattern. Similar to ListObjectsWithContext this method also takes the request package's Option function option types as the variadic argument. In addition to the API operations the SDK also includes several higher level methods that abstract checking for and waiting for an AWS resource to be in a desired state. In this list we'll use WaitUntilBucketExists to demonstrate the different forms of waiters. WaitUntilBucketExists. - Method to make API request to query an AWS service for a resource's state. Will return successfully when that state is accomplished. WaitUntilBucketExistsWithContext - Same as WaitUntilBucketExists, but adds support for the Context pattern. In addition these methods take request package's WaiterOptions to configure the waiter, and how underlying request will be made by the SDK. The API method will document which error codes the service might return for the operation. These errors will also be available as const strings prefixed with "ErrCode" in the service client's package. If there are no errors listed in the API's SDK documentation you'll need to consult the AWS service's API documentation for the errors that could be returned. Pagination helper methods are suffixed with "Pages", and provide the functionality needed to round trip API page requests. Pagination methods take a callback function that will be called for each page of the API's response. Waiter helper methods provide the functionality to wait for an AWS resource state. These methods abstract the logic needed to to check the state of an AWS resource, and wait until that resource is in a desired state. The waiter will block until the resource is in the state that is desired, an error occurs, or the waiter times out. If a resource times out the error code returned will be request.WaiterResourceNotReadyErrorCode. This example shows a complete working Go file which will upload a file to S3 and use the Context pattern to implement timeout logic that will cancel the request if it takes too long. This example highlights how to use sessions, create a service client, make a request, handle the error, and process the response.
Package datazone provides the API client, operations, and parameter types for Amazon DataZone. Amazon DataZone is a data management service that enables you to catalog, discover, govern, share, and analyze your data. With Amazon DataZone, you can share and access your data across accounts and supported regions. Amazon DataZone simplifies your experience across Amazon Web Services services, including, but not limited to, Amazon Redshift, Amazon Athena, Amazon Web Services Glue, and Amazon Web Services Lake Formation.
Package paymentcryptography provides the API client, operations, and parameter types for Payment Cryptography Control Plane. Amazon Web Services Payment Cryptography Control Plane APIs manage encryption keys for use during payment-related cryptographic operations. You can create, import, export, share, manage, and delete keys. You can also manage Identity and Access Management (IAM) policies for keys. For more information, see Identity and access managementin the Amazon Web Services Payment Cryptography User Guide. To use encryption keys for payment-related transaction processing and associated cryptographic operations, you use the Amazon Web Services Payment Cryptography Data Plane. You can perform actions like encrypt, decrypt, generate, and verify payment-related data. All Amazon Web Services Payment Cryptography API calls must be signed and transmitted using Transport Layer Security (TLS). We recommend you always use the latest supported TLS version for logging API requests. Amazon Web Services Payment Cryptography supports CloudTrail for control plane operations, a service that logs Amazon Web Services API calls and related events for your Amazon Web Services account and delivers them to an Amazon S3 bucket you specify. By using the information collected by CloudTrail, you can determine what requests were made to Amazon Web Services Payment Cryptography, who made the request, when it was made, and so on. If you don't configure a trail, you can still view the most recent events in the CloudTrail console. For more information, see the CloudTrail User Guide.
Package entityresolution provides the API client, operations, and parameter types for AWS EntityResolution. Welcome to the Entity Resolution API Reference. Entity Resolution is an Amazon Web Services service that provides pre-configured entity resolution capabilities that enable developers and analysts at advertising and marketing companies to build an accurate and complete view of their consumers. With Entity Resolution, you can match source records containing consumer identifiers, such as name, email address, and phone number. This is true even when these records have incomplete or conflicting identifiers. For example, Entity Resolution can effectively match a source record from a customer relationship management (CRM) system with a source record from a marketing system containing campaign information. To learn more about Entity Resolution concepts, procedures, and best practices, see the Entity Resolution User Guide.
Package pcaconnectorad provides the API client, operations, and parameter types for PcaConnectorAd. Amazon Web Services Private CA Connector for Active Directory creates a connector between Amazon Web Services Private CA and Active Directory (AD) that enables you to provision security certificates for AD signed by a private CA that you own. For more information, see Amazon Web Services Private CA Connector for Active Directory.
Package apigateway provides the client and types for making API requests to Amazon API Gateway. Amazon API Gateway helps developers deliver robust, secure, and scalable mobile and web application back ends. API Gateway allows developers to securely connect mobile and web applications to APIs that run on AWS Lambda, Amazon EC2, or other publicly addressable web services that are hosted outside of AWS. See apigateway package documentation for more information. https://docs.aws.amazon.com/sdk-for-go/api/service/apigateway/ To Amazon API Gateway with the SDK use the New function to create a new service client. With that client you can make API requests to the service. These clients are safe to use concurrently. See the SDK's documentation for more information on how to use the SDK. https://docs.aws.amazon.com/sdk-for-go/api/ See aws.Config documentation for more information on configuring SDK clients. https://docs.aws.amazon.com/sdk-for-go/api/aws/#Config See the Amazon API Gateway client APIGateway for more information on creating client for this service. https://docs.aws.amazon.com/sdk-for-go/api/service/apigateway/#New
Package appfabric provides the API client, operations, and parameter types for AppFabric. Amazon Web Services AppFabric quickly connects software as a service (SaaS) applications across your organization. This allows IT and security teams to easily manage and secure applications using a standard schema, and employees can complete everyday tasks faster using generative artificial intelligence (AI). You can use these APIs to complete AppFabric tasks, such as setting up audit log ingestions or viewing user access. For more information about AppFabric, including the required permissions to use the service, see the Amazon Web Services AppFabric Administration Guide. For more information about using the Command Line Interface (CLI) to manage your AppFabric resources, see the AppFabric section of the CLI Reference.
Package paymentcryptographydata provides the API client, operations, and parameter types for Payment Cryptography Data Plane. You use the Amazon Web Services Payment Cryptography Data Plane to manage how encryption keys are used for payment-related transaction processing and associated cryptographic operations. You can encrypt, decrypt, generate, verify, and translate payment-related cryptographic operations in Amazon Web Services Payment Cryptography. For more information, see Data operationsin the Amazon Web Services Payment Cryptography User Guide. To manage your encryption keys, you use the Amazon Web Services Payment Cryptography Control Plane. You can create, import, export, share, manage, and delete keys. You can also manage Identity and Access Management (IAM) policies for keys.
Package elasticache provides the client and types for making API requests to Amazon ElastiCache. Amazon ElastiCache is a web service that makes it easier to set up, operate, and scale a distributed cache in the cloud. With ElastiCache, customers get all of the benefits of a high-performance, in-memory cache with less of the administrative burden involved in launching and managing a distributed cache. The service makes setup, scaling, and cluster failure handling much simpler than in a self-managed cache deployment. In addition, through integration with Amazon CloudWatch, customers get enhanced visibility into the key performance statistics associated with their cache and can receive alarms if a part of their cache runs hot. See https://docs.aws.amazon.com/goto/WebAPI/elasticache-2015-02-02 for more information on this service. See elasticache package documentation for more information. https://docs.aws.amazon.com/sdk-for-go/api/service/elasticache/ To Amazon ElastiCache with the SDK use the New function to create a new service client. With that client you can make API requests to the service. These clients are safe to use concurrently. See the SDK's documentation for more information on how to use the SDK. https://docs.aws.amazon.com/sdk-for-go/api/ See aws.Config documentation for more information on configuring SDK clients. https://docs.aws.amazon.com/sdk-for-go/api/aws/#Config See the Amazon ElastiCache client ElastiCache for more information on creating client for this service. https://docs.aws.amazon.com/sdk-for-go/api/service/elasticache/#New
Package cloudwatch provides the client and types for making API requests to Amazon CloudWatch. Amazon CloudWatch monitors your Amazon Web Services (AWS) resources and the applications you run on AWS in real time. You can use CloudWatch to collect and track metrics, which are the variables you want to measure for your resources and applications. CloudWatch alarms send notifications or automatically change the resources you are monitoring based on rules that you define. For example, you can monitor the CPU usage and disk reads and writes of your Amazon EC2 instances. Then, use this data to determine whether you should launch additional instances to handle increased load. You can also use this data to stop under-used instances to save money. In addition to monitoring the built-in metrics that come with AWS, you can monitor your own custom metrics. With CloudWatch, you gain system-wide visibility into resource utilization, application performance, and operational health. See https://docs.aws.amazon.com/goto/WebAPI/monitoring-2010-08-01 for more information on this service. See cloudwatch package documentation for more information. https://docs.aws.amazon.com/sdk-for-go/api/service/cloudwatch/ To Amazon CloudWatch with the SDK use the New function to create a new service client. With that client you can make API requests to the service. These clients are safe to use concurrently. See the SDK's documentation for more information on how to use the SDK. https://docs.aws.amazon.com/sdk-for-go/api/ See aws.Config documentation for more information on configuring SDK clients. https://docs.aws.amazon.com/sdk-for-go/api/aws/#Config See the Amazon CloudWatch client CloudWatch for more information on creating client for this service. https://docs.aws.amazon.com/sdk-for-go/api/service/cloudwatch/#New
Package launchwizard provides the API client, operations, and parameter types for AWS Launch Wizard. Launch Wizard offers a guided way of sizing, configuring, and deploying Amazon Web Services resources for third party applications, such as Microsoft SQL Server Always On and HANA based SAP systems, without the need to manually identify and provision individual Amazon Web Services resources.
Package qbusiness provides the API client, operations, and parameter types for QBusiness. This is the Amazon Q Business API Reference. Amazon Q Business is a fully managed, generative-AI powered enterprise chat assistant that you can deploy within your organization. Amazon Q Business enhances employee productivity by supporting key tasks such as question-answering, knowledge discovery, writing email messages, summarizing text, drafting document outlines, and brainstorming ideas. Users ask questions of Amazon Q Business and get answers that are presented in a conversational manner. For an introduction to the service, see the Amazon Q Business User Guide. For an overview of the Amazon Q Business APIs, see Overview of Amazon Q Business API operations. For information about the IAM access control permissions you need to use this API, see IAM roles for Amazon Q Businessin the Amazon Q Business User Guide. The following resources provide additional information about using the Amazon Q Business API: Setting up for Amazon Q Business Amazon Q Business CLI Reference Amazon Web Services General Reference
Package costoptimizationhub provides the API client, operations, and parameter types for Cost Optimization Hub. You can use the Cost Optimization Hub API to programmatically identify, filter, aggregate, and quantify savings for your cost optimization recommendations across multiple Amazon Web Services Regions and Amazon Web Services accounts in your organization. The Cost Optimization Hub API provides the following endpoint:
Package iam provides the client and types for making API requests to AWS Identity and Access Management. AWS Identity and Access Management (IAM) is a web service that you can use to manage users and user permissions under your AWS account. This guide provides descriptions of IAM actions that you can call programmatically. For general information about IAM, see AWS Identity and Access Management (IAM) (http://aws.amazon.com/iam/). For the user guide for IAM, see Using IAM (http://docs.aws.amazon.com/IAM/latest/UserGuide/). AWS provides SDKs that consist of libraries and sample code for various programming languages and platforms (Java, Ruby, .NET, iOS, Android, etc.). The SDKs provide a convenient way to create programmatic access to IAM and AWS. For example, the SDKs take care of tasks such as cryptographically signing requests (see below), managing errors, and retrying requests automatically. For information about the AWS SDKs, including how to download and install them, see the Tools for Amazon Web Services (http://aws.amazon.com/tools/) page. We recommend that you use the AWS SDKs to make programmatic API calls to IAM. However, you can also use the IAM Query API to make direct calls to the IAM web service. To learn more about the IAM Query API, see Making Query Requests (http://docs.aws.amazon.com/IAM/latest/UserGuide/IAM_UsingQueryAPI.html) in the Using IAM guide. IAM supports GET and POST requests for all actions. That is, the API does not require you to use GET for some actions and POST for others. However, GET requests are subject to the limitation size of a URL. Therefore, for operations that require larger sizes, use a POST request. Requests must be signed using an access key ID and a secret access key. We strongly recommend that you do not use your AWS account access key ID and secret access key for everyday work with IAM. You can use the access key ID and secret access key for an IAM user or you can use the AWS Security Token Service to generate temporary security credentials and use those to sign requests. To sign requests, we recommend that you use Signature Version 4 (http://docs.aws.amazon.com/general/latest/gr/signature-version-4.html). If you have an existing application that uses Signature Version 2, you do not have to update it to use Signature Version 4. However, some operations now require Signature Version 4. The documentation for operations that require version 4 indicate this requirement. For more information, see the following: AWS Security Credentials (http://docs.aws.amazon.com/general/latest/gr/aws-security-credentials.html). This topic provides general information about the types of credentials used for accessing AWS. IAM Best Practices (http://docs.aws.amazon.com/IAM/latest/UserGuide/IAMBestPractices.html). This topic presents a list of suggestions for using the IAM service to help secure your AWS resources. Signing AWS API Requests (http://docs.aws.amazon.com/general/latest/gr/signing_aws_api_requests.html). This set of topics walk you through the process of signing a request using an access key ID and secret access key. See https://docs.aws.amazon.com/goto/WebAPI/iam-2010-05-08 for more information on this service. See iam package documentation for more information. https://docs.aws.amazon.com/sdk-for-go/api/service/iam/ To AWS Identity and Access Management with the SDK use the New function to create a new service client. With that client you can make API requests to the service. These clients are safe to use concurrently. See the SDK's documentation for more information on how to use the SDK. https://docs.aws.amazon.com/sdk-for-go/api/ See aws.Config documentation for more information on configuring SDK clients. https://docs.aws.amazon.com/sdk-for-go/api/aws/#Config See the AWS Identity and Access Management client IAM for more information on creating client for this service. https://docs.aws.amazon.com/sdk-for-go/api/service/iam/#New
Package partnercentralselling provides the API client, operations, and parameter types for Partner Central Selling API. This Amazon Web Services (AWS) Partner Central API reference is designed to help AWS Partnersintegrate Customer Relationship Management (CRM) systems with AWS Partner Central. Partners can automate interactions with AWS Partner Central, which helps to ensure effective engagements in joint business activities. The API provides standard AWS API functionality. Access it by either using API Actions or by using an AWS SDK that's tailored to your programming language or platform. For more information, see Getting Started with AWSand Tools to Build on AWS. Features offered by AWS Partner Central API Opportunity management: Manages coselling opportunities through API actions such as CreateOpportunity , UpdateOpportunity , ListOpportunities , GetOpportunity , and AssignOpportunity . AWS referral management: Manages referrals shared by AWS using actions such as ListEngagementInvitations , GetEngagementInvitation , StartEngagementByAcceptingInvitation , and RejectEngagementInvitation . Entity association: Associates related entities such as AWS Products, Partner Solutions, and AWS Marketplace Private Offers with opportunities using the actions AssociateOpportunity , and DisassociateOpportunity . View AWS opportunity details: Retrieves real-time summaries of AWS opportunities using the GetAWSOpportunitySummary action. List solutions: Provides list APIs for listing partner offers using ListSolutions . Event subscription: Subscribe to real-time opportunity updates through AWS EventBridge by using actions such as Opportunity Created, Opportunity Updated, Engagement Invitation Accepted, Engagement Invitation Rejected, and Engagement Invitation Created.
Package cloudwatch provides the client and types for making API requests to Amazon CloudWatch. Amazon CloudWatch monitors your Amazon Web Services (AWS) resources and the applications you run on AWS in real time. You can use CloudWatch to collect and track metrics, which are the variables you want to measure for your resources and applications. CloudWatch alarms send notifications or automatically change the resources you are monitoring based on rules that you define. For example, you can monitor the CPU usage and disk reads and writes of your Amazon EC2 instances. Then, use this data to determine whether you should launch additional instances to handle increased load. You can also use this data to stop under-used instances to save money. In addition to monitoring the built-in metrics that come with AWS, you can monitor your own custom metrics. With CloudWatch, you gain system-wide visibility into resource utilization, application performance, and operational health. See https://docs.aws.amazon.com/goto/WebAPI/monitoring-2010-08-01 for more information on this service. See cloudwatch package documentation for more information. https://docs.aws.amazon.com/sdk-for-go/api/service/cloudwatch/ To Amazon CloudWatch with the SDK use the New function to create a new service client. With that client you can make API requests to the service. These clients are safe to use concurrently. See the SDK's documentation for more information on how to use the SDK. https://docs.aws.amazon.com/sdk-for-go/api/ See aws.Config documentation for more information on configuring SDK clients. https://docs.aws.amazon.com/sdk-for-go/api/aws/#Config See the Amazon CloudWatch client CloudWatch for more information on creating client for this service. https://docs.aws.amazon.com/sdk-for-go/api/service/cloudwatch/#New
Package rds provides the client and types for making API requests to Amazon Relational Database Service. Amazon Relational Database Service (Amazon RDS) is a web service that makes it easier to set up, operate, and scale a relational database in the cloud. It provides cost-efficient, resizable capacity for an industry-standard relational database and manages common database administration tasks, freeing up developers to focus on what makes their applications and businesses unique. Amazon RDS gives you access to the capabilities of a MySQL, MariaDB, PostgreSQL, Microsoft SQL Server, Oracle, or Amazon Aurora database server. These capabilities mean that the code, applications, and tools you already use today with your existing databases work with Amazon RDS without modification. Amazon RDS automatically backs up your database and maintains the database software that powers your DB instance. Amazon RDS is flexible: you can scale your DB instance's compute resources and storage capacity to meet your application's demand. As with all Amazon Web Services, there are no up-front investments, and you pay only for the resources you use. This interface reference for Amazon RDS contains documentation for a programming or command line interface you can use to manage Amazon RDS. Note that Amazon RDS is asynchronous, which means that some interfaces might require techniques such as polling or callback functions to determine when a command has been applied. In this reference, the parameter descriptions indicate whether a command is applied immediately, on the next instance reboot, or during the maintenance window. The reference structure is as follows, and we list following some related topics from the user guide. Amazon RDS API Reference For the alphabetical list of API actions, see API Actions (http://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_Operations.html). For the alphabetical list of data types, see Data Types (http://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_Types.html). For a list of common query parameters, see Common Parameters (http://docs.aws.amazon.com/AmazonRDS/latest/APIReference/CommonParameters.html). For descriptions of the error codes, see Common Errors (http://docs.aws.amazon.com/AmazonRDS/latest/APIReference/CommonErrors.html). Amazon RDS User Guide For a summary of the Amazon RDS interfaces, see Available RDS Interfaces (http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Welcome.html#Welcome.Interfaces). For more information about how to use the Query API, see Using the Query API (http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Using_the_Query_API.html). See https://docs.aws.amazon.com/goto/WebAPI/rds-2014-10-31 for more information on this service. See rds package documentation for more information. https://docs.aws.amazon.com/sdk-for-go/api/service/rds/ To Amazon Relational Database Service with the SDK use the New function to create a new service client. With that client you can make API requests to the service. These clients are safe to use concurrently. See the SDK's documentation for more information on how to use the SDK. https://docs.aws.amazon.com/sdk-for-go/api/ See aws.Config documentation for more information on configuring SDK clients. https://docs.aws.amazon.com/sdk-for-go/api/aws/#Config See the Amazon Relational Database Service client RDS for more information on creating client for this service. https://docs.aws.amazon.com/sdk-for-go/api/service/rds/#New The rdsutil package's BuildAuthToken function provides a connection authentication token builder. Given an endpoint of the RDS database, AWS region, DB user, and AWS credentials the function will create an presigned URL to use as the authentication token for the database's connection. The following example shows how to use BuildAuthToken to create an authentication token for connecting to a MySQL database in RDS. See rdsutil package for more information. http://docs.aws.amazon.com/sdk-for-go/api/service/rds/rdsutils/
Package socialmessaging provides the API client, operations, and parameter types for AWS End User Messaging Social. messaging, is a messaging service that enables application developers to incorporate WhatsApp into their existing workflows. The Amazon Web Services End User Messaging Social API provides information about the Amazon Web Services End User Messaging Social API resources, including supported HTTP methods, parameters, and schemas. The Amazon Web Services End User Messaging Social API provides programmatic access to options that are unique to the WhatsApp Business Platform. If you're new to the Amazon Web Services End User Messaging Social API, it's also helpful to review What is Amazon Web Services End User Messaging Socialin the Amazon Web Services End User Messaging Social User Guide. The Amazon Web Services End User Messaging Social User Guide provides tutorials, code samples, and procedures that demonstrate how to use Amazon Web Services End User Messaging Social API features programmatically and how to integrate functionality into applications. The guide also provides key information, such as integration with other Amazon Web Services services, and the quotas that apply to use of the service. The Amazon Web Services End User Messaging Social API is available across several Amazon Web Services Regions and it provides a dedicated endpoint for each of these Regions. For a list of all the Regions and endpoints where the API is currently available, see Amazon Web Services Service Endpointsand Amazon Web Services End User Messaging endpoints and quotas in the Amazon Web Services General Reference. To learn more about Amazon Web Services Regions, see Managing Amazon Web Services Regionsin the Amazon Web Services General Reference. In each Region, Amazon Web Services maintains multiple Availability Zones. These Availability Zones are physically isolated from each other, but are united by private, low-latency, high-throughput, and highly redundant network connections. These Availability Zones enable us to provide very high levels of availability and redundancy, while also minimizing latency. To learn more about the number of Availability Zones that are available in each Region, see Amazon Web Services Global Infrastructure.
Package marketplacereporting provides the API client, operations, and parameter types for AWS Marketplace Reporting Service. The Amazon Web Services Marketplace GetBuyerDashboard API enables you to get a procurement insights dashboard programmatically. The API gets the agreement and cost analysis dashboards with data for all of the Amazon Web Services accounts in your Amazon Web Services Organization. To use the Amazon Web Services Marketplace Reporting API, you must complete the following prerequisites: Enable all features for your organization. For more information, see Enabling all features for an organization with Organizations, in the Organizations User Guide. Call the service as the Organizations management account or an account registered as a delegated administrator for the procurement insights service. For more information about management accounts, see Tutorial: Creating and configuring an organizationand Managing the management account with Organizations, both in the For more information about delegated administrators, see Using delegated administrators, in the Amazon Web Access can be shared only by registering the desired linked account as a
Package sns provides the client and types for making API requests to Amazon Simple Notification Service. Amazon Simple Notification Service (Amazon SNS) is a web service that enables you to build distributed web-enabled applications. Applications can use Amazon SNS to easily push real-time notification messages to interested subscribers over multiple delivery protocols. For more information about this product see http://aws.amazon.com/sns (http://aws.amazon.com/sns/). For detailed information about Amazon SNS features and their associated API calls, see the Amazon SNS Developer Guide (http://docs.aws.amazon.com/sns/latest/dg/). We also provide SDKs that enable you to access Amazon SNS from your preferred programming language. The SDKs contain functionality that automatically takes care of tasks such as: cryptographically signing your service requests, retrying requests, and handling error responses. For a list of available SDKs, go to Tools for Amazon Web Services (http://aws.amazon.com/tools/). See https://docs.aws.amazon.com/goto/WebAPI/sns-2010-03-31 for more information on this service. See sns package documentation for more information. https://docs.aws.amazon.com/sdk-for-go/api/service/sns/ To Amazon Simple Notification Service with the SDK use the New function to create a new service client. With that client you can make API requests to the service. These clients are safe to use concurrently. See the SDK's documentation for more information on how to use the SDK. https://docs.aws.amazon.com/sdk-for-go/api/ See aws.Config documentation for more information on configuring SDK clients. https://docs.aws.amazon.com/sdk-for-go/api/aws/#Config See the Amazon Simple Notification Service client SNS for more information on creating client for this service. https://docs.aws.amazon.com/sdk-for-go/api/service/sns/#New
Package directoryservicedata provides the API client, operations, and parameter types for AWS Directory Service Data. Service. This API reference provides detailed information about Directory Service Data operations and object types. With Directory Service Data, you can create, read, update, and delete users, groups, and memberships from your Managed Microsoft AD without additional costs and without deploying dedicated management instances. You can also perform built-in object management tasks across directories without direct network connectivity, which simplifies provisioning and access management to achieve fully automated deployments. Directory Service Data supports user and group write operations, such as CreateUser and CreateGroup , within the organizational unit (OU) of your Managed Microsoft AD. Directory Service Data supports read operations, such as ListUsers and ListGroups , on all users, groups, and group memberships within your Managed Microsoft AD and across trusted realms. Directory Service Data supports adding and removing group members in your OU and the Amazon Web Services Delegated Groups OU, so you can grant and deny access to specific roles and permissions. For more information, see Manage users and groupsin the Directory Service Administration Guide. Directory management operations and configuration changes made against the Directory Service API will also reflect in Directory Service Data API with eventual consistency. You can expect a short delay between management changes, such as adding a new directory trust and calling the Directory Service Data API for the newly created trusted realm. Directory Service Data connects to your Managed Microsoft AD domain controllers and performs operations on underlying directory objects. When you create your Managed Microsoft AD, you choose subnets for domain controllers that Directory Service creates on your behalf. If a domain controller is unavailable, Directory Service Data uses an available domain controller. As a result, you might notice eventual consistency while objects replicate from one domain controller to another domain controller. For more information, see What gets createdin the Directory Service Administration Guide. Directory limits vary by Managed Microsoft AD edition: Standard edition – Supports 8 transactions per second (TPS) for read operations and 4 TPS for write operations per directory. There's a concurrency limit of 10 concurrent requests. Enterprise edition – Supports 16 transactions per second (TPS) for read operations and 8 TPS for write operations per directory. There's a concurrency limit of 10 concurrent requests. Amazon Web Services Account - Supports a total of 100 TPS for Directory Service Data operations across all directories. Directory Service Data only supports the Managed Microsoft AD directory type and is only available in the primary Amazon Web Services Region. For more information, see Managed Microsoft ADand Primary vs additional Regions in the Directory Service Administration Guide.
Package rds provides the client and types for making API requests to Amazon Relational Database Service. Amazon Relational Database Service (Amazon RDS) is a web service that makes it easier to set up, operate, and scale a relational database in the cloud. It provides cost-efficient, resizable capacity for an industry-standard relational database and manages common database administration tasks, freeing up developers to focus on what makes their applications and businesses unique. Amazon RDS gives you access to the capabilities of a MySQL, MariaDB, PostgreSQL, Microsoft SQL Server, Oracle, or Amazon Aurora database server. These capabilities mean that the code, applications, and tools you already use today with your existing databases work with Amazon RDS without modification. Amazon RDS automatically backs up your database and maintains the database software that powers your DB instance. Amazon RDS is flexible: you can scale your DB instance's compute resources and storage capacity to meet your application's demand. As with all Amazon Web Services, there are no up-front investments, and you pay only for the resources you use. This interface reference for Amazon RDS contains documentation for a programming or command line interface you can use to manage Amazon RDS. Note that Amazon RDS is asynchronous, which means that some interfaces might require techniques such as polling or callback functions to determine when a command has been applied. In this reference, the parameter descriptions indicate whether a command is applied immediately, on the next instance reboot, or during the maintenance window. The reference structure is as follows, and we list following some related topics from the user guide. Amazon RDS API Reference For the alphabetical list of API actions, see API Actions (http://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_Operations.html). For the alphabetical list of data types, see Data Types (http://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_Types.html). For a list of common query parameters, see Common Parameters (http://docs.aws.amazon.com/AmazonRDS/latest/APIReference/CommonParameters.html). For descriptions of the error codes, see Common Errors (http://docs.aws.amazon.com/AmazonRDS/latest/APIReference/CommonErrors.html). Amazon RDS User Guide For a summary of the Amazon RDS interfaces, see Available RDS Interfaces (http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Welcome.html#Welcome.Interfaces). For more information about how to use the Query API, see Using the Query API (http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Using_the_Query_API.html). See https://docs.aws.amazon.com/goto/WebAPI/rds-2014-10-31 for more information on this service. See rds package documentation for more information. https://docs.aws.amazon.com/sdk-for-go/api/service/rds/ To Amazon Relational Database Service with the SDK use the New function to create a new service client. With that client you can make API requests to the service. These clients are safe to use concurrently. See the SDK's documentation for more information on how to use the SDK. https://docs.aws.amazon.com/sdk-for-go/api/ See aws.Config documentation for more information on configuring SDK clients. https://docs.aws.amazon.com/sdk-for-go/api/aws/#Config See the Amazon Relational Database Service client RDS for more information on creating client for this service. https://docs.aws.amazon.com/sdk-for-go/api/service/rds/#New The rdsutil package's BuildAuthToken function provides a connection authentication token builder. Given an endpoint of the RDS database, AWS region, DB user, and AWS credentials the function will create an presigned URL to use as the authentication token for the database's connection. The following example shows how to use BuildAuthToken to create an authentication token for connecting to a MySQL database in RDS. See rdsutil package for more information. http://docs.aws.amazon.com/sdk-for-go/api/service/rds/rdsutils/
Package pcs provides the API client, operations, and parameter types for AWS Parallel Computing Service. Amazon Web Services Parallel Computing Service (Amazon Web Services PCS) is a managed service that makes it easier for you to run and scale your high performance computing (HPC) workloads, and build scientific and engineering models on Amazon Web Services using Slurm. For more information, see the Amazon Web Services Parallel Computing Service User Guide. This reference describes the actions and data types of the service management API. You can use the Amazon Web Services SDKs to call the API actions in software, or use the Command Line Interface (CLI) to call the API actions manually. These API actions manage the service through an Amazon Web Services account. The API actions operate on Amazon Web Services PCS resources. A resource is an entity in Amazon Web Services that you can work with. Amazon Web Services services create resources when you use the features of the service. Examples of Amazon Web Services PCS resources include clusters, compute node groups, and queues. For more information about resources in Amazon Web Services, see Resourcein the Resource Explorer User Guide. An Amazon Web Services PCS compute node is an Amazon EC2 instance. You don't launch compute nodes directly. Amazon Web Services PCS uses configuration information that you provide to launch compute nodes in your Amazon Web Services account. You receive billing charges for your running compute nodes. Amazon Web Services PCS automatically terminates your compute nodes when you delete the Amazon Web Services PCS resources related to those compute nodes.
Package qapps provides the API client, operations, and parameter types for QApps. The Amazon Q Apps feature capability within Amazon Q Business allows web experience users to create lightweight, purpose-built AI apps to fulfill specific tasks from within their web experience. For example, users can create a Q App that exclusively generates marketing-related content to improve your marketing team's productivity or a Q App for writing customer emails and creating promotional content using a certain style of voice, tone, and branding. For more information on the capabilities, see Amazon Q Apps capabilitiesin the Amazon Q Business User Guide. For an overview of the Amazon Q App APIs, see Overview of Amazon Q Apps API operations. For information about the IAM access control permissions you need to use the Amazon Q Apps API, see IAM role for the Amazon Q Business web experience including Amazon Q Appsin the Amazon Q Business User Guide.
Package applicationsignals provides the API client, operations, and parameter types for Amazon CloudWatch Application Signals. Use CloudWatch Application Signals for comprehensive observability of your cloud-based applications. It enables real-time service health dashboards and helps you track long-term performance trends against your business goals. The application-centric view provides you with unified visibility across your applications, services, and dependencies, so you can proactively monitor and efficiently triage any issues that may arise, ensuring optimal customer experience. Application Signals provides the following benefits: Automatically collect metrics and traces from your applications, and display key metrics such as call volume, availability, latency, faults, and errors. Create and monitor service level objectives (SLOs). See a map of your application topology that Application Signals automatically discovers, that gives you a visual representation of your applications, dependencies, and their connectivity. Application Signals works with CloudWatch RUM, CloudWatch Synthetics canaries, and Amazon Web Services Service Catalog AppRegistry, to display your client pages, Synthetics canaries, and application names within dashboards and maps.